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Abstract

Blectric forces play a key role in the conductance of ions in biological channels. Therefore, their correct treatment is
very important in making physical models of ion channels. Here, we present FORTRAN 90 codes for solution of Poisson’s
equation satisfying the Dirichlet boundary conditions in realistic channel geometries that can be used in studies of ion
channets. For a general channel shape, we discuss a numerical solution of Poisson’s equation based on an iferative technique.
We also provide an analytical solution of Poisson’s equation in toroidal coordinates and its numerical implementation. A
torus shaped channel is closer to reality than a cylindrical one, hence it could serve as a useful test model. €) 1998 Elsevier

Science B.V.

PACS: 87.22.Bt; 87.22 Fy
Keywords: Poisson’s equation; Jon channels

PROGRAM SUMMARY

Title of program: bics
Catalogue identifier: ADIT

Program Summary URL:
hitp:/ /www.cpe.cs.qub.ac.uk/ cpe/ summaries/ ADIT

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computers: Fujitsu VPP300

Operating systems or monitors under which the program has been
tested: Fujitsu UXP/V (System V UNIX)

! B-mail: shin-ho.chung@anu.edu.au

Programming language used: FORTRAN 90

Memory required to execute with rypical data: 24 Mb for the an-
alytical methed, 720 Mb for the iterative method

Ne. of bits in a word: The program uses single and double preci-
sion IEEE floating point numbers, and 32 bit signed integers

Has the code been vectorised?: Yes

No. of byres in distributed program, including test data, etc.:
548269

Distribution format: vuencoded compressed tar file

Keywords: Poisson’s equation, ion channels

0010-4655/98/% - see front matter & 1998 Elsevier Science B.V. All rights reserved.

PH SG010-4655(98)00090-3



46 M. Hoyles et al. / Computer Physics Communications 115 (1998) 45-68

Nature of physical problem

The program calculates the potential energy of and force on an ion
in the vicinity of a model fon channel. It can include the effects
of an externally applied field and fixed charges other than the ion.
It can also calculate the electric field and potential in the absence
of an ion,

Method of solution

We treat ions and fixed charges as point charges, and treat wa-
ter and channel protein as regions of constant dielectric strength.
The electric potential at & point in the pore can be found by

The program uses one of two methods: The iterative method dis-
tributes a grid of surface charges across an arbitrary cylindrically
symmetric boundary, and modifies them iteratively until it finds a
self-consistent solution. The analytical method computes a finite
number of terms in an infinite series which is a solution to Pois-
son’s equation for a toroidal boundary,

Unusucd features of the program

The program takes advantage of the new features of FORTRAN
00. 1t is sphit into modules rather than subroutines, and uses the
concept of abstract dafa types to regulate data structares.

solving Poisson's equation with appropriate boundary conditions,

LONG WRITE-UP

1. Introduction

The flow of ions through membrane channels is a fundamental biological process that regulates most bodily
functions at the cell level [1]. Despite the significance of the problem, the physical processes involved in
transport of ions across a biological channel have not been well understood yet. A key component in the
modeling of channels is the electric force acting on an ion in the channel, which is ultimately responsible
for the channel’s conductance. Channels are made of protein and most have vestibular openings similar to an
hourglass shape. Because proteins have a low dielectric constant (e, = 2) compared to water (e, = 80) in
which ions move, the channel boundary plays a significant role in determining the electric forces acting on ions.
The basic problem involves solving Poisson’s equation for a single ion in an appropriate channel geometry.
The effect of an applied electric field usually poses a simpler problem and can be taken into account using the
superposition principle. Similarly, an electric potential for the many-ions case can be obtained by superposing
the potentials of individual ions.

There are many coordinate systems in which Poisson’s equation separates, enabling analytical solutions. How-
ever, none of them can be used to simulate a boundary in the hourglass or catenary shape, which approximate
biological channels best, Thus, a numerical solution of the problem is required to simulate realistic channel
shapes. In the next section, we describe an iterative technique and its numerical implementation that can be
used to solve Poisson’s equation for an arbitrary, closed boundary [2].

Of all the coordinate systems in which Poisson’s equation separates, the toroidal coordinates come closest
to forming a realistic channel in a torus shape [3]. While this is not a very close approximation to an actual
channel (the curvature is opposite), there are many advantages to having analytical solutions. For example,
in a Brownian dynamics simulation [4], the electric potential needs to be calculated many times, and such a
simulation is simply not feasible if one has to calculate the potential numerically at every time step. With such
applications in mind, we present a solution of Poisson’s equation in toroidal coordinates. The solution is rather
complicated requiring careful programming, therefore it is included here as a second program.

2. Numerical solution

In this section, we discuss a numerical solution of Poisson’s equation using an iterative technique.
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2.1. Poisson’s equation in dielectric media

The electric potential ¢ in dielectric media satisfies Poisson’s equation,
Vo=, (1)
€n€

where p and e refer to the charge density and the relative dielectric constant, and € is the permittivity of free
space. We wish to solve Eq. (1) for general channel geometries, without imposing any symmetries either on
the channel shape or the position of ions. A typical boundary representative of ion channels is shown m Fig. 6.
Denoting outside the boundary (i.e. channel} by subscript 1 and inside by 2, the potentials shouid satisfy the
usual continuity conditions at the boundary,

@1 =92, eV -ii=eVer - it, (2)
where # is the unit normal to the surface. Eq. (2) can be expressed in terms of the electric fields E as
€]E1-ﬁ:EZE2-ﬁ. (3)

In general, this problem cannot be solved using analytical methods and one has to resort to iterative numerical
techniques. Because the solution of Poisson’s equation is unique for a closed boundary, convergence of results
ensures that the solution found is the correct one.

Following Ref. [5], we first reduce the three-dimensional boundary value problem into an equivalent two-
dimensional problem by replacing this system with an equivalent system of charges in 4 vacuum which produces
the same electrical potential throughout space. The charge densities g; in the two regions are replaced by reduced
charge densities p;/e;, i = 1,2. The discontinuity in the electric fields across the boundary can be represented
by polarization charge density, o, induced at the surface. Using an infinitesimal Gaussian pill-box across a
surface area AS at position r, the two are related by

. T
(B~ Ey) =~ (4)
€
Thus the electric fields can be written as
o o,
E|=Ex+ —1#, Ey= Eex — 71, (5)
260 260

where E,, is the part due to all the charges except those in AS. Eliminating E, from Egs. (3), (4) and
substituting E; from Eq. (5), we obtain a relationship between the surface charge density and the external
field,

og=PE; i, (6)
where
€ — €]
P=2e 7
O + € (7)

is the polarizability of the boundary. In Eq. (0), Eex-#2 18 determined from the normal derivative of the external
potential,

- Dy ()4
%X(r)_fiqreo Zi:feirérq av +/‘1r#r,idS ' (8)

r'sr

Starting with an initial surface charge density of oo(r") = 0, one can make an initial estimate of the potential
at the boundary from Eq. (8). This potential is then fed into Eq. (6) and a new density ('} is obtained.
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Egs. (6} and (8) are iterated until the results converge, that is, the difference between o,..; and o, is
sufficiently small.
The potential energy is calculated from the expression

Utr) = %]@mp&ee{r) A4V — Ut %)

by numerical integration. Ilere Ugr is the Born self-energy of the ion and ppee refers to the charge density
excluding the polarization charges induced on the boundary.

2.2. Iterative method of determining surface charges

This method is implemented as follows. The boundary is divided into small sectors of area AS;, each
represented by a point charge ¢; at its center. First the charge density at each point is found using Eq. (6},
based on the field from fixed charges. Then ecach point is assigned a charge equal to its charge density times
the area it represents, g; = ;A S;. This process is repeated, using both the fixed charges and the current estimate
of the boundary charges, untif the boundary charges converge. An applied electric field can be included simply
by adding it to the field {from the fixed charges.

Because the computation time grows with the square of the number of sectors, it is important to optimize
the choice of sector area, Two important considerations in this regard are, first, distance of the surface area
to the external charges and, second, curvature of the area, At large distances from the external charges, the
induced charge and the solid angle it subtends are small, hence one can use relatively larger areas for such
sectors without introducing too much error. In contrast, because the relationship (4) is strictly valid only for
a flas surface, one needs to use relatively smaller arcas in places where the curvature is high. The method we
used for the correction of errors introduced by the curvature is detailed in the following section. In addition,
the results of control runs indicate that each sector should have approximately equal vertical and horizontal
spacing, and that although the spacing can be varied between different regions of the boundary, such variation
must be done smoothly.

For convergence, we test the quantity

(n) qi(ahi)

4!
&:eq g : (10)

Hmax

where g} is the largest charge in the nth iteration. The calculation is stopped when ; < 0.0001 for all surface
charges. The condition (10) is preferred over the usual one with qf"} in the denominator because it requires
fewer iterations without loss in accuracy. The reason is that induced charges at large distances are very small,
making them sensitive to small changes in other charges. Thus they take a long time {o converge to the same
level of accuracy as the larger charges. Yet the effect of these small charges on the calculated potentials are
negligible. The computations are carried out using a supercomputer (Fujitsu VPP 300) with a vector processor,
which is well suited to this type of algorithm. The iterative method outlined above allows the electric potentials
inside and outside of any arhitrarily-shaped vestibule to be computed.

2.3. Curvature compensation

Because of the simplifying assumption that sectors are flat, and the induced charge on each sector is affected
by the charges on all other sectors but not by their own charge, our method produces small but systematic
errors when used on curved surfaces. It overestimates the potential near convex surfaces, and undercstimates
that near concave surfaces. These errors can be reduced by spacing the surface points more closely, but there is
a practical limit to the number of points that can be used, imposed by the available computer time and memory.
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We use a method of compensating for curved sectors by incorporating an estimate of self-interaction into the
polarizability of each sector. We assume that the charge density ¢ is constant across the sector, and that the
electric field E and normal # at the center of the sector are representative of the whole sector. Including the
self-interaction, Eq. (6) can be written as

o= P(Eex + Eseif) - it

= Oex T Tself » (10

where Ee is the external electric field due to other sectors and fixed charges, and Egr arises from the self-
interaction of other points within the sector. The charge densities &g and @ are associated with the external
field and self-interaction, respectively. Since we assume that the charge density is constant across the sector,
o is directly proportional to ¢, that is,

Teels = Q0 (123

where the constant of proportionality ¢ depends only on the shape and size of the sector and the polarizability
of the boundary, but not on the external field. Using this relation in Eq. (11), we obtain for the corrected
charge density,

F=0 + 00
1

1—-0Q
P

1o

By precalculating Q and using Eq. (13) in place of (6) in the iterations, we can compensate for curved sectors
without modifying the iterative algorithm.
Towards this end, we first express O in terms of Eeyr using Egs. (11) and (12},

Tex

Ee - 1. (13)

PEself it

23

0= (14)
With the assumption of constant charge density o in the sector, Eeir depends only on the geometry of the
sector and is given by the surface integral

a oR

Eer= —— | v
N~ dmen | |RP
s

dA, (13)
where SR is a vector from the center of the sector to an arbitrary point on the sector, and the surface area
covers the whole sector. Substituting Eq. (15) in (14}, we obtain the desired expression for G,

P OR -

= ——— | ———dA. 16
477'6[) ESRP ( )
5

To make further progress, we describe the sector as a parametric surface in variables (1, %) with the center at
Ry = R(tg,ug) and the distance from the center given by R = R(#,u) — Ry. Since the surface dimensions are
small, we can Taylor expand SR around Ry as

SR =R 6t + Ry u+ 1 Rig 8 + S Ruuo 8" + Ryo 8t 8u + -+, {17)
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where 8t = t — 1g, 8u = u — up and the subscripts denote derivatives of R(r,u) at (g, ug), that is,

_ 4R _ 'R _ &R
at ’ T e ’ 0 otdu

fa.Hp o, 4o T, in

etc. (18)

Noting that # o< R, 9 % Ry, we obtain for the length and projection of 8R to lowest order,

|6R|* = |Ro]? 82 + [Ryo|” 86% + Rip - Ry 8t 8,

SR-1t=1Ruo 67 + 1 Rup - A8 + Ry - 151 8u. (19)
There are no first order terms in SR fi, indicating absence of self-interaction when the sector is flat. The second
order terms take into account deviation from a flat surface with constant curvatures in the ¢ and u directions.

Our boundaries are all cylindrically symmetric, so we use cylindrical coordinates r(r), z(z), and 8 to
parameterize the surface. Then the sector becomes part of a generalized cylinder,

R(t,0) = r(t)cos@i-+r(#)sindj+z(Dk. (20)

Using a cylindrically symmetric dielectric boundary does not restrict the whole system to cylindrical symmetry;
permanent charges such as ions can be arranged arbitrarily in three-dimensional space. This approach can also
be used for boundaries that are not cylindrically symmetric, although the formulas will be different and more
complex. The partial derivatives of R(7,6) defined in Eq. (18) are given by

Ri g =rhcosbi+rysinboj+z0k,

Ryo=—rosindpi+rocostyj,

Ryp=rycosyi+rysindoj+z0 k.

Roge = —rocosbei —rosinfy j,

Rupg = —rjsinflpi+ rocosbo j, (21

where ro = r(1g), zo = z(#o), and primes indicate derivative with respect to . The normal & at Ry can be found
by taking the cross product of the unit tangents,

P R « Rpo

[Riol  |Rapl
1 . s .

= (rhycosOpi + rocosby j+ zg k) X (—sinflpi + costo f)
0
1

my—(—z{;cosﬁoi—zésinf?oj-!—r{,k), (22)
o

where

Yo = AT+ 2 (23}

Substituting Egs. (21) and (22} into (19) gives
I6R|? = v§ 6% + 1k 86,
1
SR A= 5 [(rhzg — ryzg) 81% + rozg 867 . (24)
. ,

The differential area dA is the product of the differential path lengths in the ¢ and ¢ directions given by
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d/’"l - 1RF»OHRU,01 d! dB
ﬂj’o?’(}didﬁ. (25}
Substituting Egs. (24} and (25) into the integral (16) gives

Go+A0 tg+Ar

P o1 (rhzfl — rlizl) 81% + roz} 86°
- " dt de .
©" ame om ot + gan (20
Hy-—AG tg—AY

By making the substitutions t — ¢ -+ to and 6 — 8 + 6, this becomes

Ad Ar
Prg (rhzd — rizg)i* + rozhf*
= — dt df, 27
0 8aeg / ] (yart + r36?)3/2 (27)
Al — A&t

which can be integrated to yield

P Fo .+ _u "ot .1 { oAt Zé . -1 [ ToA8
= - - A h e — At sinh . 28
@ 2meg |:"}’3 (rOZO r()Zg) 9 sin rold * o s YoAt (28)

3. Analytical solution

The solution of Poisson’s equation in toroidal coordinates has been discussed in Ref. [3] to which we
refer for details. The resulting expression for the electric potentiat is a complicated hierarchy of infinite series
and continued fractions involving associated Legendre functions. Here we describe how this solution can be
implemented efficiently in a computer program. Only the steps needed to describe the programming of the
solution are given below.

3.1. Poisson’s equation in toroidal coordinates

A torus shaped channel is generated by rotating around the z-axis a circle of radius r whose center is offset
from the z-axis by R (R > r). The system of toroidal coordinates (u, %, ¢) are related to the Cartesian ones
through the expressions

asinh g cos¢ asinh g sin ¢ asing (29
e Y e 7 e—
cosh g — cosy cosh gt —cosm cosh it —cosm
The inverse relations, which are needed to transform the positions of the charges and ficld points from Cartesian
to toroidal coordinates, are given by

/5t 2
as/xc+y (30)

= tanh~! R
# x4y 42+ a?
2az
=tan™! s 31
K K24yt -at (D
b=tan~' 2. (32)
x
In toroidal coordinates, the two radii r and R of the torus are given by
a
R=acothpu, {33

r = . hl
sinh g4
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with the inverse relations
R
a=vV R ~rl, g1 =cosh™! =, (34)
r

As 5 changes from 0 to 27, constant u,; follows a circle with the minor radius r centered at the major radius
R.

Solution of Laplace’s equation in toroidal coordinates is given in terms of the trigonometric functions for 5
and ¢, and the toroidal harmonics {Legendre functions of half-order} P | /z(cosh w), 07 /z(cosh ). The
potential due to a point charge g at ro = (o, Mo, ho) can be similarly expanded in toroidal coordinates [6].
The solution of Poisson’s equation for the system of a point charge outside the toroidal boundary g = 1 > o,

with dielectric constants €; outside and & inside the torus, can be writien as

Fin = f(.u'e 7?) Z ZAan::L[’/z(COShFL) exp[m("? - 77:;:")] COS(¢’ - ¢0) ’

=0 m=0

[o.0] oC
Pou = F(ps) D, Y [BnmP,i"_l/z(cosh#) explin(n = M) ]

n=—oc m=0

- Conl 12 cOsh ) explin( = m0) | cosm(ch —bo) . (35)
where Aum, Bums 71y, and 74, are the expansion coefficients, and
1 g T(n—m+1/2)
nmm . 3 2~ 6;:1 T T T A P"i h 36
C y——— F0, m0)( o) Titm+1/2) " 1/2(cosh gt0) (36)

arise from the expansion of the point charge potential. The function f{u, ) is defined as
f{u.m) = yJcoshp —cosy. (37)
Applying the usual boundary conditions at g = gy,

€ ICin = dPour ) (38)
d{cosh ) d(coshp)

Pin = Pout »

and manipulating the ensuing equations, one ohtains the following second order difference equation [3}:

Em

nil

—grE® + EP = A, — 2cosh P AL AT (39)
Here the various coefficients are defined as

E;" = (EZQ’ - EIP,Q/P)Anm EXP[‘"mTI:zm] :

(e2—€1)0
o - 2 h —— =
qn cos MI+EQQ’—€]P’Q/P
Al = e(Q' — P'Q/P)Capmexpl—inmo] » (40)

and we have introduced the compact notation for the constants; P = P | /Q(COSh 1), @ =00, /z(cosh M)
and f = f(u1,7n). Similarly, the primes over £, Q and f denote derivatives with respect cosh g evaluated
at g = ). The real and imaginary parts of Eq. (39) must be satisfied separately leading to two difference
equations which determine both the amplitude A, and the phase 7;,,. The remaining coefficients By, and 75,

are obtained from

Bnm GXP[ -mﬂg] = (Anm eXP{ ”iﬂ’fi,’m;] - Cﬂm exp[ *fm?()] )Q/P . (41)
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The second order difference equation (39) has to be solved for each value of m for real and imaginary parts
separately. For convenience, we suppress the superscript m in the following. The first step is to find the Green
function corresponding to Eq. (39) which satisfies [7]

Gpitn — GnGun + Gaet N = S vt = 2cosh gy Sy + S n—1 (42)

for each value of N. Here 8, denotes the Kronecker delta. Solutions of Eq. (39} are then given by
oG
En = Z Gn,NAN- (43)
N=—00

To construct the Green function, one first finds the solutions of the homogeneous equation
Gn+1,N - QHGM,N -+ Gn—l,N =0, {44}

and then implements the “boundary conditions” implied in Eq. (42). The two independent solutions of Eq. (44)
with the correct asymplotics are given in terms of the continued fractions as [8]

Gn+1,N _ 1 .
= = Eptl s
Gn,N H
Gnti —
1
Gnez — ——"
Gnis =
Gnoin 1
— = = P 45
G 1 P (45)
Gr~1 1
gp—2 — —
q”_g —_— .
Eq. (45) can be written as recursion relations among a, and 5y,
i 1
Oy = ———, Bp=————, (46)
Gn ™ ptl Gn — Bry-1

which provide a simple method for their calculation by iteration. From the symmetry properties of P,
o, and their derivatives (they remain invariant under 7 — —n), it follows that g, = g in Eg. (40). Using
this fact in Eq. (46), it is seen that a, = B..,,, and therefore only one set of coefficients needs to be calculated.
Rewriting Eq. (45) as

sz+l,N = anJrIGn,N , n=zN+1,

ani,N =LBu-1Gpn, 0= N-1, (47)
(G, v can be determined from Eq. (47) recursively, once Gu.aa y and Gy_ y are specified. Using the “boundary
conditions” on Eq. (42) at n=N — 1, N, N -+ | yields the following solutions:

(Zcosh g1 ~ gn) Bu-1

Gyin= ,
gy — anil — Br-1
G v = (2cosh gy - eyt = By-1)
NN ™ 1
gy — @ns1 — By
2cosh wy —
Gyirn = ( L1 — GN N+ _ (48)

gy — g — By
Substituting Egs. (47) and (48) in Eq. (43), we finally obtain for the coefficients E,,
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o] Ay
E_.,z ) h _ B ~ an
N;oo (gn — an+i — By-1 {( cosh ) — @y — Bv-1)duN
n N1
+{2cosh p; — gn) [Q(n—N) H ap + (N —n) H‘Bk]}’ )

k=N+1 k=n

where @(x) is the step function.

The solution for a uniform electric field, applied along the symmetry axis of the torus, follows the same lines
as above but it is much simpler due to the axial symmetry [7]1. The potential is independent of the coordinate
¢, hence there are no m-sums in the solutions contrary to the case for the point charge solution equation {35).
Further, there are no phase differences in the 5 solutions, i.c. they are given by explinn] everywhere. The
potential for a uniform field in toroidal coordinates is given by

Pap = Epz

VBa - .
=Ep Y= f(p.) Y #Qy1j2(cosh ) explinn]. (50)
ir
H=—x
Superposing ¢, with the free ficlds in Eq. (35) (without the n-sums), and applying the boundary conditions
Eq. {38), one obtains again & second order difference equation as in Eq. (39) but without the m indices. The

coefficients E, and g, are the same as in Eq. (40) and A, is modified to

8
)ln:EI(Qr“"P’Q/P)EO'\{;‘gn' (51}
This difference equation is solved following the same steps described in Egs. (42)-(49) above.

3.2. Numerical implementation

As seen from Eq. (49), the solution involves an infinite sum of series of products. Therefore, for a fast,
yet accurate computation of the potential, an efficient evaluation of the coefficients E, is necessary. A properly
optimized computer code has been written for this purpose, which computes the electric potential for arbitrary
number of ions under an applied electric field.

The expression (49} is evaluated from the bottom up, using a fixed number of terms for all of the series
and continued fractions. The intermediate results are stored in arrays as they are generated, and kept for
possible reuse. The calculation is divided into three pieces: the boundary, the charges, and the potentials. Thus
the calculations for the boundary do not have to be redone if the positions of the charges change, and the
calculations for the charges do not have to be redone for cach point of interest. Due to the fixed number
of terms, the calculations for each charge and cach potential are the same, and the algorithm can be easily
vectorized.

The alternative top down approach is conceptually simpler, and allows better control of precision, as each
potential can be summed until the desired accuracy has been reached and no further. However, it is hopelessly
inefficient if implemented simply, as many quantities are repeatedly recalculated, and some of the recurrence
relations do not run in the same direction as the algorithm. We attempted to overcome thesc problems by
storing intermediate results and reusing them when available, however the top down algorithm does not generate
intermediate results in a predictable order, and keeping track of them severely complicated the code, resulting
in a slow and unreliable program. In addition, because each calculation was treated differently, the program was
not vectorizable. Because of these considerations, the bottom up algorithm is far superior. Below we describe
the basic elements of the program.
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3.2.1. Legendre functions

The Legendre Functions are calculated using the recurrence relations [9]
il l [ 1
P plz) = m [(271 —2)zP g pp(z) — (4 m— 3/2) ,?75/2(2)] .

On_1pfz} = [(2n+2)zQ:§‘+1/2(z) - {n7m+3/2)Q,'§;3/2(z)} . (52)

i
n+m+ 172
Note that P is calculated for successively increasing values of n, while Q is calculated for decreasing values,

This is necessary for the recurrences to be stable.
The key values used to start the recurrences are given by [HE]

F(n+m+ 1/2) (Z?_ - 1):;1[2Zn—mwl/2

P:T—l/zfz) = F(I’l—" W+ E/z) iy
xF((m-wth1/2)/2,(mwn—%—3/2)/2;m+1;Z-Z-2_ 1) (53)
and
0" )MF(l/Z)F(nwk m1/2) (—D"
p—1jzlZ) = Tntl) V2(z2 - 1)z +VZZ = 1)
XF(1/24+m1/2 —mn+1;-1}), (54)
where

2 —vzi—1
2V -1

T is the gamma function and F is the hypergeometric function: these are calculated using the formulas given

in Ref. [91. Recurrences for increasing and decreasing m are unstable, so new key values are needed for gach

value of m.
The derivatives of the Legendre functions P and @ are given by [11]

U7, () 1

= {55)

[t = 12U o2) = (= /DU a2 ]

dz 22 -1
auy ,(2) 1 :
,d];z i — [“(n+i/2)z ::’_,1/2(2:)+(n—m+1/2)UgH/2(g)], (56)

where U can be either P or Q.

3.2.2. Green function

The Green function Gy, as defined in Eq. (42), depends only on the boundary through g (40), that is,
the internal and external radii of the torus, r and R, and the dielectric constants inside and outside the torus e;
and €. Since it is independent of the position of the charges, it is more economical to calculate it once at the
beginning and store the values in an array. Thus we first calculate ¢ using Eq. (40), and then generate values
of ™ and @7 using g in the recursion relations (46). Values of G are calculated using the recurrence
relations (47) with the key values given by Egs. (48). The next stage of calculation requires values of Gy
with N varying between #n — lpay and n + [max. These are stored in an array indexed by m, n, and I, with
N =n+1, so that as | goes between —lyg and lmay, N goes between 7 — Imux and 72 + Ina, as required.

The recurrence relations generate values of G2, for fixed N and increasing and decreasing n, whereas what is
needed are values for fixed n and increasing and decreasing N. The recurrence series run diagonally across the
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array {indexed by n and [), so care must be taken to generate all required values, and some key values cutside

the table have to be generated. Values of GJ'y for negative values of N can be generated using ™, = B7, and

it

j— fil
ey =y

3.2.3. Charges

Here we describe the calculation of quantities that depend only on the boundary and the positions of
the charges. We assume that there aie imax Charges with magnitude qo; and coordinates r; = { o Toi, Poi) -
The expansion coefficients E, (43) in the potential involve the Green function and A% (40). In numerical
evaluations, it is easier to deal with real numbers, therefore we separaic the real (R) and imaginary ([) parts
of the quantities in Eq. (43) using

{R) = |Ayicosnmo, A1) = AR sinnmo (57)
and similar relations for E.n. The real part of Eq. (43) then becomes

1t max
Eﬂﬂl(R} = Z %(R)G:?N (58)

Nezpdinag

An identical equation fotlows for the imaginary part. Here we have truncated the infinite sum to appropriately
chosen minimum and maximum values. For negative values of N, note that A", (R) = AR (R) and At =
—A%(1). In the same’ vain, we introduce the following quantities in place of the complex Ay exp| ~int,, ]
and By exp(—inmlh, ] in the potentials (35):

Anm{ R) = A;;m CcOoS nﬂ;m » Amn{]) = Aum sin ?17],’;,,; 3
B R) = By cos 717]:;;?1 s B (1) = Bum sin nﬂ;ﬂn . (59)

Terms in the sums for the potentials can then be calculated using the relations

Amu cos ?’l(’J’] - 7?,!”;;) = Anm(R) cosnmn + Anm(l) sin n,
Bumcosn(n — 7],’;,;1) = By (R) cosan + By (1) sinnm . (60)

The effect of all charges on a point outside the torus can be evaluated with a single sum by precalculating
the sums involving the B, for individual charges. This process is described in the next section, but since they
depend only on the boundary and the positions of the charges, we introduce these sums here,

Trzax frnag

S,}m[ = Z Bnnli(R) COos mﬁbef ’ Sim = Z B?lmi(l) cos m¢{)i 3

i=1 i=]

Ermax tman

S, =3 Bua(Rysinmeoi,  Spu=D_ Bunil 1) sinmdboi (61)

=1 =1

where the index i ranges over all the charges.

3.2.4. Potentials and fields

Here we first describe the calculation of the electric potential at a given point with coordinates r = (4,7, ).
The potential at point r due to the charge i at r; consists of the trivial Coulomb part plus the contribution from
the charges on the boundary, which is given by




M. Hoyles et al./ Compter Physics Communications 115 (1998) 45-68 57

Mimax

Gui= 1) Y (2~ Som) coSMlS — o)

m=0
Mmax
x> (2 = 800) [ Buni (R) cos np + Bami(1) sin ) BL o (cosh o) (62)
n=0

Summing over all charges, the potential at point r due to the boundary becomes

fmax Mimax
G5 =F(am) Y > (2= Bou) [cosmep cos i + sinme sin meboi]
=l m=0
M
X S (2~ 8on) [ Bani(R) cOS 1) + Byui(1) sinng] By (cosh ) (63)
=0

where we have expanded cos m{ ¢ — ¢by;). Substituting the sums over charges introduced in (61), Eq. {63} can
be written as
Mimax Pmax

dp=FCrm) YD (2= 8on) (2 — B0) [ (S cO8n + S, sinnm) cos meb

m=0 n=0
%—(Sﬁm cosnn + Sﬁm sinan) sinmg] P,:"_lﬁ(cosh Mm) . (64)

Hence, the potential at N different points due (0 imy charges can be calculated in Oimax) + O(N) operations,
rather than the O(imax X N) operations that would be required if BEg. (63) was used naively.

The electric field is calculated from E = —V¢. The required partial derivatives of the potentials can be
found by differentiating Eq. (64). Note that afr/du has a singularity at u = 0, which is due to the inability of
the toroidal coordinate system to describe the x—y direction of the field for a point on the z-axis. We solve this
problem by moving any point on the z-axis a distance of a x 10~° off the axis for the purpose of calculation.

To find the electric field in Cartesian coordinates, the partial derivatives with respect to the toroidal coordinates
have to be converted to partial derivatives with respect to Cartesian coordinates. This is done using the relations

gﬁ:( kd +B§—lﬁ-)cos¢—y%sin¢,

ax \"au b
%m (a% +B§%> sinqﬁer%cosqﬁ,
where
g:%u_cosh#cosn), B=éésinhysinn, ymé(w> (66)

The description so far has been for both points and charges outside the toroidal boundary. For charges inside
the boundary and points stilt all outside, some modifications need to be made to the formulas. This involves
exchanging P with , and €, with &; in the expansion of point charge, Eqs. (35), (36). The coefficients By,
are modified to

By (R) = (Aum(R) — Cyym COSBTJD) By (1) = (Apm (1) — Cumsinnnp) . (67)

The factor P fz(cosh ) in the formula for the potential is unchanged.
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4. Testing

The precision of the anaiytical solution depends on the number of terms included in the sums. We investigatc
its convergence characteristics by comparing the results with different number of terms in the sums. For this
purpose we use a torus with internal and external radii of 40 A and 44 A, respectively, which generates a typical
size jon channel in membranes (4 A radius in the narrowest region). The best precision for a given amount of
computational effort occurs when Aimx was aboul twice Mmax. With nga, ~ 100, an accuracy of better than 1%
is obtained everywhere except at very close distances to the boundary (~ 1 A). Because of the large repulsive
image forces at close distances, ions are unlikely to come very near the boundary in computer simulations,
Hence in simulation studies, these errors are not expected to play any significant role. Finally, lpax ~ 10 1s
used in the caleulation of the Green function, Since the value of . affects the precision of all calculations,
not just those near the boundary, a larger value is required for higher accuracy.

As a second test, we compare the analytical results with those obtained from the iterative numerical method
for the torus boundary described above, For this purpose, we examine the potential harrier and the magnitude
of a repulsive force the ion experiences as it moves in various directions in the channel. For the numerical
calculations, the toroid is divided into 9200 sectors. The size of sectors is smallest at the narrow channel
region and becomes progressively larger at the wider region of the vestibules. The values calculated from the
analytical solution (solid lines) are superimposed on those calculated by using the iterative numerical methods
(filled circles). In Fig. 1, the ion moves into the channel along the z-direction but offset from the z-axis by
3 A. Agreement between the two methods gets better when the offset is smaller than 3 A. In Fig. 2, the ion
moves from the center of the torus towards the boundary on the z = 0 plane. Finally, in Fig. 3, the ion moves
on the z = 30 A plane towards to the boundary. Because the segments have larger sizes in this region, there
appears an appreciable error in the numerical solutions when the ion is very near the boundary {~ 1 A). The
above comparisons indicate that both methods provide refiable solutions of Poisson’s equation in channel-like
geometries, and would be very useful in computer simulation studies of ion transport problem in membrane
channels.

5. The BICS package

The BICS package is a collection of software uscfu! for generating channel boundaries and solving Poisson’s
equation for those boundaries. BICS stands for Biological Ton Channel Simulator. Typically, the package does
not include a simulator as yet, but it has been used with a separate program to perform Brownian dynamics
simulations [4]. The software is written in FORTRAN 90 and consists of a main program and 12 modules.
The main program bics_profile generates outlines of the channel shape and potential profiles for an ion. The
module bics_channel acts as a library interface, allowing the software to be incorporated into other programs.

5.1. Top level design

We have exploited the new features FORTRAN 90, which allows a modular approach to programming [12],
and structured BICS as a collection of modules using the concept of abstract data types [13]. The idea is
to hide data structures and algorithms inside each module, and provide a simplified interface in the form of
subroutines which perform the necessary operations on the data. Each module contains data which is preserved
between subroutine calls, and is accessible to all of the module’s subroutines, but is not accessible outside the
module except via the interface routines. This approach avoids the use of global data structures, and makes the
software easier to understand and modify due to the increased independence of the modules.

The overall design of the software is shown in Fig. 4. The arrows indicate dependencies: the module at the tail
of an arrow calls routines from the module at the head, and so depends on it. Not all dependences are shown,



M. Hoyles et al./Computer Physics Communications J15 (1998) 45-68 59

{ L A A SR A B A R ! ' T ' ! ' I
21 - T
20 u 2
- N 20 . ]
~— - :;
5 15 - 5 19
o | E 19 _
> 1 E
Z - | — 18 4
il =
s | g 17t -
£ st 4 £
16 - -
)
0~ . 18 - -
L £ ! | 1 1 1 L I L 1 1 i L H . L . L
-50 -40 ~30 -20 -10 0 0 i 2 3
Distance (A) Distance {A)
o T T T T T T —— r i T i i T T ¥
z T 3 Z 60+
g 8 - o
o " 1 o
KoR - X a0
a P 4
3 I
5 4r 7] G
w s 4 u
i 20
G [~ i 0 |-
. i L | : H : 1 . 1 L | i i 1 n | 1
-50 -40 +30 -20 -10 0 8] 1 2 3
Distance {A) Distance (A)
Fig. 1. Fig. 2.

Fig. 1, Comparison of analytical (line) and aumerical results {dots) for the electric potential and force calculated for a toroidat boundary.
The ion moves atong the z-direction but offset from the z-axis by 3 A

Fig. 2. Same as Fig. | but the ion moves from the center of the torus towards the boundary on the z =0 plane.

to avoid cluttering the diagrams, e.g. the an_main module also depends on an_boundary and an_functions.
All the modules depend on bics_basics which is not shown in Fig. 4.

5.2, The bics profile program

The bics_profile program generates a potential profile along a seraight line in the vicinity of the channel.
The profile line is divided into segments, and the program reports the potential energy of the ion as well as
the force on the ion at the boundaries of each segment. Optionally, the program can also include the etfect of
an external field and of fixed charges. Alternatively, the program can generate an electric potential profile for
an external field or fixed charges in the absence of an ion. The program then reports the electric potential and
electric field at each segment position, instead of potential energy and force. In addition this program will, if
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Fig. 3. Same as Fig. 1 but the ion moves on the z =30 A plane towards to boundary.

Fig. 4. Top level dependency diagram for BICS. The prefixes ‘it and ‘an’ stand for iterative and analytic, respectively.

requested, generate a two-dimensional outline of the channel shape, or a radius function offset from this outline
by a specified amount. This facility is useful for generating plots of the channel shape.

5.2.1. Input

The program reads its parameters from the standard input in FORTRAN 90 namelist format {see [12]}.
The parameters are recorded in an imput file, e.g. runl.in, and the program starts with the command
bics_profile.exe < runl.in. Since there are many parameters, and only a few need to be changed between
runs, copying and editing an input file would be more convenient. Example input files are provided with the
code. All of the input parameters are expressed in unmultiplied SI units to avoid confusion,

The parameters are divided into four groups. The profile parameters specify the profile line and the options
to use when generating the profile, as well as the output file name (Table 1, top). The outline parameters
specify whether or not to generate the outline or radius function, and if so what options and output file names
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Input parameters for potential profile, channel outline and method

Variable

Description

use_ion
use_fixed_charges

profile_segments
x0, y0, 20

x1, yvi, z1

0

q

cutput file name
trace _outline
trace_radius

min_z, max_z
max_r
buffer_dist
cutline_segments

outline_file_name
radius_file_name

method
max_m,_&»,_1,_k

sector_count
boundary_segments

I this is t the program will calculate the potential enesgy and force on a single ion at positions along the
profile line. Otherwise it will calculate the electric potential and field in the absence of any ions.

If this is & the program will include the effects of fixed charges and the exteraal field. Otherwise it will
ignore these, even if they are specified in the channel parametess.

The number of segments to divide the profile line into.

The start of the kine in Cartesian coordinates.

The end of the line in Cartesian coordinages.

The start of the line for distances measured along the line.

The charge on the ion,

The name of the file to write the output 0.

If this is t the program will generate a two-dimensional cross section of the channel boundary.

If this is t the program will generate a radius function representing a generalized cylinder based on the
channel boundary.

The z coordinates of the ends of the generalized cylinder.

The maximum radius of the generalized cylinder.

The minimum distance from the charnel boundary to the generalized cylinder.

The number of segments to divide the cross section and radius function into, for the purpose of output in
numerical form.

The name of the file to write the cross section to.

The name of the file to write the radius fanction to.

Indicates which method to use: 1 iterative, 2 analytical method.

The number of terms to fruncate at for various series in the analytical method. Set to —1 to select the
default.

The number of sectors to use in the iterative method. Set to —1 to select the default.

The number of segments used to describe the channel outline to the iterative method. Set to —1 to select

the default.
neck_spc, vest_spc, Fhe relative spacing between sectors in the neck, vestibule, and outer regions of the channel respectively.
out_spc Set to —1 to select the default.

to use (Table 1, middle). The method parameters specify which method to use to calculate the profile, as well
as parameters which affect the accuracy of the method (Table 1, bottom). See Sections 3 and 5.5.2 for more
information on the parameters for the analytical and iterative methods. The channel parameters specify the
dielectric boundary, the fixed charges, and the external field (Table 1). See Section 5.4 and Figs. 5 and 6 for
more information.

5.2.2. Qutput

The program creates the file named in the profile parameters, and writes the potential profile to it. The output
is in ASCII format, with one line per position. The output file has six columns. The first column gives the
distance of each position along the profile line from the origin set by the t0 parameter. The second column
gives the potential energy of an ion (or the electric potential if there is no ion). The third column gives the
force on an ion in the direction of the profile line (or the electric field in the same direction if there is no
ion). The fourth, fifth, and sixth columns give the force or electric field in Cartesian coordinates. To assist in
plotting, the output is given in atomic units: A for leagth, 107! J for potential encrgy, 10"12 N for force, mV
for electric potential, and 10% V/m for electric field.

The program creates files containing the channel outline and radius function if these are requested in the
outline parameters. These files are in ASCI format, and the two columns give the r and z coordinates in A.
The program also writes diagnostic information to the standard output. This is mostly a description of what the
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Fig. 5. Geomeiric parameters for toroidal and cylindrical channeis.

Fig. 6. Geometric parameters for biconical and catenary channels. The diagram is an outline for a biconical channel, but catenary channels
use the same parameters.

program is doing, but does include the values of some quantities calculated by the program. The path length
is the length of the channe! outline; it is only reported if the clannel outline is requested. The quantity a is
the scale factor for the catenary z = acosh(r/a) + b which forms the vestibules for the catenary channel. It is
reported for the top and boitom vestibules when a catenary channel is used. The quantity A is the ratio of the
final spacing between sectors to the spacing requested. It is reported if the iterative method is used. The path
length and a are given in A and A is dimensionless.

5.3. The bics_channel module

This module is a simplified interface to the analytical method, iterative method, and the bics_geometry
module. It allows a program to switch between the two methods easily. It allows channels to be described by
geometric parameters rather than by a cross section as required by the iterative method. It can also generate
boundaries for simulation programs. Input to and output from the routines is in unmultiplied SI units.
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Table 2
[nput parameters for the fon channel; see Figs. 5 and 6 for more information

Variable Description

shape Indicates the overall shape of the chamnei: | toroidal channet, 2 cylindricat channel, 3 biconical channel, 4 catenary
channel.

r.chan The outer radius of the channel at its widest poiat.

r_neck The irner radius of the channel at ifs narrowest point.

h_neck The length of the narrow neck region.

r_enr The radius of the rounded corness used {0 connect pieces of the boundary. The outer comers have twice this radius,

T_vtop The width of the top vestibule.

h_vtop The height of the top vestibule.

r_vbot The width of the bottom vestibule.

h_vbot The height of the bottom vestibuie.

epsl The dielectric constant outside the boundary (inside the pore).

eps? The dielectric constant inside the boundary.

f¢_count The number of fixed charges.

fo X, ¥, % The position of the fixed charges in Cartesian coordinates. Each of these is a list of fc_count valoes.

fe_q The amount of charge on the fixed charges. This is a list of fc_count values.

fo_q_mlt This value multiplies e/ the fc_qg values. It is used to scale or twrn off the fixed charges without having to modify
the fc_qg list.

ext_f1d The strength of the external electric field. This is a constant electric field parallel with the z-axis.

ext_ptl The petential due to the external field at z =0,

5.3.1. Subroutine ch_set_parameters(maxm,maxn,max_l,sector. count,neck.spc,vest.spc, out_spc)

This routine sets parameters affecting the accuracy of the two methods, These parameters have reasonable
defaults, so the routine may not need to be called. Giving —1 as a parameter value sets the default. This allows
some parameters to be set while keeping the defaults for others. Calling ch_set_parameters invalidates any
previous call to ch_specify_model. Hence ch, set_parameters should be called before ch_specify_model.
See Table 1 for a description of the parameters.

5.3.2. Subroutine ch_get parameters(max m,max.n,max.1l,sector_count,neck spc,vest spc,out spc)
This routine retrieves the current parameter settings. This can be used to see what the defaults are if it is
called before ch_set_parameters. Its arguments are the same as those of ch_set_parameters except that
they are outputs not inputs. See Table 1 for a description of the parameters.

5.3.3. Subroutine ch_specify model(shape,r chan,r neck,hneck,r cnr,r viop,h viop,rvbot,
h.vbot,epsl,eps2,fccount,fe.c,fey,.fc.z,fcq,ext_fld,ext pt)

This routine sets the shape of the channel, the dielectric constants, the fixed charges around the channel, and
the external electric field. It must be called before calculating electric fields or generating channel outlines.
See Table 2 for a description of the parameters.

5.3.4. Subroutine ch_calculate field(method,calc self ptl,use fixed charges,ion_count,x0,y0,
z0,q0,point_count,x1,yl,z1,f1d.x,fldy,f1d z,ptl,self ptl)

This routine calculates the electric field and potential at a group of peints in and around the channel. A group
of ions may also be given. The routine calculates the field and potential due to the dielectric boundary (as
polarized by the ions, fixed charges, and external field}, and includes the field and potential directlty due to the
fixed charges and the external field, It does not include the Coulomb field and potential arising directly from
the ions ~ this must be calculated separately if required. The model must be specified before calling this
subroutine.
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Input

method: The method used in calculating the field: 1 for the iterative method, or 2 for the analytical method.
calc.self _ptl: If this is true the subroutine assumes that the positions of the points (x1, y1, z1) are the
same as the positions of the ions (x0, y0, z0) and calculates the self-potential for each ion (see below).
Setting this flag to true greatly slows down the iterative method in the case of multiple ions.

use fixed_charges: If this is true the subroutine includes the effects of fixed charges and the external field,
otherwise it does not.

ion_count: The number of ions.

x0Q), y0 O, 2z00: The positions of the ions.

q0(): The charges on the ions.

point_count: The number of points. These are the points at which the electric field and potential are
calculated.

x10), y1(), z1Q): The positions of the points.

Output

£1d.x(), £1d_y (), f1dz(): The electric field at the points.

pt1(): The electric potential at the points.

self_pt1(): The electric potential at the position of each ion due only to that ion’s interaction with the
boundary. The effects of fixed charges, the external field, and other ions are ignored. This only makes sense if
the positions of the points correspond to the positions of the ions, and is only calculated if calc_self ptl is
true, in which case ion_count must equal peint_count. The self-potential is needed to calculate the
poiential energy of an ion.

5.3.5. Subroutine ch_trace.radius{segments,nin.z,nax z,max.x Jbuffer_dist,r)

This routine fills in an array giving the minimum radius of the channel boundary and a limiting cylinder, at
evenly spaced z coordinates. A buffer distance may also be specified to provide an offset from the channel
boundary. The model must be specified before calling this subroutine.

Input

segments: The number of segments to divide the z-axis into. The array r must run from 0:segments.
min z, max_z: The range of the 7 -axis.

max._r: The radius of the limiting cylinder.

buffer_dist: The offset from the channel boundary.

Curput

r(): r(i) gives the radius at z = i * ((maxz — min_z)/segments) + min_z. This radius is as large as
possible while being within the limiting cylinder (r(i) < max_r) and being at least buf fer dist away from
the boundary.

5.3.6. Subroutine ch_trace_outline(segments,pathlength,z ,T)
This routine fills in arrays which describe the outline of the channel boundary, being the z and r coordinates
of points evenly spaced around the outline.

Input
segments: As in above routine.

Output

path_length: The length of the outline.

z(), r(}: The z and r coordinates of points on the outline. The point (z;,r;) is located at a distance (I=i)/n
around the boundary, where [ is the path length, and n is the number of segments. The starting point is that
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with the minimum 7 coordinate of those with the minimum z coordinate, and the distance is measured
clockwise around the outline, Note that {zg,re) and (z,,7,) are the same peint.

5.4. The bics_gecmetry module

This module generates channel outlines suitable for use with the iterative method. 1t also generates boundaries
useful to simulation programs. It can be used independently from the rest of the package if desired. The
interface routines are geo_specify_model, geo_trace_radius, and geo_trace_outline. These perform
the same functions as their equivalents in the bics_channel module, but the geo_specify_model only
requires geometric channel parameters.

The module supports four types of channels: torus, cylinder, bicone and catenary. The size and shape of a
particular boundary is described by geometric parameters supplied by the user, see Figs. 5 and 6. For all types
of channel the neck is centered on the x—y plane, r_neck gives the minimum radius, and r_chan gives the
maximum. For the cylinder h_neck does not include the rounded corners, so the total height of the channel is
h.neck + 2 * r.cnr. Rounded corners are necessary as the iterative method cannot cope with sharp edges,
however they are also realistic - a gramicidin-like channel would cause dimples in the membrane similar to
those in Fig. 5. For the bicone and catenary channels h_vtop and h_vbot do include the rounded corners, so
the total height of the channel is hneck + h_vtop + h_vbot. Note, however, that r_vtoep and r_vbot are
measured to the inner edge of the corner at the mouth of the vestibule, slightly below the top (or above the
bottom) of the channel.

The output of the module is the two functions z (¢} and r(7) where ¢ 18 the path length clockwise around the
outline. The functions are returned as large arrays, with elements containing the function values at evenly
spaced values of f. Intermediate values can be obtained by interpolation. The module also provides a radius
function r(z), where r is the minimum of the inner edge of the outline and a cylinder specified by the user.
This radius can be offset from the outline by a specified buffer distance. The radius function is useful for
setting up a physical boundary at a certain distance from the dielectric boundary, for instance in a simulation
program.

The process of generating the outline of the channel is as follows. The outline is divided into several sections,
each part of a simple geometric curve: an arc, a line, or a catenary. The sections are described by parametric
equations. Each section needs to be placed so that its endpoints match with those of the adjacent sections,
both in position and slope. In addition the whole cutline must match the geomelric parameters supplied by the
user. These constraints are solved using Ridders’ method for finding the root of a one-dimensional

function [ 10]. Once the sections are in position, the functions z () and r(7} for the whole outline are
calculated by choosing the appropriate section for each value of ¢ and then evaluating that section’s parametric
equations. Thus the outline is assembled piece by piece.

5.5. Irerative method

The iterative method is a group of three modules which solve Poisson’s equation for an arbitrary cylindrically
symmetric boundary. The names of these modules are prefixed it_ for identification. They can be used
independently if desired, via the subroutines in it_main. See Fig. 4.

5.5.1. The it main module

This module is the interface to the iterative method. It uses the it_boundary module to generate sectors, and
the it_surface module to calculate potential and field by applying the iterative method to those sectors. It
has four interface routines: it_set_parameters, it_get_parameters, it_specify.model, and
it_calculate_field. These perform the same functions as their equivalents in the bics_channel module,
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except that they are specific (o the iterative method and the channel shape is specified as an outline rather than
by geometric parameters.

552 The it_boundary module

The channel boundary needs to be divided into sectors to allow the iterative algorithm to operate. This is done
by the it_boundary module, which has a single interface routine ibdy_tile_boundary. The module takes
the outline of the channel and rotates it by 360 degrees 10 form a cylindrically symmetric boundary. It then
divides the boundary into rings by circular cuts around the z-axis, and each ring into sectors by longitudinal
cuts co-planar with the z-axis. The distance between longitudinal cuts is kept as close as possible to the
thickness of the ring, so the sectors are approximately square. The spacing between seclors varies in different
parts of the boundary - the rings have different thicknesses and are divided into different numbers of sectors.
The number of sectors increases as the inverse square of the sector spacing, and memory and computer time
increase as the square of the number of sectors, or the inverse fourth power of the sector spacing. Therefore it
ig difficult to improve the accuracy by reducing the spacing uniformly. We instead vary sector spacing
nonuniformly, reducing it where ions are expected to approach the boundary, and increasing it elsewhere, We
define three regions of the boundary with different sector spacing: the neck, the vestibules, and the outer
region. There are transition zones between these regions, where the spacing takes on intermediate values. The
spacing needs to be smallest in the neck where 10ns approach the boundary closely and accuracy is most
important. It can be larger in the vestibules where ions are likely to be further away. In the outer region
{outside the reservoirs that contain ions) the spacing can be very large.

The sector spacings in the different regions are specified by the neck.spc, vest_spc, and out_spc
parameters, however these are only targets, not the absolute values of the spacing. The it_boundary module
makes the sectors as small as possible without exceeding the sector_count parameter: this approach makes
the memory use of the iterative method predictable. The sector sizes are kept in proportion but are scaled by a
factor of A to meet the specified sector count. For example, if neck spc = 0.5 A, vest_spc = 1.0 A, and
out_spec =10 A (the default values), and the program reports that lambda = 1.2, then the actual spacings
are 0.6 A in the neck, 1.2 A in the vestibules, and 12 A in the outer regions.

The location of the spacing regions is controfled by parameters passed (o it_main and it boundary. The
edge of the neck region is defined by its z coordinate, while the edge of the vestibule region is defined by its
» coordinate. The outer region is the remainder of the boundary. The neck region runs from h_neck_spc_bot
below the x—y plane to h_neck_spc_top above it, with transition zones extending 509% beyond these limits,
The vestibule region runs from the neck region out to radius r_vest_spc_top in the top half of the channel
and r_vest_spc_bot in the bottom half. Again, transition zones extend 50% beyond these limits.

The bics_channel module defines the spacing regions automatically as follows (parameters are the same for
the top and bottom halves of the channel). For a cylinder,

h.neck.spc = 5(3hmneck + r.cnt) ,

r_vest_spc = r.chan —2r.cur. (68)

For a torus,

r_torus = %(r_cha_n — rmneck),
h.neck.spc = %z_torus ,

r_vest_spc =r.neck+ %rutorus . (69)

For a bicone or catenary channel,
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hneck spc = %h_neck 4+ r_cnr,

r_vest_spc = r_chan ~ 2r_cnr. {(70)

If these need to be changed either the routines in it_main can be called directly, or bics_channel can be
modified.

5.5.3. The it_surface module

This module applies the iterative algorithm described in Section 2 to solve Poisson’s equation for a boundary
represented as a grid of sectors. It has two interface functions. The first of these, isfc_initialize, accepts
a description of the sectors and fixed charges, then precalculates the interactions between sectors. The second,
isfc_calculate_field, given a group of ions and a set of points, caleulates the potential and field at the

points.

3.6. Analytical method

The analytical method is a group of six modules which solve Poisson’s equation for a toroidal boundary. The
names of these modules are prefixed an_ for identification. They can be used independently, via the
subroutines in an_main. See Fig. 4.

The modules in the analytical method are not strictly abstract data types, since they operate on derived data
types (records), whose elements can be accessed from outside the module. This was done for reasons of
efficiency, to prevent the compiler from unnecessarily copying large arrays in an attempt to avoid aliasing.
Nevertheless, they are still intended to be used as abstract data types, with all operations on the types, except
for reading the data, being done by the routines of the owning module.

5.6.1. The an main module

This module is the interface to the analytical method. It implements the algorithm described in Section 3.2,
calling routines from the other analytical method modules to calculate the coefficients and function values. It
has four interface routines: an_set_parameters, an_get_parameters, an_specify_model, and
an_calculate_field. These perform the same functions as their equivalents in the bics_channel module,
except that they are specific to the analytical method.

5.6.2. The an.appfield module

This module calculates the potential and field due to the charges induced on the toroidal boundary by the
external (applied) field. Its interface consists of a derived data type and four subroutines. The data type,
afld_record, holds all the arrays used to perform the caleulation (as well as the results). This storage 18
allocated by the afld_create routine and deallocated by the afld_destroy routine. The afld_calculate
routine performs the calculation, given the strength of the field, a set of points of interest, and a set of
boundary coefficients from the an_boundary module. The afld_print routine dumps the contents of an
afld_record to a given unit; it is used for debugging.

5.6.3. The an_charge module

This module calculates the coefficients described in Section 3.2.3, which depend only on the boundary and the
position of the charges. Its interface works in the same way as that of the an_appfield module: it consists of
a data type achg_record, and four routines achg_create, achg_destroy, achg_calculate, and
achg_print. The achg.calculate routine requires a set of boundary coefficients and the position and
magnitude of the charges.
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5.6.4. The an_point module

This module calculates the coefficients which depend only on the position of the points of interest, and not the
boundary or charges. Together with the coefficients from the an_charge module, these allow an_main to
calculate the potential and field using Eq. (64). The module’s interface works in the same way as those of
an_appfield and an_charge; the prefix is apnt.

5.6.5. The an boundary module

This module calculates the coefficients described in Section 3.2.2, which depend only on the boundary, It has
three modes of operation, and an_main uses it to generate three sets of coefficients: one for point charges
inside the boundary (fixed charges), one for point charges outside the boundary (usually ions), and one for
the external field. The modules interface works in the same way as those of an_appfield, an_charge, and
an_point; the prefix is abdy. The abdy_calculate routine requires a description of the boundary and the

mode of operation.

5,6.6. The an_functions module
This module contains a collection of routines which calculate the basic functions used by the other modules:
the trigonometric functions, hyperbolic trigonometric functions, and the associated Legendre functions and

their derivatives.
5.7. The bics_basics module

This module is used by all other components: it defines constants, type descriptors, and diagnostic functions.
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