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ABSTRACT The theory of Brownian dynamics is used to model permeation and the blocking of KcsA potassium channels by
tetraethylammonium (TEA). A novel Brownian dynamics simulation algorithm is implemented that comprises two free energy
profiles; one profile is seen by the potassium ions and the other by the TEA molecules whose shape is approximated by a
sphere. Our simulations reveal that internally applied TEA blocks the passage of K1 ions by physically occluding the pore. A
TEA molecule in the external reservoir encounters an attractive energy-well created by four tyrosine residues at position 82, in
addition to all other attractive and repulsive forces impinging on it. Using Brownian dynamics, we investigate how deep the
energy-well needs to be to reproduce the experimentally determined inhibitory constant ki for the TEA blockade of KcsA or the
mutant Shaker T449Y. The one-dimensional free energy profile obtained from molecular dynamics is first converted into a one-
dimensional potential energy profile, and is then transformed into a three-dimensional free energy profile in Brownian dynamics
by adding the short-range potential from the channel walls. When converted, the free energy profile calculated from molecular
dynamics gives a well-depth of ;10 kT. We systematically alter the depths of the profiles, and then use Brownian dynamics
simulations to numerically determine the current versus TEA-concentration curves. We show that the sequence of binding and
unbinding events of the TEA molecule to the binding pocket can be modeled by a first-order Markov process. The Brownian
dynamics simulations also reveal that the probability of a TEA molecule binding to the binding pocket in KcsA potassium
channels increases exponentially with TEA concentration and depends also on the applied potential and the K1 concentration
in the simulation assembly.

INTRODUCTION

Tetraethylammonium (TEA) has long known to be a potent

blocker of potassium currents flowing across the cell mem-

brane. TEA has been widely used to separate different com-

ponents of the membrane currents and to probe the dynamics

of ion permeation across potassium channels. Many potas-

sium channels are blocked by TEA molecules applied to the

internal (1) and external sides of the membrane (2,3). Dif-

ferent K1 channels display different sensitivity to external

TEA. For example, the inhibitory constant ki for the Shaker
K1 channel is 27 mM, but its TEA affinity increases dras-

tically when the threonine residue at position 449 is sub-

stituted with the tyrosine or phenylalanine residue (3,4). In

KcsA and Kv2.1, where four tyrosine residues (at position

82 or 380), located just external to the selectivity filter, form

a binding pocket for TEA, the current is halved when its

concentration reaches between 1.7 and 4.5 mM (5–8). The

external TEA affinity in KcsA is drastically reduced when

tyrosine at position 82 is substituted with nonaromatic resi-

dues, such as cysteine or threonine (5). The precise

mechanism that influences TEA potency in different chan-

nels and the structural basis of the forces that stabilize a TEA

molecule in the outer vestibule are not fully understood.

The one-dimensional free energy profile computed using

molecular dynamics shows that a TEA molecule sees a

shallow attractive potential well as it enters the binding

pocket (9,10). This well extends ;6 Å in the direction

normal to the membrane, and its deepest position, located

outside of the selectivity filter, is ;4.45 kcal/mol or 7.5 kT (1

kcal/mol equals 1.69 kT at 298�C) (9). From steric consid-

erations, it is postulated that the stabilizing effects between

the aromatic rings of the tyrosine residues and a TEA

molecule arise from hydration rather than electrostatic forces

(9,10). On the other hand, using the nonsense suppression

method in the mutant Shaker, Ahern et al. (11) provide ex-

perimental and computational evidence supporting the idea

that external TEA blockade in Shaker arises, in large part,

from a cation-p electron interaction between the aromatic

ring of the tyrosine residues at position 449 and a quaternary

ammonium ion.

The picture emerging from these studies is that in the

KcsA and Shaker potassium channels, a TEA molecule

physically occludes the pore when it is sequestered by four

tyrosine residues located just external to the selectivity filter.

In the Kv2.1 channel, which is a slowly inactivating delayed

rectifier responsible for repolarization of the action potential,

evidence suggests that current block by external TEA may

hinge on several other factors. For example, TEA is

ineffective in blocking Na1 currents flowing across this

channel, in the absence of K1 (6). The substitution of the
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tyrosine residues at position 380 (corresponding to position

449 in Shaker) with cysteines has relatively small effect on

TEA block; this mutation shifts the inhibitory constant from

3 to 9 mM (12). Thus, the stabilization of TEA in the external

vestibule is influenced by, among other factors, the confor-

mation of the vestibule, the electrostatic milieu near the

binding pocket, and the occupancy state of the selectivity

filter. It is possible that, in the course of a prolonged

activation of the channel, TEA efficacy undergoes dynamic

changes, as does the conformation of the external vestibule

(13,14) and of the selectivity filter (15).

The aim of this article is to show that Brownian dynamics

(BD) simulations can reveal further insights into the action of

internally and externally applied TEA on the permeation

dynamics. The BD simulations are run for a period long

enough to study the effects of TEA in the simulation assem-

bly on the conductance properties of the KcsA K1 channel.

The ability to run simulations over a period long enough to

determine statistically consistent estimates of the current

flow across ion channels is a distinct advantage of BD over

molecular dynamics. This is achieved by making two ap-

proximations. First, BD assumes a fixed protein structure, so

that the explicit dynamics of protein molecules are not

simulated. Second, in BD, the dynamics of water molecules

are not simulated. Instead, the net effect of incessant col-

lisions between water molecules and ions, or water mole-

cules and TEA molecules, are represented as frictional and

random forces. These random forces are modeled as Brown-

ian motion based on a functional central limit theorem

approximation. This means that the hydration structure of

molecules in the simulation assembly, or the attractive inter-

action between molecules via hydration forces, are not taken

into account.

The forces arising from the interaction between a charged

TEA molecule and the quadrupolar moment of the aromatic

ring are computed from the three-dimensional free energy

profile a TEA molecule encounters as it moves from the

outer vestibule toward the selectivity filter of the KcsA

channel. As described in Appendix 1, the one-dimensional

free energy profile, taken from molecular dynamics calcu-

lations (9), is converted into a one-dimensional potential

energy profile to be used in BD simulations. The shape of the

one-dimensional potential energy profile for TEA remains

virtually identical to that of the one-dimensional free energy

profile but its depth increases slightly once these conversions

are made.

With this modification of the free energy profile, we carry

out BD simulations of the KcsA potassium channel with KCl

ions and TEA molecules both present. In this novel BD

algorithm, the motion of TEA is influenced by the electro-

static, random, and frictional forces, as well as the attractive

force arising from its interaction with four tyrosine residues

just outside of the selectivity filter. This free energy profile,

invisible to other charged particles in the simulation as-

sembly, is in turn modulated by the locations of resident K1

ions in the selectivity filter. With these simulation techniques,

we uncover several additional insights into the mechanisms

of internal and external TEA blockade. First, we reproduce

the macroscopically observed binding affinity of TEA through

the fundamental processes operating in electrolyte solutions.

By constructing the current-TEA-concentration curves using

different energy profiles with different well-depths, we are

able to determine the binding energy between TEA and the

channel to account for the experimentally observed inhib-

itory constant ki. Second, we show how the inhibitory con-

stant is pronouncedly influenced by the applied membrane

potential and ionic concentrations of K1 ions in the reser-

voirs. Such dynamic interactions arising from the presence of

many particles cannot be revealed from a static profile of

potential of mean force. Third, with the BD simulation

technique, we have been able to investigate the kinetics of

TEA binding and unbinding. We show that they follow a

first-order Markovian process, and construct the transition

probability matrices at various applied potentials and ligand

concentrations. The opening and closing of a single channel

is governed by a Markovian process (16,17). Within each

brief open episode in the presence of TEA, the channel is

blocked and unblocked at a fast timescale, according to

another Markovian process. Finally, we show how the

channel is blocked by TEA applied to the internal side of the

membrane.

METHODS

Channel models

The channel structure we use for this study is the same as that used in

previous BD simulations of the KcsA potassium channel (18). The model

channel is based on the crystal structure of Doyle et al. (19) with the pore

expanded at the internal end of the channel using a cylindrical repulsive

potential in molecular dynamics to have a radius of 5 Å. As described

previously, the selectivity filter is also expanded slightly such that the

minimum radius is 1.4 Å. The full charges of�e and 1e are assigned to D80

and R64 located at the extracellular aspect of the channel, whereas a partial

charge of �0.5e and 10.5e is assigned to the ionized pair, E118 and R117,

guarding the intracellular gate. One unpaired arginine residue (Arg27) and

the two pairs of ionizable residues, namely, Glu51/Arg52 and Glu71/Arg89,

are kept neutral, for the reasons detailed in Chung et al. (23). For this study,

we selected this model, among several other permeable forms of KcsA (see,

for example, (18)), as it more accurately replicates the experimental data,

such as the observed current-voltage-concentration profiles.

Brownian dynamics

The algorithm for performing BD simulations is conceptually simple. The

position and velocity of each individual ion in and around the ion channel

evolves according to a continuous time stochastic dynamical system. The

position xi
t and velocity vi

t of the ith ion at time t with mass m and charge q

located at a given position are determined by the force acting on it and are

computed by integrating the equation of motion, known as the Langevin

equation, a stochastic version of Newton’s equation of motion. Thus,

xðiÞt ¼ xðiÞ0 1

Z t

0

vðiÞ
t

dt; (1)
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mvðiÞt ¼ mvðiÞ0 �
Z t

0

mgðxðiÞ
t
ÞvðiÞ

t
dt 1

Z t

0

F
ðiÞ
l
ðxtÞdt

1

Z t

0

bðxðiÞ
t
ÞdwðiÞ

t
: (2)

Here, mg is the frictional coefficient and the process fwðiÞt g denotes a three-

dimensional zero-mean Brownian motion, which is component-wise

independent. The constant b is related to the friction coefficient by

b2ðxðiÞt Þ ¼ 2mgðxðiÞt ÞkT: Here, l denotes experimental conditions, such as

external applied voltage and ionic concentrations, and Fl denotes systematic

electrostatic forces. Thus, there are two main sources of the forces

influencing the motion of ions that result in the channel current. These are

the stochastic force and electric force. The former arises from the effects of

incessant collisions between ions and water molecules. As a result of such

bombardments, the motion of an ion is retarded by the friction term, and it

undergoes random fluctuations from an equilibrium position via the

Brownian motion term. The Langevin equation is often presented as

m
dvðiÞt

dt
¼ �mgðxðiÞt Þv

ðiÞ
t 1 F

ðiÞ
l
ðxtÞ1 bðxðiÞt Þe

ðiÞ
t ; (3)

where eðiÞt denotes continuous-time white noise.

Ions are initially assigned random positions with a specified mean

concentration and Boltzmann-distributed velocities within cylindrical res-

ervoirs of 30 Å radius attached to either end of the channel that mimic the

intracellular and extracellular space. We calculate the total force acting on

each ion in the assembly and then determine new positions for the ions a

short time later using an algorithm described elsewhere (20–22). A multiple

time-step algorithm is used, where a time-step of Dt¼ 100 fs is employed in

the reservoirs and 2 fs in the channel where the forces change more rapidly.

The electrostatic forces Fl acting upon the ions are calculated by solving

Poisson’s equation using a boundary element method (24). To do this we

assign a dielectric constant of ep ¼ 2 to the protein and membrane and ew ¼
60 to the water inside the channel as in previous BD studies of the KcsA

channel (18). Since calculating the electric forces at every step in the

simulation is very time-consuming, we store precalculated electric fields and

potentials due to one- and two-ion configurations in a system of lookup

tables and interpolate values for the given ion positions from these during the

simulation (21).

For this purpose, the total electric potential fi encountered by a charged

particle i (including TEA molecules) is decomposed into four components:

fi ¼ fX;i 1 fS;i 1 +
j 6¼i

ðfI;ij 1 fC;ijÞ: (4)

The four terms on the right-hand side of Eq. 4 are, respectively, the external

potential due to the applied field and fixed charges in the protein and charges

induced by these, the self-potential due to the surface charges induced by the

ion i on the channel boundary, the image potential due to the charged

induced by the ion j, and the Coulomb potential due to the ion j. The first

three potential terms are stored in, respectively, three-, two-, and five-

dimensional tables.

The short-range forces are used to keep the ions and TEA molecules in

the simulation assembly and also to mimic other interactions between

charged particles that are not included in the Coulomb interaction. To

prevent charged particles from leaving the system, a hard-wall potential is

activated when they are within one ionic radius of the reservoir boundaries.

Thus, a particle colliding with the boundary of the reservoir is elastically

scattered. For the ion- or TEA-wall interaction UIW, we use the 1/r9 repulsive

potential

U
IWðrÞ ¼ F0

9

ðRi 1 RwÞ10

ðRcðzÞ1 Rw � aÞ9
; (5)

where Ri is the radius of ions or TEA, Rw is the radius of the atoms lining the

protein wall, Rc(z) is the radius of the channel as a function of the z

coordinate, and a is the ion’s (or TEA molecule’s) distance from the z axis.

We use F0 ¼ 2 3 10�10 N in Eq. 5, which is estimated from the ST2 water

model used in molecular dynamics (25). At short-ranges, the Coulomb

interaction between two charged particles is modified by adding a potential

USR, which replicates effects of the electron clouds and hydration. Molecular

dynamics simulations show that the hydration forces between two charged

particles add further structure to the 1/r9 repulsive potential due to the

overlap of electron clouds in the form of damped oscillation (26,27). This

additional potential is incorporated in our Brownian dynamics such that the

radial distribution functions derived from BD simulations replicate those

found in molecular dynamics simulations. For further details of the im-

plementation of short-range forces, see Corry et al. (28).

Tetraethylammonium in the BD algorithm

Ideally, each TEA molecule should be represented as a rigid oblate shape, a

spheroid generated by the revolution of an ellipse, with the long and short

axes equal to 4.6 and 2.3 Å. For this study, we use a simple, spherical model

of TEA with the radius of either 2.3 Å (for externally applied TEA) or 3.4 Å

(for internally applied TEA). The molecular weight and diffusion coefficients

used for the spherical TEA model are, respectively, 130.25 and 0.87 3 10�9

m2 s�1 (29).

Crouzy et al. (9) calculated a free energy profile encountered by a TEA

molecule as it moves from the external reservoir toward the selectivity filter

(Fig. 1, top). To convert this one-dimensional free energy profile, calculated

using CHARMM, to a three-dimensional free energy profile that can be

incorporated into the BD algorithm, we first fit an analytical function to the

FIGURE 1 Model potassium channel. (Top) Two of the four subunits of

the full experimentally determined KcsA protein are represented as ribbons.

Water molecules are shown in gold. The circled region of the protein,

containing the selectivity filter is enlarged on the right-hand side and shown

in a stick-and-ball model, together with three water molecules and 2 K1 ions

(gold). In simulations, each TEA molecule in the external reservoir is

represented as a sphere with radius of 2.3 Å, and that in the internal reservoir

as a sphere with radius of 3.2 Å. (Bottom) The one-dimensional free energy

profile obtained by Crouzy et al. (9) replotted (open circles). The digitized

data points are fitted with three analytical functions (solid line). The origin of

the profile is at the center of the mass of the selectivity filter.
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profile obtained by Crouzy et al. (9) (Fig. 1, bottom, open circles). The

digitized points are fitted with the sum of three simple algebraic functions:

f1ðzÞ ¼ A1e1

s1

z� r1

� �12

� s1

z� r1

� �2
" #

; (6)

f2ðzÞ ¼ �A2e2exp �1

2

z� r2

s2

� �2
" #

sin p
z� r2

s2

� �� �
; (7)

f3ðzÞ ¼ e3exp �1

2

z� r3

s3

� �2
" #

: (8)

The coefficient A1 is chosen such that f1(z)¼�e1 at the minimum. Similarly,

A2 is chosen such that f2(z) ¼ 6e2 at the maximum and minimum. The

parameters are adjusted to a least-squares fit using the Levenberg-Marquardt

method (30). The final parameters used to fit the experimentally determined

free energy profile, shown in Fig. 1, bottom (solid line), are: e1 ¼ 4.21 kcal/

mol; s1¼ 4.09 Å; r1¼ 5.06 Å; e2¼ 0.47 kcal/mol; s2¼ 1.06 Å; r2¼ 11.71

Å; e3 ¼ 1.33 kcal/mol; s3 ¼ 1.06 Å; r3 ¼ 14.91 Å.

We then transform the analytical one-dimensional free energy profile G1d

into a three-dimensional free energy profile G3d, taking into account the

effective cross-sectional area at each z position. This conversion is done by

first obtaining a one-dimensional potential profile UPMF and then adding to it

the short-range potential which represents repulsion from the channel wall.

The relationship between the free energy in one-dimension G1d and that in

three-dimension G3d is given in Appendix 1. The depth of the well of the

one-dimensional potential profile UPMF is ;2.5 kT deeper than the free

energy profile in one-dimension G1d.

The position of the center of mass of the selectivity filter, which is taken

as the origin of the z axis in Fig. 1, is at z ¼ 15.1 Å in our coordinate system

(where z ¼ 0 is taken to be at the midway between the two ends of the

channel). The three-dimensional free energy profile G3d is spliced onto the

usual BD force field using a reference potential UREF(z). This potential is

used along the z axis in the region (z ¼ 24.1 to 31.1 Å) with two K1 ions in

the selectivity filter of the channel to reproduce as closely as possible the

conditions of the MD simulation. Except for short-range potentials, all

electrostatic effects, such as direct and indirect image effects of the channel

dielectric boundary, are included. The reference potential is then subtracted

to avoid double counting of potentials already included from the molecular

dynamics free energy profile. The positions of the two K1 ions in the

selectivity filter are allowed to vary to minimize the total energy. These two

positions range from z¼ 9.55 to 9.71 Å, and from z¼ 16.47 to 16.66 Å. This

reference potential is then subtracted from the BD potential where the

potential profile UPMF is added. When the configuration of ions is different,

these differences are taken into account by the resulting change in the BD

potential.

We employ, when needed to maintain low concentrations of TEA in the

external reservoir, the grand canonical Monte Carlo method (31). The

effective volume of each reservoir in our simulation system is 8.7 3 10�26

m3. Since placing one molecule in the reservoir will bring its concentration

to ;20 mM, we make use of this method to maintain a low TEA

concentration, rather than increasing the size of the reservoirs. The technical

details of implementing the grand canonical Monte Carlo method are given

in Corry et al. (32).

RESULTS

Blockade of KcsA by internally applied TEA

Our BD simulations reveal that internally applied TEA acts

by physically occluding the pore. BD simulations are carried

out with either one or more TEA molecules in the inter-

nal vestibule, and 16 K1 and 16 Cl� ions in each reservoir.

In these simulations, the free energy profile calculated

from molecular dynamics is not included. Yellen et al. (2)

identified an amino-acid residue in the Drosophila Shaker
channel that influences the affinity for TEA applied in-

tracellularly. The current in the wild-type Shaker (ShIR) is

halved when 1 mM TEA is applied on the internal face of the

channel. Substitution of threonine residue at position 441

with serine drastically alters sensitivity to internal TEA. The

sensitivity of the T441S mutant channel to TEA is reduced

by an order of magnitude compared to the wild-type ShIR
channel. In the KcsA channel, however, sensitivity to in-

ternal TEA is relatively low (5), and no TEA binding site in

the inner vestibule, equivalent to position 441 located along

the inner vestibule Shaker or to position 82 in the outer

vestibule of KcsA, has been identified. For this reason, we do

not use any special energy function for the intracellularly

applied TEA.

As a TEA molecule carries one positive charge, one

additional Cl� for each molecule is placed in the internal

reservoir to render the solutions in the reservoir electro-

neutral. When one TEA molecule is placed in the reservoir,

its concentration becomes 20 mM. The concentration of K1,

unless noted otherwise, is kept constant at 300 mM. A TEA

molecule enters the intracellular mouth of the channel

quickly, attracted by the energy-well created by four glu-

tamate residues, E118. With low applied potentials, a TEA

molecule that manages to enter the channel stays mainly in

the energy-well in the intracellular gate, as shown in the

dwell histogram shown in Fig. 2 A. With high applied po-

tentials, however, the resident TEA molecule moves further

inside the channel, and spends part of the time near the

entrance of the selectivity filter (Fig. 2, B and C). Because of

its large size, a TEA molecule is unable to pass through the

selectivity filter. In the presence of a TEA molecule any-

where along the ion-conducting pathway, the channel is

effectively blocked, as no K1 ions can pass around this

bulky molecule.

The amount of blocking depends both on the applied

potential and TEA concentration. In Fig. 3 A, the percentages

of the currents relative to the control currents are plotted

against applied potentials with the TEA concentrations of 20,

40, and 100 mM. With the concentration of 20 mM, we see

that TEA blockade is weakly voltage-dependent when the

applied potential is low, but becomes strongly voltage-

dependent at higher applied potentials. With higher TEA

concentrations, however, the currents relative to the control

currents rapidly decline with an increase in the applied

potential. The inhibitory constant for the internal TEA block

we derive is 40 mM at 130 mV and 20 mM at 170 mV. The

results described thus far are obtained from simulations, in

which a TEA molecule is represented as a sphere with a

radius of 3.4 Å. The minimum and maximum radii of a TEA

molecule are, respectively, 2.3 and 4.6 Å, and its volume

average is 3.4 Å. To test the sensitivity of the results on the

radius of sphere used, we repeat one set of simulations as
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shown in Fig. 3, representing a sphere with a radius of 2.3 Å,

instead of 3.4 Å. Using a TEA concentration of 20 mM, we

determine the percentage of block, relative to the control, at

various applied potentials. The results, shown in the upper-

most curve in Fig. 3 A (open diamonds) may be compared

with those obtained with a sphere of a radius of 3.4 Å. There

is a small, but consistent, decrease in the effectiveness of

internal TEA blockade when the radius representing the

molecule is reduced. This is because a K1 occasionally is

able to pass around a TEA molecule blocking the intracel-

lular gate of the channel.

For KcsA, the experimentally determined value of the

inhibitory constant ki for internally applied TEA is 22 mM

(5). The applied potential and ionic concentration used to

determine this constant are, respectively, 200 mV and 100

FIGURE 2 Dwell histograms of internal TEA molecules in the channel.

The inset shows the simulation assembly consisting of the KcsA channel at

the center and two TEA molecules, K1 ions (pink), Cl� ions (green) in or

in the vicinity of the channel. The channel extends from�34.2 Å to 134.2 Å.

The channel is divided into 100 thin sections and the average number of

TEA molecules in each slice during a simulation period of 0.8 ms is

tabulated. The histograms are obtained with an applied potential of 0 mV

(A), 1112 mV (B), and 1168 mV (C).

FIGURE 3 Reduction of the currents by internally applied TEA mole-

cules at various applied potentials. (A) The current at each applied potential

is expressed as a percentage of the current in the absence of TEA. The

concentrations of TEA in the internal reservoir are 20 mM (solid circles), 60

mM (open circles), and 100 mM (solid triangles). These three curves are

obtained by representing a TEA molecule as a sphere with a radius of 3.4 Å.

The measurements are repeated, for the TEA concentration of 20 mM using

a sphere with a radius of 2.3 Å (open diamonds). In this and all subse-

quent figures, error bars have a length of 2 SEM, and are not shown when

they are smaller than the data points. (B) The current-TEA-concentration

curve is obtained with the ionic concentration of 150 mM and the applied

potential of 224 mV. Superimposed on the simulated data (solid circles) are

the experimental measurements (open diamonds) obtained by Heginbotham

et al. (5).
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mM. To check how closely our results match the experi-

mental observations, we construct a current-TEA-concen-

tration for the ionic concentration curve, using the K1

concentration of 150 mM and the applied potential of 224

mV. The experimental measurements (open diamonds) are

superimposed on the curve derived from BD simulations

(solid circles) in Fig. 3 B.

Blockade of KcsA by externally applied TEA

A TEA molecule in the external vestibule of KcsA sees an

attractive potential well created by four tyrosine residues at

position 82, located just outside the selectivity filter. Mo-

lecular dynamics calculations reveal that this well extends

;6 Å along the z axis, as shown in Fig. 4. The one-

dimensional free energy profile (dashed line) obtained by

Crouzy et al. (9) is converted to one-dimensional potential

energy (solid line). The resulting profile, once the free energy

profile has been converted into the potential energy profile to

be used in BD simulations, has a shape virtually identical to

the free energy profile. The well starts at z ¼ 30 Å (or z ¼ 15

Å from the center of mass of the selectivity filter) and reaches

its deepest point at z ¼ 24.44 Å. The depth of the potential

well at this position is 10 kT, ;2.5 kT deeper than the one-

dimensional free energy profile. We incorporate this poten-

tial energy into the BD algorithm, taking into account the

short-range repulsive forces.

Using this profile, with the well-depth of ;10 kT at z ¼
24.44 Å, we construct the current-TEA-concentration pro-

files at three different values of applied potentials. For all

potentials, the currents decrease exponentially as a function

of the TEA concentration, as illustrated in Fig. 5. The inward

currents are reduced to 50% of the control value at the TEA

concentrations of 10, 17, and 24 mM when the applied

potentials are, respectively, �224, �168, and �112 mV

(inside negative with respect to outside). Thus, the magni-

tude of attenuation of the inward current by TEA depends on

its concentration as well as the applied potential. The

inhibitory constants ki we obtain at all applied potentials are

higher than the experimentally determined value, which is

3.2 mM at 200 mV (5).

How deep does the energy-well have to be to replicate the

experimentally determined inhibitory constant? We system-

atically change the depth of the potential energy profile by

multiplying the original curve by 0.9, 1.1, 1.2, 1.3, and 1.4

and then construct the current-concentration curves with the

applied potential of �168 mV. The corresponding well-

depths at z ¼ 24.44 Å are, respectively, 9, 11, 12, 13, and 14

kT, as shown in Fig. 6 A. The family of current-concentration

curves obtained with five different profiles of differing well-

depths are displayed in Fig. 6 B. The curve obtained with the

original profile (reproduced from Fig. 5) is included here for

completeness. Each set of data points is fitted with an

exponential curve. The half saturation values ki obtained

from the current-concentration curves are: 9.6, 5.4, 3.1, and

2.0 mM when the original profile is multiplied by 1.1, 1.2,

1.3, and 1.4, respectively.

We next explore how external TEA blockade is influenced

by the applied potential. With a fixed TEA concentration of

3.2 mM TEA, and with the potential profile with the well-

depth of 13 kT, we determine the currents flowing across the

FIGURE 4. Conversion of the one-dimensional free energy profile to a

one-dimensional potential energy profile. The analytical function fitted to

the experimentally determined free energy profile (solid line), as shown in

Fig. 1, is used to derive an equivalent one-dimensional potential energy

profile (dashed line) to be used in Brownian dynamics. The theoretical basis

for this relationship is given in Appendix 1. When a short-range force is

added to this potential profile, it becomes equivalent to a three-dimensional

free energy profile that can be incorporated into the Brownian dynamics

algorithm.

FIGURE 5 The current-TEA-concentration curves. The one-dimensional

potential energy profile shown in Fig. 4, after adding a short-range force, is

incorporated into the BD algorithm and the current flowing across the

channel at different TEA concentrations is determined under the applied

potentials of�224 mV (solid triangles),�168 mV (solid circles), and�112

mV (open diamonds). The data points are fitted with the exponential

function of the form: I ¼ I0 exp(�bc), where I0 is the control current in pA

and c is the TEA concentration in mM. The values of I0 and b for the three

curves are: 11.4 and 0.065 for �224 mV; 7.2 and 0.043 for �168 mV; and

4.36 and 0.037 for �112 mV.
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channel at various applied potentials. The current-voltage

relationships obtained with (open circles) and without TEA

(solid circles) in the external reservoir are illustrated in Fig.

7. The currents under both conditions increase linearly with

the applied potentials. The percentage of currents attenuated

by 3.2 mM TEA in the external vestibule, however, changes

from 70% of the control current at the applied potential of

�56 mV to 30% at �256 mV. Thus, for a fixed concentra-

tion, external TEA blockade becomes progressively more

effective as the driving force is increased.

The inhibitory constant ki also depends on the concentra-

tion of KCl in the outer reservoir. We construct, in Fig. 8, the

current-KCl-concentration curves with (open circles) and

without TEA (solid circles) in the external reservoir. The

TEA concentration and the depth of the potential profile are,

respectively, 3.2 mM and 13 kT, as used for the simulations

illustrated in Fig. 7. The current under both conditions

increases rapidly with an increasing ionic concentration and

then saturates, leading to current-concentration relationships

of the Michaelis-Menten form. The percentage of attenuation

caused by TEA of a fixed concentration decreases as the

ionic concentration is increased, as shown in Fig. 8 B. For

example, the current in the presence of 3.2 mM TEA is

reduced to 31% of the control value when the ionic

concentration in the reservoir is 75 mM. The corresponding

value at the KCl concentration of 900 mM is 60%.

The best agreement between the experimentally deter-

mined ki value for KcsA (5) and simulation results is

obtained when the depth of the potential profile seen by TEA

is assumed to be 13 kT. In Fig. 9, we plot the current-TEA-

concentration curve obtained with the driving force of 196

mV and the ionic concentration in both reservoirs of 150

mM. Superimposed on the simulated data (solid circles) are

the measurements obtained by Heginbotham et al. (5) (open
diamonds). These experimental data points are obtained with

the ionic concentration of 100 mM and the applied potential

of 200 mV. To replicate the ki value for the mutant Shaker
T449Y (4), the depth of the free energy-well needs to be

increased to ;15 kT.

FIGURE 6 The current-TEA-concentration curves with varying well-

depths. (A) The depth of the three-dimensional free energy profile is

systematically altered by multiplying the one-dimensional potential energy

profile shown in Fig. 4 by 0.9, 1.0, 1.1, 1.2, 1.3, and 1.4. The depth of the

original potential energy profile at z¼ 24.44 Å from the center of the mass of

the selectivity filter is 10.0 kT. (B) For each profile shown in panel A, the

current-TEA-concentration curves are constructed. The free energy profiles

used for simulations are indicated in the inset. The parameters b of the

exponential function, I ¼ a exp(�b(c)), used to fit the data points from the

top to bottom curves, are 0.026, 0.047, 0.099, 0.194, 0.328, and 0.446.

FIGURE 7 Reduction of the currents at different applied potentials. The

TEA concentration in the external reservoir and the depth of the well seen by

a TEA molecule at z ¼ 24.44 Å are kept constant at 3.2 mM and 13 kT,

respectively. (A) The current increased linearly with an increasing applied

potential in the absence (solid circles) and presence (open circles) of TEA.

(B) The percentage of the current relative to the control current decreases

steadily as the applied potential is increased.
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Kinetics of TEA binding and unbinding

The results from BD simulations show that externally

applied TEA binds to the binding pocket located just

exterior to the selectivity filter and becomes unbound

according to a first order Markovian process. We tabulate

the time the channel is not blocked by a TEA molecule (off-

time) and the time the binding pocket is occupied by a TEA

molecule (on-time). A short segment of the on-time and off-

time sample path generated from BD simulations is

illustrated in Fig. 10. When bound, a TEA molecule

effectively blocks the passage of K1 ions. Conduction

events occur only when no TEA is in the binding pocket, as

indicated with downward marks in Fig. 10. With a 3.2 mM

TEA concentration, the channel is blocked and unblocked

nearly 300 times in 100 ms, which is usually one digitizing

interval of patch-clamp recordings.

To characterize the binding and unbinding processes, we

carry out a set of simulations at eight different TEA

concentrations under the applied potential of 168 mV and

calculate the mean off-time and on-time at each concentra-

tion. The depth of the well and ionic concentration used for

these simulations are 12.0 kT and 300 mM, respectively. The

random sequence of off-times and on-times generated from

the BD simulation can be statistically modeled as a first-

order two-state continuous-time Markov process with a

transition rate matrix denoted Q(c) as a function of the TEA

concentration c. We statistically validate whether or not the

binding or unbinding process obeys a first-order, continuous-

time, Markov process. One way to demonstrate this would

be to construct an interval histogram, which will be dis-

tributed as a single exponential function if the process is a

first-order Markovian. That is, the random sequences of on-

times or off-times denoted t for a given concentration c have

an exponential probability distribution function of the form

1-exp(�t/tON(c)) and 1-exp(�t/tOFF(c)), respectively. Here,

we use the well-known Anderson-Darling statistical test (33)

to determine whether the small number of random sequence

of on- and off-intervals we obtained from BD simulations

can be modeled by an exponential distribution. By using

the Anderson-Darling test with a standard significance level

of 5%, we find that the hypothesis that the sequence of

FIGURE 8 Effectiveness of internal TEA at different K1 concentrations.

The TEA concentration in the external reservoir and the well-depth seen by a

TEA molecule at z ¼ 24.44 Å are kept constant at 3.2 mM and 13 kT,

respectively. (A) The currents increase both in the absence (solid circles) and

presence (open circles) of TEA increase monotonically as the K1

concentration is increased from 75 mM to 900 mM. (B) The percentage of

the current relative to the control current increases as the K1 concentration is

increased.

FIGURE 9 Comparison with the experimentally determined inhibitory

constant. The currents derived from BD simulations (solid circle) at various

TEA concentrations are compared with those determined experimentally

(open diamonds) by Heginbotham et al. (5). The applied potential and the

ionic concentration used for BD simulations are, respectively, 196 mV and

150 mV. The depth of the energy-well encountered by a TEA molecule is

assumed to be 13 kT.

FIGURE 10 Sequence of TEA binding and unbinding. A short segment of

the TEA binding and unbinding process is illustrated. The sequence is

governed by the first-order Markov process, and the conduction events take

place only when a TEA molecule is not in the binding pocket, as indicated

by downward marks.
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off-times and on-times generated by BD simulation at vari-

ous TEA concentrations is exponentially distributed, cannot

be rejected. Thus, the random sequence of on-times (block-

ing of the channel by TEA) and off-times (unblocking of the

channel) obtained from BD simulations forms a two-state

continuous-time Markov chain holds.

The mean off-times tOFF(c) and on-times tON(c) for dif-

ferent concentrations c in mM computed from the data is

shown in Fig. 11 A. The figure shows that the time the mol-

ecule stays bound to the channel at different TEA concen-

trations, tON, remains fairly constant (open circles), whereas

the time channel remains unbound to the molecule, tOFF,

decreases as the TEA concentration in the reservoir increases

(solid circles).

We now show that the elements of the transition rate

matrix Q(c) behave as exponential functions of the concen-

tration c. Thus, the binding and unbinding of TEA from BD

simulations has a compact statistical representation. By

relating the continuous-time transition rate matrix Q(c) to the

TEA concentration c, we give an explicit characterization of

the stationary distribution of the Markov chain and hence the

average channel current versus concentration c. This allows

us to characterize the effect of the blocker on the channel

current and in particular give explicit trends as to how the

average channel current from BD mimics the actual exper-

imental channel current.

Let us denote the transition rate matrix of this two-state

continuous-time Markov chain as

QðcÞ ¼

�1

tONðcÞ
1

tONðcÞ
1

tOFFðcÞ
�1

tOFFðcÞ

2
664

3
775: (9)

We note here that the transition probability matrix A(c) of the

discrete-time Markov chain can be computed from the

transition rate matrix Q(c) of the continuous-time Markov

chain as A(c)¼ exp(�Q(c) D), where exp(���) denotes matrix

exponential and D is the time discretization interval.

However, in the analysis below it is more convenient and

intuitive to deal with a continuous-time Markov chain.

Our next task is to model how Q(c) evolves with

concentration c. The stationary distribution of the continu-

ous-time Markov chain, which gives the normalized times in

which the channel is blocked (PON(c)) and not blocked

(POFF(c)), is given by the solution of

½PONðcÞ POFFðcÞ�QðcÞ ¼ 0; PONðcÞ1 POFFðcÞ ¼ 1: (10)

Therefore, we can explicitly compute the stationary distri-

bution as

PONðcÞ
POFFðcÞ

� �
¼

tONðcÞ
tONðcÞ1 tOFFðcÞ

tOFFðcÞ
tONðcÞ1 tOFFðcÞ

2
664

3
775: (11)

In Fig. 11 B, we plot the stationary probability POFF(c)

of a TEA molecule not bound to the channel as a function

of the TEA concentration. The solid line fitted through

the points derived from tON and tOFF (see Eq. 11) is

fitted with an exponential function of the form, exp (ac 1 b)

with a ¼ �0.104 and b ¼ �0.08. With e denoting the ele-

mentary charge, the average channel current is �iðcÞ ¼ eN3

POFFðcÞ103PONðcÞ ¼ eNPOFFðcÞ; since when the blocker

is ‘‘ON’’ the channel is blocked. Here N denotes the number

of K1 ions that moves across the channel in one second in

the absence of TEA. Thus, POFF(c) is proportional to the

average current �iðcÞ: It can be seen from Fig. 11 B that

POFF(c) decays exponentially as the concentration c of TEA

is increased. A similar exponential decay has been experi-

mentally reported for the KcsA channel (5) (see Fig. 9).

A similar argument can be made for a random sequence of

off-times and on-times as a function of the applied voltage.

The depth of the well and the TEA concentration used for

this series of analysis are, respectively, 13 kT and 3.2 mM. In

this case, off-time tOFF (solid circles) and on-time tON (open
circles) are plotted in Fig. 12 A against applied potentials.

The average time TEA stays bound to the channel, once it

enters the binding pocket, increases as the applied potential

increases, whereas the average time the channel remains

FIGURE 11 Concentration-dependent kinetics of TEA biding and un-

binding. (A) The mean off-time tOFF(c) (solid circles) and the mean on-time

tON(c) (open circles) are plotted against the TEA concentration. The on- and

off-durations are tabulated during a simulation period lasting 6.4 ms. (B) The

stationary probability POFF of a TEA molecule being not bound to the

channel is plotted against the TEA concentration.

374 Hoyles et al.

Biophysical Journal 94(2) 366–378



unbound from the molecule decreases with an increasing

applied potential. Once again, all random sequences ob-

tained from BD simulations are shown to be exponentially

distributed using the Anderson-Darling test. In Fig. 12 B, the

POFF(V) is fitted with the following two exponential func-

tions: exp(�0.003V and �0.133), where V is in mV.

DISCUSSION

For this study, we approximated the shape of TEA as a

sphere with a radius of either 2.3 Å or 3.4 Å. Ideally, the

molecule should be represented as an oblate spheroid whose

long and short axes correspond to 2.3 and 4.6 Å. To

incorporate spherically asymmetrical molecules as rigid

bodies into the BD algorithm, we would need to follow, in

addition to their translational steps, the rotational motions

using unbiased operators for finite rotations (34). We should

also need to determine the diffusion coefficient for rotational

motions and may have to incorporate a hydrodynamic

interaction term into the diffusion tensor (35). For this

preliminary study, however, we use a simplified, spherical

TEA model, deferring the more realistic representation of the

molecule to a future project.

The stabilization of TEA by the four tyrosine residues in

KcsA is likely to arise either from the hydration forces (9,10)

or from the attractive interaction between a TEA molecule

and the quadrupolar moment of the aromatic ring (3,11).

Because in Brownian dynamics water molecules are not

explicitly simulated, the interaction originating from the

hydration force is not taken into account. Similarly, forces

stemming from electrostatic interactions between a charged

particle and quadrupolar moments are not calculated in our

algorithm. We therefore implicitly account for these forces

by incorporating in the BD algorithm the free energy profile

obtained from molecular dynamics, so that each TEA mol-

ecule in the reservoir sees, in addition to all other attractive

and repulsive forces it encounters, the attractive force gen-

erated by the tyrosine residues near the entrance of the se-

lectivity filter. The so-called potential of mean force derived

from umbrella sampling calculations using the weighted

histogram analysis method (36) is in fact a one-dimensional

free energy profile. For use in BD, it should first be converted

into a one-dimensional potential energy profile and then into

a three-dimensional free energy profile. The interrelation-

ships between these profiles are briefly summarized in

Appendix 1.

By grafting into BD the additional force encountered by

TEA in the simulation assembly, we uncover several subtle

features of its mechanism of blockade. First, we determine

the precise depth of the free energy profile external TEA has

to encounter to reproduce the experimentally determined

inhibitory constant (Figs. 6 and 9). We show that the depth of

the energy-well has to be somewhat deeper than that

calculated from molecular dynamics (9) to account for the

experimental measurements. Secondly, the affinity to exter-

nal TEA block also depends on the applied potential (Fig. 7)

and, to a lesser extent, the ionic concentration in the outer

reservoirs (Fig. 8). At a fixed applied potential, the current

decreases exponentially with an increasing TEA concentra-

tion. Likewise, with a fixed TEA concentration, the per-

centage of inhibition relative to the control current increases

as the applied potential increases. Thus, an inhibitory con-

stant ki derived at a fixed potential with one ionic con-

centration may not hold true for different experimental

conditions, as noted previously by Eisenberg (37). Thirdly,

our analysis of the sequences of blocking events reveals that

binding and unbinding of TEA to the binding pocket is a

first-order Markovian process. The transition rate for TEA

binding increases steeply with the concentration, whereas

that for unbinding remains invariant of the concentration

(Fig. 11). The transition rate for binding and unbinding de-

pends similarly on the applied potential (Fig. 12).

The depth of the well from the free energy profile cal-

culated from molecular dynamics is 4.5 kcal/mol or 7.5 kT

(9). The binding energy computed by Luzhkov and Åqvist

(10) using an automated docking approach is slightly lower,

ranging from 3.3 to 3.9 kcal/mol. From the one-dimensional

free energy profile, we can directly estimate the probability

of a TEA molecule found in the binding site, Pbind, and this

in turn leads to an estimate for ki (see Appendix 2). The value

FIGURE 12 Voltage-dependent kinetics of TEA binding and unbinding.

(A) The mean off-time tOFF (V) (solid circles) and the mean on-time tON (V)

(open circles) are plotted against applied potentials. (B) The stationary

probability POFF of a TEA molecule being not bound to the channel is

plotted against applied potentials.
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of the inhibitory constant with no applied potential estimated

from the free energy profile of Crouzy et al. (9) is 23 mM.

When the applied potential is increased from 0 mVA to 200

mV, the value of ki shifts by 2.1 mM. Although the free

energy profile obtained from molecular dynamics is unable

to account for other subtle features of the dynamics of TEA

blockade, it nevertheless provides an order-of-magnitude

estimate of the inhibitory constant. More importantly, such a

profile gives valuable information about the general shape of

the three-dimensional free energy profile that needs to be

incorporated into the Brownian dynamics algorithm. It is

possible that the depth of the free energy profile calculated

from molecular dynamics may become deeper once all four

tyrosine residues are repositioned such that a TEA molecule

in the binding site would interact with the faces of the

aromatic side chains. Such an en face orientation is needed

for the favorable cation-p electron interaction (11).

Yellen et al. (2) noted that internal TEA blocks a mutant

Shaker channel, ShIR, at a submillimolar concentration.

When threonine residues at position 441 are replaced with

serines, the sensitivity to internally applied TEA is reduced

by an order of magnitude. It thus appears that the Shaker K1

channel possesses an internal TEA binding pocket similar to

that found in the external vestibule. In contrast, the inhibitory

constant for internally applied TEA for the KcsA K1 channel

is 22 mM (5). This value is close to the results of our sim-

ulation (Fig. 3). The suppression of the currents by internal

TEA in our simulations is caused by the occlusion of the ion

conducting pathway. The blocking molecule penetrates

deeper inside of the pore as the applied potential is increased,

thus making the effectiveness of blockade highly voltage-

dependent (Fig. 2).

By making several simplifying assumptions, we have been

able to deduce many of the salient features of internal and

external TEA blockade in the KcsA K1 channel. Here we

have exploited the capability of BD to measure the current

flowing across a biological ion channel to study how inter-

nally or externally applied TEA interacts with the permeation

dynamics. By carrying out BD simulations in the KcsA

potassium channels with TEA ions in KCl solutions, we

show how the inward and outward currents change with an

increasing concentration of TEA in the simulation assembly.

From a series of such current-concentration curves con-

structed from different energy profiles with varying well-

depths, we are able to infer the depth of the energy-well a

TEA molecule needs to see to replicate the experimentally

determined inhibitory constant for the TEA block. We also

demonstrate that the attenuation of currents by TEA is de-

pendent on other factors, such as the applied potential and

ionic concentrations of potassium ions in the reservoirs.

Moreover, by tabulating how long a TEA molecule stays

bound in the binding site, we reveal the dynamics of binding

and unbinding processes taking place in a fast timescale. The

technique we introduce here can be fruitfully utilized in

examining other K1 channel models whose atomic coordi-

nates are not yet determined. Any homology model of a K1

channel constructed must account for its current-voltage-

concentration profiles as well as the effects of quaternary

ammonium ions on channel currents.

APPENDIX 1: ONE-DIMENSIONAL AND
THREE-DIMENSIONAL FREE ENERGY PROFILES

The aim below is to determine the relationship between the three-

dimensional potential model that can be used in BD and the one-dimensional

free energy profile obtained by using molecular dynamics calculations (9). In

BD, we model the three-dimensional potential as

U
BDðx; y; zÞ ¼ U

PMFðzÞ1 U
SRðx; y; zÞ; (12)

where UPMF(z) is an arbitrary one-dimensional potential, and USR(x, y, z)

models the short-range forces due to the channel walls. We wish to

determine the potential UPMF(z) so that the one-dimensional energy profile

corresponding to Eq. 12 is equal to the one-dimensional free energy profile

determined by molecular dynamics. As the free energy profile already

includes an entropic component, we need to calculate the equivalent entropic

component in BD. To do this, we must find the probability that the TEA

resides within each cross-sectional area of the KcsA channel.

We start with the one-dimensional free energy profile obtained by using

molecular dynamics. In one dimension, and at equilibrium, the probability of

finding an ion per unit length is

P1dðzÞ ¼
k1d

L0

exp½�bG1dðzÞ�; (13)

where G1d(z) ¼ GPMF(z) is the free energy in one dimension taken from

Crouzy et al. (9), and b¼ 1/kT. Here, k1d is a normalization constant, and L0

is a reference length.

Even though profiles generated by WHAM analysis of molecular

dynamics simulations are described as potentials of mean force, the nature of

the analysis means that they reflect the probability of finding an ion at

positions along the reaction coordinate, rather than the average (systematic)

force along the reaction coordinate. In other words, they are free energy

profiles, not potential energy profiles, and include an entropic component

which depends on the effective cross-sectional area,

G
PMFðzÞ ¼ U

PMFðzÞ � TS
PMFðzÞ; (14)

where UPMF(z) is the potential energy, T is the absolute temperature, and

�TSPMF is the entropic component of the free energy.

In the case of hard boundaries, this entropic component is given by

TS
PMFðzÞ ¼ b

�1
lnðAPMFðzÞ=A0Þ; (15)

where APMF(z) is the cross-sectional area at each z position and A0¼ (L0)2 is

a reference area. A larger area gives a larger entropy which leads to a smaller

free energy and a greater probability (per unit length) of occupancy by an

ion.

Now consider the three-dimensional potential model that can be used in

BD. The probability of finding the TEA molecule per unit volume for any

given cross section is

P3dðx; y; zÞ ¼
k3d

ðL0Þ3
exp½�bG3dðx; y; zÞ�; (16)

where G3d ¼ UBD(x, y, z) is the free energy in three dimensions and k3d is a

normalization constant. Again, this is only valid at equilibrium, but the

process of TEA binding and unbinding occurs at equilibrium.

The one-dimensional and three-dimensional probabilities can be related

using
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P1dðzÞ ¼
Z N

�N

Z N

�N

P3dðx; y; zÞdxdy: (17)

By substituting from Eqs. 13 and 16, this gives

k1dexp½�bG1dðzÞ�

¼ ðA0Þ�1

Z N

�N

Z N

�N

k3d exp½�bG3dðx; y; zÞ�dxdy: (18)

After applying the natural log, Eq. 18 becomes

lnðk1dÞ � bG1dðzÞ

¼ lnðk3dÞ1 ln ðA0Þ�1

Z N

�N

Z N

�N

exp½�bG3dðx; y; zÞ�dxdy

� �
:

(19)

Since G3d ¼ UBD(x, y, z) from Eq. 12, Eq. 19 becomes

lnðk1dÞ � bG1dðzÞ ¼ lnðk3dÞ � bU
PMFðzÞ

1 ln ðA0Þ�1

Z N

�N

Z N

�N

exp½�bU
SRðx; y; zÞ�dxdy

� �
: (20)

After rearranging terms,

bU
PMFðzÞ � bG1dðzÞ ¼ lnðk3dÞ � lnðk1dÞ

1 ln ðA0Þ�1

Z N

�N

Z N

�N

exp½�bU
SRðx; y; zÞ�dxdy

� �
: (21)

The integral is an effective cross-sectional area, taking into account the

short-range repulsive forces, rather than a hard boundary.

We assume that the channel has cylindrical symmetry such that

bU
PMFðzÞ � bG1dðzÞ ¼ lnðk3dÞ � lnðk1dÞ

1 ln ðA0Þ�1

Z N

0

2prexp½�bU
SRðrÞ�dr

� �
: (22)

This assumption is justified since USR, the short-range forces from the BD

force field, have cylindrical symmetry. Because G1d(z) is the result from

Crouzy et al. (9), Eq. 22 represents the required correction needed to solve

for the UPMF(z) for use in BD simulations.

Eq. 22 can be rewritten as

bU
PMFðzÞ � bG1dðzÞ ¼ kG 1 ln

ARðzÞ
ðA0Þ�1

� �
; (23)

where

kG ¼ lnðk3dÞ � lnðk1dÞ (24)

is the dimensionless free-energy offset, and

ARðzÞ ¼
Z N

0

2prexp½�bU
SRðr; zÞ�dr (25)

is the effective cross-sectional area, taking into account the short-range

forces.

To make use of Eq. 23 in a BD simulation, we need to set a value for kG

so that the potential derived from the profile derived from molecular

dynamics will match up with the potential from macroscopic electrostatics at

the limit of the potential of mean force. We assume that at zmax, the

extracellular limit of the free energy profile,

U
PMFðzmaxÞ � G1dðzmaxÞ ¼ 0; (26)

so that, from Eq. 23,

kG ¼ �ln
ARðzmaxÞ

A0

� �
: (27)

APPENDIX 2: ESTIMATING THE INHIBITORY
CONSTANT FROM PMF

It is possible to compute Pbind, the probability of a TEA being found in the

binding site, directly from the one-dimensional free energy profile and the

concentration of TEA in the reservoir. This in turn leads to an estimate for ki,

the concentration at half inhibition, by setting Pbind ¼ 1/2.

We can estimate

Pbind ¼
Z zmax

zmin

P1dðzÞdz; (28)

¼ k1d

L0

Z zmax

zmin

exp½�bG1dðzÞ�dz: (29)

Since G1d(z) [ GPMF(z), all we need in addition to the free energy profile to

estimate Pbind from this formula is an estimate of k1d.

From Eq. 23, we obtain

expb½UPMFðzÞ � G1dðzÞ� ¼
k3d

k1d

ARðzÞ
A0

: (30)

But UPMF(zmax) – G1d(zmax) ¼ 0 from Eq. 26, so

k1d ¼ k3d

ARðzmaxÞ
A0

: (31)

We take k3d/V0¼ kRES, where V0¼ (L0)3, to be the TEA concentration in the

reservoir in appropriate units (number density). Then from Eqs. 29 and 31

Pbind ¼
k3d

V0

ARðzmaxÞ
Z zmax

zmin

exp½�bG1dðzÞ�dz: (32)

If Pbind ¼ 1/2, then ki ¼ k3d/V0 and

ki ¼ 2ARðzmaxÞ
Z zmax

zmin

exp½�bG1dðzÞ�dz

� ��1

: (33)

We thank Dan Gordon for his helpful comments on the manuscripts.

This work was supported by grants from the National Health & Medical

Research Council of Australia. The calculations upon which this work is

based were carried out using the Itanium2 processors of the Australian

National University Supercomputing Facility.

REFERENCES

1. French, R. J., and J. J. Shoukimas. 1981. Blockage of squid axon
potassium conductance by internal tetra-n-alkylammonium ions of
various sizes. Biophys. J. 34:271–291.

2. Yellen, G., M. E. Jurman, T. Abramson, and R. MacKinnon. 1991.
Mutations affecting internal TEA blockade identify the probable pore-
forming region of a K1 channel. Science. 25:939–942.

3. Heginbotham, L., and R. MacKinnon. 1992. The aromatic binding site
for tetraethylammonium ion on potassium channels. Neuron. 8:483–491.

Tetraethylammonium in KcsA K1 Channel 377

Biophysical Journal 94(2) 366–378



4. MacKinnon, R., and G. Yellen. 1990. Mutations affecting TEA
blockade and ion permeation in voltage-activated K1 channels.
Science. 250:276–279.

5. Heginbotham, L., M. LeMasurier, L. Kolmakova-Partensky, and C.
Miller. 1999. Single Streptomyces lividans K1 channels: Functional
asymmetries and sidedness of proton activation. J. Gen. Physiol. 114:
551–559.

6. Ikeda, S. R., and S. J. Korn. 1995. Influence of permeating ions on
potassium channel block by external tetraethylammonium. J. Physiol.
486:267–272.

7. Immke, D., M. J. Wood, L. Kiss, and S. J. Korn. 1999. Potassium-
dependent changes in the conformation of the Kv2.1 potassium channel
pore. J. Gen. Physiol. 113:819–836.

8. Meuser, D., H. Splitt, R. Wagner, and H. Schrempf. 1999. Exploring
the open pore of the potassium channel from Streptomyces lividans.
FEBS Lett. 462:447–452.

9. Crouzy, S., S. Bernéche, and B. Roux. 2001. Extracellular blockade of
K1 channels by TEA: results from molecular dynamics simulations of
the KcsA channel. J. Gen. Physiol. 118:207–217.
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