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ABSTRACT Continuum theories of electrolytes are widely used to describe physical processes in various biological
systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they
should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity
of the mean-field approximation in Poisson2Boltzmann theory by comparing its predictions with those of Brownian dynamics
simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the
acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the
exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show
that the shielding effect due to counterions is overestimated in Poisson2Boltzmann theory when the ion is within a Debye
length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for
membrane channels, whose radii are typically smaller than the Debye length, is that Poisson2Boltzmann theory cannot be
used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.

INTRODUCTION

During the last decades continuum theories of electrolytes
have found a new niche in the description of physical
processes in the salty waters of cells (Weiss, 1996; Evans
and Wennerstro¨m, 1999). Continuum theories were origi-
nally developed for bulk electrolytes early in the century,
and their validity has been firmly established since then
(Bockris and Reddy, 1970). The more recent applications in
biology usually involve mesoscopic systems, and it is not
clear from the outset that the assumptions made for bulk
solutions are justified for solutions confined to small vol-
umes. Of these, the mean-field approximation that assumes
the potential can be determined from a continuous distribu-
tion of the mobile charges in an electrolyte is most suspect.
The basic question is whether the predicted concentrations
in continuum theories, which represent the space average of
ion densities, are in accordance with those obtained from
Brownian dynamics by time-averaging motions of individ-
ual ions. In this respect, the Debye length provides a useful
guide. If the system size is much larger than the Debye
length, as in the case of large proteins and membrane
surfaces, then the mean-field approximation inherent in the
continuum theories should be relatively safe. However,
membrane pores that transport ions across a cell usually
have radii smaller than the Debye length (Hille, 1992), and
the use of continuum theories in such systems is question-
able. Applications of continuum theories to membrane

channels have nevertheless flourished in recent years (for
reviews see, for example, Levitt, 1986; Cooper et al., 1985;
Eisenberg, 1996, 1999). One reason for the popularity of the
continuum theories that deal with concentrations of ions,
rather than individual ions, used to be that the alternative
methods were computationally intractable. This is still true
for molecular dynamics simulations, where motions of both
ions and water molecules in the system are traced using
Newton’s law (Roux and Karplus, 1994). To study ion
permeation across a membrane channel using molecular
dynamics, one needs supercomputers that are several orders
of magnitude faster than currently available. In comparison,
the situation with Brownian dynamics (BD), where only the
motion of ions are traced, is much better. BD simulations of
conductance in realistic three-dimensional geometries are
now routinely performed on supercomputers (Li et al.,
1998; Chung et al., 1998, 1999; Hoyles et al., 1998a). As
stressed in a recent series of commentaries on ion perme-
ation (Levitt, 1999; McClesky, 1999; Miller, 1999; Nonner
et al., 1999), the time is ripe for a realistic assessment of
continuum theories as models of ion channels, and if they
fail the tests, to move on to more accurate theories.

In this and the accompanying article (Corry et al., 2000)
we try to provide such a test for two prominent continuum
theories: Poisson2Boltzmann (PB) in this article and
Poisson2Nernst2Planck in the next one. PB theory has
become an important tool for studying proteins and mem-
branes, leading to many insights on the key role played by
electrostatic interactions (Honig and Nicholls, 1995). The
availability of efficient computer programs for solving the
PB equation (Davis and McCammon, 1990; Sharp and
Honig, 1990) has increased its use tremendously during the
last decade. In ion channels, the PB equation was initially
used to include the effects of ionic atmosphere on the
potential energy profile of an ion in schematic channel
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models (Levitt, 1985; Jordan et al., 1989; Cai and Jordan,
1990). More recently, the PB calculation of potential energy
profiles has been extended to realistic channel structures in
numerous articles (Sankararamakrishnan et al., 1996; Weet-
man et al., 1997; Adcock et al., 1998; Cheng et al., 1998;
Rostovtseva et al., 1998; Sansom et al., 1998; Smejtek et al.,
1999; Dieckmann et al., 1999; Ranatunga et al., 1999). In
PB calculations, ionic shielding greatly reduces the poten-
tial energy of an ion in a channel compared with that of a
single ion calculated from Poisson’s equation. To assess the
reliability of the PB calculations, it is important to check
that this shielding effect is not an artefact of the mean-field
assumption in a relatively narrow channel environment.

The total electrostatic force acting on an ion inside and
near the vicinity of a channel determines its dynamic be-
havior. Therefore, it is the most important quantity to check
in judging the accuracy of the PB theory. Here we test the
validity of the mean-field approximation in the PB theory
by comparing its predictions for the force on a test ion and
potential energy, and concentration profiles with those ob-
tained from BD simulations. BD is eminently suitable for
this task because the motion of all the ions in the system are
traced individually according to the Langevin equation.
Therefore, a long-time average of physical quantities should
accurately reflect the actual physical behavior of the system.
The main point of this article is demonstrated by using a
spherical geometry that serves as a generic example of an
electrolyte confined in a small volume. Cylindrical channels
with varying radii provide testing grounds for schematic
channel models, while a catenary shape similar to that of the
acetylcholine receptor channel is used for tests in a more
realistic geometry.

THEORETICAL METHODS

PB theory

PB theory provides a classical electrostatic description of a system in
which fixed external charges, represented by a densityrex, are surrounded
by mobile ions in a dielectric medium. The main assumption of the theory
is that at equilibrium, the distribution of mobile ions in the system can be
approximated by a continuous charge density,rel, given by the Boltzmann
factor

rel~r ! 5 O
n

znen0nexp@2znef~r !/kT#, (1)

wheren0n is the bulk (or reference) number density of ions of speciesn and
zne is their charge. Heren0 (in SI units) is related to concentrationc0 (in
moles/liter) byn0 5 1000NAc0, where NA is Avogadro’s number. The
average electric potentialf(r ) in Eq. 1 is obtained from the solution of
Poisson’s equation

e0¹ z @e~r !¹f~r !# 5 2rel 2 rex. (2)

Combining Eqs. 1 and 2 for a 1:1 electrolyte, which is our main interest
here, we obtain the following PB equation:

e0¹ z @e~r !¹f~r !# 5 2en0sinh@ef~r !/kT# 2 rex. (3)

Apart from a few special cases this equation cannot be solved analytically.
Therefore, a linearized form proposed by Debye and Hu¨ckel (1923) has
been commonly used in practical applications of the PB equation. Expand-
ing the sinh term in Eq. 3 and keeping only the leading term inf yields the
linear PB equation for a bulk electrolyte with no fixed charges (rex 5 0)

¹2f 5 k2f, (4)

where 1/k is the Debye screening length given by

1

k
5 Îe0ekT

2e2n0
. (5)

At room temperature (T 5 298 K) in water (e 5 80), the Debye length is
related to concentration ask21 5 3.07/=c0 Å. Although the approxima-
tion in Eq. 4 is no longer necessary with the availability of high-speed
computers, the intuitive picture of shielding provided by the
Debye2Hückel theory still plays a useful role. Here we use it to indicate
where and why the PB theory may break down. The solution of Eq. 4 in
bulk is well known (e.g., McQuarrie, 1976), and yields the following
screened Coulomb potential around a central ion of radiusa/2

f 5
eexp@2k~r 2 a!#

4pe0e~1 1 ka!r
. (6)

The radial density of the screening chargep(r) is proportional to this
potential

p~r! 5 4pr2rel 5 24pr2e0ek2f

5
2ek2

1 1 ka
r exp@2k~r 2 a!#, (7)

which is seen to peak atr 5 1/k and then decay exponentially. The volume
integral of this shielding charge is of interest, and for a sphere of radiusr,
it is given by

q~r! 5 2eF1 2
1 1 kr

1 1 ka
exp@2k~r 2 a!#G, (8)

Equation 8 shows that2q(r)/e increases monotonically withr, leading to
a 25% screening of the central charge at;r 5 1/k, rising to 80% atr 5
3/k. Thus, for ac0 5 150 mM electrolyte under bulk conditions, length
scales of;25–30 Å are required for nearly complete screening of an ionic
charge. When a boundary is imposed at a smaller distance, the system tries
to maintain equilibrium by increasing the counterion concentration in the
volume between the ion and the boundary. However, because of the
physical size of ions and electrostatic repulsion effects, there is a limit to
this increase, and one anticipates that as the ion gets closer to the boundary,
the counterion density will eventually diverge from the Boltzmann factor,
leading to a much smaller shielding than expected from PB theory. This
prediction can be tested directly by comparing the PB results with those
obtained from BD simulations, where all ions are treated on an equal
footing as particles with a finite size and charge, rather than as a continuous
charge density.

For this purpose, we have solved the PB equation (3) numerically by
using a finite difference algorithm for various boundaries (see Appendix
for details). From the numerical solution of the PB equation, one obtains
the potential at discrete grid points. These potential values are then fed into
the Boltzmann factor (Eq. 1) to determine the concentration of ions. The
components of the force on a test ion at a particular grid point are
calculated by using numerical differentiation, from the difference of the
potential at two opposing neighboring points in thex, y, andz directions.
The PB program is executed on ana cluster, where a typical run with 1 Å
grid size takes 5–20 min, depending on the boundary conditions used.
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Tests of accuracy

Convergence of the PB solutions is discussed in the Appendix. In all the
situations considered, convergence to a stable solution is achieved using a
tolerance of 1026 V, which is sufficiently accurate for our purposes. The
input parameter that influences the accuracy of results most is the grid size
used in discretizing the system. Errors decrease with the grid size, while
computation time increases with it. Therefore, a compromise has to be
made for efficient running of the program with an acceptable range of
errors. Because the force on an ion is the most sensitive quantity to the grid
size, it is used in choosing the optimal size. A range of grid sizes is
considered for the various geometries and configurations investigated. In
the absence of fixed charges in a cylindrical channel, a uniform grid
spacing of 1 Å is found to be adequate. Larger grid sizes lead to unac-
ceptably large errors in force (e.g., for 2 Å, the relative error could be as
high as 100%), while not much is gained by using a smaller grid (going to
0.5 Å reduces the error by a few percent). Because as fixed charges in the
channel lead to a more rapid variation in the potential, a smaller grid size
('0.5 Å) needs to be used in such cases to obtain a similar level of
accuracy. With decreasing grid size, the force gets smaller, i.e., it con-
verges to its actual value from above. Therefore, as a consequence of these
optimal choices, we anticipate that the presented PB results for forces and
potentials are slightly larger than their actual values.

We have performed a number of tests to ascertain the validity and
accuracy of the numerical solutions of the PB equation. The simplest test
cases are those involving a single ion (zero concentration) where the PB
results can be compared with those obtained from the solution of Poisson’s
equation either analytically or using complimentary numerical methods
(e.g., boundary element method, Hoyles et al., 1998b). While these do not
provide a complete test for the PB solutions, they nevertheless serve to
check the Poisson part of the program, an important consideration espe-
cially in cases with dielectric boundaries. For an ion in a uniform dielectric
medium, the numerical solution is found to converge to the analytic result,
f 5 e/4pe0er, within a few percent when a 1 Ågrid is used. The accuracy
improves when the grid size is made smaller, as noted above. Other tests
are carried out for a single ion in spherical and cylindrical boundaries,
which are used in the rest of the article. Numerical solutions of the PB
equation in these cases are compared to the solutions of Poisson’s equation
obtained with other methods. In all cases, the potential obtained from
solution of the PB algorithm is found to agree with the alternative solution
to within a few percent. A similar agreement is found for the force on a test
ion.

Tests of the PB solutions in the case of an ion in electrolyte are not easy
to perform, as there are no suitable analytical solutions. We use instead the
linear PB equation for this purpose, for which the solution for a test ion in
bulk is quoted in Eq. 6. In the PB algorithm, linearizing involves simply
switching from Eq. 16 to 17 in the calculation of the potential, hence such
a test should be sufficient in checking the overall integrity of the program.
Both the potential and concentration obtained from the numerical solution
of the PB equation agree with the analytic results to within a few percent.
An analytic solution can also be obtained for a fixed ion located at the
center of a sphere filled with electrolyte. A similar level of agreement is
also found in this case.

Brownian dynamics

Use of Brownian dynamics in studies of ion channels is relatively new. An
introduction to the technique for one-dimensional channels is given by
Cooper et al. (1985). BD simulations have been extended to realistic
three-dimensional channel geometries quite recently (Li et al., 1998;
Chung et al., 1998, 1999; Hoyles et al., 1998a). We refer to these articles
for further details, and give only a brief description of the method here.

In BD, the motion of individual ions are simulated using the Langevin
equation:

mi

dvi

dt
5 2migivi 1 FR~t! 1 qiEi, (9)

wheremi, qi, andvi are the mass, charge and velocity of theith ion. In Eq.
9, the effect of the surrounding water molecules is represented by an
average frictional force with a friction coefficientmigi, and a stochastic
forceFR arising from random collisions. The last term in Eq. 9 is the total
electric force acting on the ion due to other ions, fixed and induced surface
charges at the channel boundary, and the applied membrane potential. It is
computed by solving Poisson’s equation for a given channel boundary
using an iterative numerical method as detailed in Hoyles et al. (1996,
1998b). Rather than solving Poisson’s equation at each time step, which
would be computationally prohibitive, a system of lookup tables is used
(Hoyles et al., 1998a). The electric field and potential due to one- and
two-ion configurations are precalculated at a number of grid points and
stored in a set of tables. During simulations, the potential and field at
desired points are reconstructed by interpolating between the table entries
and using the superposition principle. For this purpose, the total electric
potentialfi experienced by an ioni is broken into four pieces

fi 5 fX,i 1 fS,i 1 O
jÞi

~fI,ij 1 fC,ij!, (10)

where the sum overj runs over all the other ions in the system. In Eq. 10,
fX,i is the external potential due to the applied field, fixed charges in the
protein wall, and charges induced by these;fS,i is the self potential due to
the surface charges induced by the ioni on the channel boundary;fI,ij is
the image potential due to the charges induced by the ionj; andfC,ij is the
Coulomb potential due to the ionj. The first three potential terms in Eq. 10
are stored in, respectively, three-, two-, and five-dimensional tables (di-
mension is reduced by one in the latter two cases by exploiting the
azimuthal symmetry of the system’s geometry). Similar tables are con-
structed for each component of the electric field, which are calculated from
the gradient of the potential at the grid points.

The Coulomb interaction between two ions is modified by the addition
of a repulsive 1/r9 potential, which arises from the overlap of their electron
clouds (Pauling, 1942)

Usr~r! 5
F0

9

~r1 1 r2!
10

r9 , (11)

wherer is the ion–ion distance,r i, i 5 1, 2, are the Pauling radii of ions,
and F0 is the magnitude of the short range force at contact, which is
estimated from the ST2 water model used in molecular dynamics asF0 5
2 310210 N (Stillinger and Rahman, 1974). As demonstrated below, the
1/r9 potential emulates the hard-sphere collisions in the primitive model
quite well, and hence is adequate for the purpose of comparing PB and BD
approaches. However, because the ion pair potential for Na1-Cl2 has a
minimum at contact, it leads to some anomalous results in narrow channels
(see below). While this is not directly relevant to the main theme of the
paper, it is still of interest to point out the source of this anomaly and show
that it can be resolved when one uses realistic ion2ion potentials obtained
from molecular dynamics simulations. The hydration forces between two
ions add further structure to the ion pair potential in the form of damped
oscillations (Gua`rdia et al., 1991a, b), which can be approximately repre-
sented by

Usr~r! 5 U0$~Rc/r!
9 2 exp@~R2 r!/ae#cos@2p~R2 r!/aw#%.

(12)

Here the oscillation lengthaw 5 2.76 Å is given by the water diameter and
the other parameters are determined by fitting Eq. 12 to the potentials of
mean force given by Gua`rdia et al. (1991a, b). For anion–cation pairs,Rc 5
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r1 1 r2, but for like ions the contact distance is pushed further toRc 5 r1

1 r2 1 1.6 Å. The origin of the hydration forceR is slightly shifted from
Rc; by 10.2 Å for like ions and by20.2 Å otherwise. The exponential drop
parameter is determined asae 5 1 Å for all ion pairs. Finally, the overall
strength of the potential isU0 5 8.5, 2.5 and 1.4kT for Na2Cl, Na2Na,
and Cl2Cl pairs, respectively.

To prevent ions from entering the protein or leaving the system, a
hard-wall potential is activated when the ions are at 1 Å distance from the
channel or reservoir boundaries, which elastically scatters them. This
simple interaction that treats ions as billiard balls with a finite radius is
adequate for the purposes of this study. Note that to be precise, the range
of the wall potential should correspond to the radius of the ion in question,
but for simplicity we have used the same range for all ions. Because only
one type of ion (Na1) is present in narrow channels in BD simulations, this
approximation is not likely to influence the results. A more pertinent
question here is the effect of finite ion size in comparisons of BD and PB
results. Because ions are represented with a continuous charge density in
PB theory, they could occupy the channel right up to the boundary,
whereas in BD they are prevented from coming closer than 1 Å to the
boundary (that is assuming they carry a point charge at their center). This
issue of consistency between the two theories will be addressed in the next
section when we compare them in cylindrical channels.

The Langevin equation (9) is solved at discrete time steps following the
algorithm devised by van Gunsteren and Berendsen (1982). Throughout, a
time step ofDt 5 100 fs is used. Initially, the ions are assigned random
positions in the reservoirs, except for the test ion, which is held in a fixed
position. Velocities are also assigned randomly according to the Boltzmann
distribution. For successive simulations, the final positions and velocities
of the ions in the previous simulation are used as initial positions and
velocities in the next trial. A single ion is held in place for a period of
20,000 time steps, while the system reaches equilibrium. After this, the
system is allowed to evolve for a further 200,000 or 1,000,000 time steps.
At each time step, the force acting on the fixed ion (and other ions) is
calculated, and from the time average of these, a value for the force is
computed. Each simulation is repeated from between 5 to 16 times to
obtain a value for the average force on an ion at each position along the
central axis of the system. The duration of simulations is varied from 150
to 300 ns according to the statistical accuracy of the results. The potential
profile of an ion is constructed by integrating the force curve along a given
path. Average values of the concentration of ions at different points in the
system are also obtained for each individual run. The BD program is
written in FORTRAN, vectorized and executed on a supercomputer (Fu-
jitsu VPP-300). With 48 ions in the system, the CPU time needed to
complete a simulation period of 1.0ms (10 million time steps) is;16 h.

A list of the parameters used in the BD simulations is given below:

Dielectric constants: ewater 5 80, eprotein 5 2;
Masses (in kg): mNa 5 3.8 310226, mCl 5 5.9 310226;
Diffusion coefficients (in m2 s21):

DNa 5 1.3331029, DCl 5 2.0331029,
(Note thatD is related to the friction constant viaD 5 kT/mg);

Ion radii (in Å): rNa 5 0.95, rCl 5 1.81;
Temperature: T 5 298 K.

RESULTS AND DISCUSSION

Comparisons of the PB theory with BD simulations are
carried out for three different geometries including a sphere,
cylindrical channels with varying radius, and a catenary-
shaped channel. The cylindrical channels are used in the
majority of comparisons because they provide a prototype
channel model that have been used in numerous applica-
tions of the continuum theories to ion channels. The sphere
is included for control studies and pedagogical reasons, and

the catenary channel to show the robustness of the results
for a more realistic channel shape. Each case is discussed in
a separate subsection in the following. We note for future
reference that the Debye lengths for 150, 300, and 500 mM
solutions are, respectively, 7.9, 5.6, and 4.3 Å.

Electrolyte in a sphere

While our main concern is cylindrical pores, spherical ge-
ometry is useful for purposes of control studies in a bulk-
like environment, as well as in illustrating the effect of a
confining dielectric boundary on shielding of ions in a
simple situation. In the following comparisons, a sphere of
radius 20 Å containing an electrolyte of concentrationc0 5
500 mM is used. In BD simulations, this concentration is
represented by 10 anions and 10 cations, including the test
ion. (The systems used here and in the following channel
models are always chosen to be electroneutral.) The above
choice for concentration is dictated by the BD consider-
ations of having a sufficient number of ions in the system to
obtain good statistics, but not too many so as to encumber
the simulations. Because the main variable is the distance of
the test ion from the boundary, the choice of radius does not
have much influence on the results. In order to compare the
results with the analytic solutions of the linear PB equation
(Eqs. 6 and 7), both the cation and anion radii are taken as
1 Å in the sphere studies. A dielectric constant ofe 5 80 is
used everywhere in bulk simulations. When emulating a
protein boundary,e 5 2 is used outside the sphere.

In solving the PB equation, we use a sharp spherical
boundary around the test ion, which emulates a hard wall
potential that prevents its overlap with other ions. Such an
infinite potential is not practical to implement in BD sim-
ulations; therefore, a 1/r9 potential is used instead (Eq. 11),
which is both easier to handle and more physical. As seen in
Fig. 1 A, the two potentials differ near the contact region
and overlap once the ions are slightly separated. As a result
of the softer potential used in BD, the ions (especially
counterions) are expected to be more broadly distributed
near the contact region of the test ion. This is exemplified in
Fig. 1B, where we compare the radial distribution functions
g(r) in PB and BD for a bulk electrolyte. Here the PB results
are obtained by fixing a test cation at the origin and those of
BD by averaging over the ion–ion distributions. To avoid
the finite size effects in BD simulations, ion pairs are
included in the average only when at least one of them is
inside an imaginaryr 5 10 Å sphere. The linear PB results
(not shown) for anion–cation distribution is somewhat
higher than the nonlinear one at the maximum but this
appears to be mostly due to the finite mesh size used in
numerical solutions of PB equation. Otherwise, there is little
difference between the linear and nonlinear PB results,
especially at larger radii. The broadening of the sharp peak
at contact in BD simulations is expected to influence the
results at short distances,3 Å. The shifting of counter
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charge density to smaller radii means that the BD simula-
tions should provide a better shielding at short distances
compared to the PB theory. At larger distances, the radial
distribution functions overlap, and as far as the force on the
test ion is concerned, one should obtain similar results
within the two approaches. We note that using a hard-wall
potential in BD would have led to larger forces on the test
ion at short distances due to less shielding. However, as will
be seen in the comparisons below, this issue is mostly
irrelevant because the force results in BD closely follow that
of a single ion. That is, there is little shielding due to
counterions, and therefore details of their interaction with
the test ion at short range cannot have much influence on the
results.

The shortcomings of the continuum theories of electro-
lytes in confined volumes are most succinctly illustrated in
a spherical geometry because it involves a single parameter:
the distance of a test ion from the boundary. In Fig. 2A, the
force on a test cation held fixed at a given position is plotted

as a function of the radial distance. A single ion (no elec-
trolyte) experiences a repulsive force due to induced surface
charges at the sphere boundary. This force is shown by the
dashed line for reference purposes. As the ion moves from
the center of the sphere toward the dielectric wall, the
repulsive force acting on it is seen to increase steeply. The
PB calculations (solid line) exhibit the expected results from
ionic shielding: the force on the test ion due to the boundary
charges is significantly reduced compared to that of a single
ion. In contrast, little shielding is observed in BD calcula-

FIGURE 1 (A) Comparison of the hard-wall (solid line) and 1/r9 (dotted
line) ion–ion potentials for a positive (U11) and negative (U12) test ion
around a fixed positive ion in a 500 mM bulk electrolyte. (B) the resulting
radial distribution functions in PB (solid lines) and BD (dotted lines) for
anions (g12) and cations (g11) around the fixed ion.

FIGURE 2 Test of the PB theory for a 500 mM electrolyte in a sphere of
radius 20 Å. (A) Force acting on a fixed cation is plotted against its radial
position. The solid curve shows the force obtained from the PB theory and
filled circles with error bars show the BD simulation results. The dashed
line indicates the force in the case of a single ion (c0 5 0). The error bar
on BD data points is one standard error of means and is not shown when
it is smaller than the size of the data point. (B) Concentration of mobile ions
in a region of constant solid angle (30°) between a fixed cation and the
spherical boundary. The average concentration obtained from the PB
theory (solid lines) and the BD simulations [open(Cl2) and filled (Na1)
circles fitted with thedotted lines] are plotted against the radial position of
the fixed cation.
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tions of the force (filled circles with error bars), which
follows quite closely the dashed line for the force on a
single ion. The discrepancy between the PB and BD results
become appreciable at 8 Å from the boundary, which cor-
responds to;2 Debye lengths. As the ion gets closer to the
boundary, this discrepancy grows, and at the closest BD
simulation point (4 Å), it becomes a factor of 3. We note
that even whene 5 80 is used outside the sphere, there is a
net force on the ion because the presence of a boundary
results in an asymmetric distribution of counterions in the
radial direction. In both PB and BD, this force is much
smaller than thee 5 2 case. For example, the force acting
on an ion located at 4 Å from the boundary whene 5 2 is
determined to be 2.5 pN from the PB calculations and 6.8
pN from the BD calculations. The corresponding values
whene 5 80 are 0.5 and 1.6 pN. Thus the force on the ion
is mostly due to the reaction field from the dielectric boundary.

The source of the discrepancy is to be sought in the
inability of the counterions in the BD simulations to provide
the level of shielding observed in the PB theory. To see this
more clearly, in Fig. 2B we compare the anion and cation
concentrations in the two theories. The average concentra-
tions in the region between the fixed ion and the boundary
are plotted against the radial position of the ion. This region
is defined by the conical section between the ion and the
boundary with the ion radius as its central axis and subtends
a constant solid angle of 30°. Thus as the ion gets closer to
the boundary, its volume gets smaller. Concentrations in PB
are obtained from the space average of charges in the
defined region, whereas in BD they are obtained from the
time-average of ions in this region. The PB results are
shown with the solid lines, and the BD results are indicated
by the open (anions) and filled circles (cations) that are
fitted with the dotted lines. As the test ion approaches the
boundary, the PB theory predicts a rapid rise in the anion
concentration, which is necessitated by the decreasing avail-
able volume between the ion and the boundary. The oppo-
site behavior is observed in the BD simulations; that is, the
anion concentration actually decreases as the ion gets closer
to the boundary. The discrepancy between the predictions of
the two theories again becomes appreciable when the ion is
;2 Debye lengths from the boundary. Thus this example
explicitly demonstrates when the concentrations in the PB
theory start to disagree with the average ion densities ob-
tained from the BD simulations, signaling the break down of
the mean-field approximation.

The above results give a clear indication of the operating
range of PB theory for an electrolyte confined within a
dielectric boundary. While the Boltzmann factor (Eq. 1)
puts a limit to the increase in anion concentration (otherwise
there would be a perfect shielding with very large concen-
trations to provide it), it clearly does not capture the whole
physical picture. Reflecting on these results, it is clear that
the continuum description that distributes the ionic charges
over the whole volume is ultimately responsible for the

failure of the PB theory. When the integrity of the ionic
charges is kept as in the BD simulations, there is an enor-
mous repulsive force on a counterion (due to induced sur-
face charges) as it attempts to enter the narrow region
between the test ion and the boundary. This force largely
prevents the anions from entering the narrow region, and is
responsible for the drop in anion concentration in BD. In PB
calculations at 500 mM, an average cell with a grid size of
1 Å contains 1/3000 of a unit charge. Distribution of charge
into such small units cuts down the effectiveness of the
repulsive force, and hence allows relatively large anion
concentrations to occur in the narrow region. While the total
negative charge in this region is only;30% of a unit
charge, the PB results indicate that even this small amount
could still provide a very effective shielding. This happens
because the surface charges induced on the boundary are
proportional to 1/r2, and therefore those charge elements
nearer the boundary can induce proportionately more neg-
ative charges on the surface, which cancel the positive
charges induced by the test ion more efficiently.

Cylindrical channels

We next consider cylindrical channels with rounded cor-
ners. The rounding is necessitated by the fact that sharp
corners cause difficulties in numerical solutions of Pois-
son’s equation, and in any case seems to be closer to reality.
The dimensions of the channel are outlined in Fig. 3, with
the channel obtained by rotating the curve shown in the
figure around the symmetry axis. The radius of the channel
is varied from 3 Å to 13 Å in thecomparisons. The height

FIGURE 3 Cylindrical channel models used in comparisons of PB the-
ory with BD simulations. A three-dimensional channel model is generated
by rotating the cross-section about the central axis by 180°. The cylindrical
section is 25 Å in length, and the rounded corners have a radius of 5 Å. The
radius of the cylinderr is varied from 3 to 11 Å. The reservoir heighth is
adjusted so as to keep the total (reservoir and channel) volume constant
when the radius is changed.
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h of the reservoir is adjusted to keep the volume fixed when
the radius is varied. Forr 5 3 Å, a height ofh 5 25 Å is
used. The dielectric constants are 2 for protein and 80 for
water unless otherwise specified. An average concentration
of 300 mM is used in all the PB calculations, which is
determined from the total cation (or anion) charge in the
system as in the case of the sphere. The BD simulations are
carried out with a total of 24 Na1 and 24 Cl2 ions, corre-
sponding to an average concentration of 300 mM. The
reason for using this higher value instead of the more typical
150 mM is entirely statistical: twice as many ions leads to
better accuracy in the BD simulations. The results are hardly
sensitive to concentration in BD, and exhibit only a loga-
rithmic dependence in PB calculations. Thus, essentially
similar results would be obtained using a concentration of
150 mM.

From the view of the dynamics of an ion in a channel
environment, the quantity that is of most interest is the force
acting on it at various positions in the channel. In Fig. 4 we
compare the PB and BD calculations of thez-component of
the force on a test ion as it is moved along the channel axis
(only the positive side is shown since the curves are sym-
metric aroundz 5 0). In BD, a test ion is held at a fixed
position on the channel axis, and thez-component of the
force acting on it is tabulated at every 10 time steps, which
are averaged at the end of the simulation. The ion is then
moved to another position along the channel axis, and the
measurement is repeated. The shielding effect in PB is seen
to lead to a drastic reduction in force compared to the BD
result in ther 5 3 Å channel (Fig. 4A). As the channel size
is increased, the discrepancy decreases but it remains sev-
eralfold (Fig. 4,B andC). Finally, in ther 5 11 Å channel,
when the force itself becomes quite small, the complete
shielding observed in PB theory is reproduced in BD
(Fig. 4 D).

An interesting observation in Fig. 4,A andB is that the
BD results follow rather closely the force on a single ion
when the test ion is near the mouth region, indicating that
there is absolutely no shielding there, but deviate from it
when the ion is further inside the channel. Intuitively, one
would have expected the opposite behavior, that is, more
shielding of the force as the ion moves out of the channel.
To explain the origin of this shielding in BD simulations, we
have studied the ion distributions in ther 5 3 Å channel
when the test ion is atz5 7.5 Å. The channel is found to be
devoid of charges except at;z '11 Å, where there is a net
negative unit charge corresponding to an anion trapped in
that location. This anion is firmly attached to the test cation,
forming a dipole, and thus neutralizing the charge on the test
ion to some degree. As pointed out in the Methods section,
the short-range ion–ion potential used in the BD simulations
has a minimum at contact (see Eq. 11 and Fig. 1A), and thus
is responsible for this anomalous behavior. When realistic
ion-pair potentials obtained from molecular dynamics sim-
ulations are used instead (Eq. 12), this anomaly disappears

and the force on the test ion follows closely that of a single
ion, as indicated by open circles in Fig. 4,A andB. Thus, if
we discount this anomaly, a fair conclusion of the above
study is that shielding does not play any role in the narrow
channels withr 5 3–4 Å.

Another issue that needs to be addressed in comparisons
is the effect of the ion-wall potential (or finite ion size),
which is implemented in BD simulations but ignored in PB

FIGURE 4 Test of the PB theory for the cylindrical channel shown in
Fig. 3. Thez-component of the force acting on a fixed cation at various
positions along the channel axis is calculated using the PB theory (solid
line) and the BD simulations (filled circles fitted with the dotted line). The
open circles (where shown) indicate the BD results obtained using the
realistic ion–ion potentials given in Eq. 12. The radius of the channel is (A)
3 Å, (B) 4 Å, (C) 7 Å, and (D) 11 Å. The height of the reservoirs is adjusted
to keep the concentration fixed at 300 mM in all cases. The force on a
single ion (c0 5 0, dashed line) is also shown, for reference purposes.
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calculations. This issue of consistency between the two
theories and its influence on the results presented can be
addressed in two ways. One method is to implement the
finite size of ions in PB equation by multiplying the right-
hand side of Eq. 3 by a space-dependent function that will
exclude the ions from the volume within 1 Å of thebound-
ary (Roux, 1997). The second method is to do the opposite,
that is, shrink the activation distance of the hard-wall po-
tential in BD from 1 Å to zero, thus allowing ion centers to
come near the boundary. Because in almost all applications
of the PB theory to ion channels such finite size effects are
not considered and our main purpose is to provide tests for
these applications, we prefer to use the second method here.
In Fig. 5 we plot the BD results for the force on a cation in
an r 5 3 Å channel as in Fig. 4A, but with the activation
distance of the hard-wall potential reduced from 1 Å (cir-
cles) to 0.5 Å (squares) and 0.1 Å (triangles). It is seen that
there are no discernible differences among the various re-
sults, with all falling on the force curve obtained from the
solution of Poisson’s equation for a single ion (dashed line).
Thus, even if we ignore the finite size of ions and allow
them to access the whole channel volume as in PB theory,
they decline to take advantage of the extra space offered.
Obviously, the steep increase in image forces as an ion
approaches the dielectric boundary makes these regions
rather inhospitable places, a fact that is missed by the PB
theory because smearing of charges dilutes the effects of the
boundary forces. Since the range parameter of the hard-wall
potential does not have any influence on the results, we will
keep using the more realistic 1 Å range in the rest of the
comparisons.

A quantity that can be more directly related to ion per-
meation is the potential energy profile of an ion which is
obtained by integrating the force curves in Fig. 4. We
compare the PB and BD profiles in Fig. 6 forr 5 3, 4, and
7 Å channels (ther 5 11 Å results are not shown because
both profiles are too small on the scale of the graphs). In the
PB case, shielding reduces the energy barrier seen by a
single ion by roughly an order of magnitude, virtually
obliterating it. Ionic atmosphere is seen to provide some
shielding in BD by lowering the energy barrier, though in
the case of the narrow channels (r 5 3–4 Å), this is caused
by the short-range potential used as explained above. If one
uses a realistic ion–ion potential, the energy barrier goes
back to that of a single ion (open circlesin Fig. 6,A andB).
In the r 5 7 Å channel, shielding is seen to reduce the
barrier of a single ion by more than half. Since a similar

FIGURE 5 Effect of changing the activation distance of the hard wall
potential in BD simulations. The force on a cation in ar 5 3 Å channel is
plotted as in Fig. 4A but for three distance parameters, 1 Å (circles) to 0.5
Å (squares) and 0.1 Å (triangles). The ion–ion interaction from Eq. 12 is
used in the simulations. All the BD results follow the single ion results
shown by the dashed line. The error bars are not shown to avoid cluttering.

FIGURE 6 The potential energy profiles in PB (solid line) and BD
(dotted line) obtained by integrating the force curves in Fig. 4. The dashed
line shows the profile of a single ion. The open circles (where shown)
indicate the BD results with the realistic ion–ion potentials (Eq. 12).
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result is obtained with the realistic ion–ion potential, this is
likely to be a genuine result. Nevertheless, the barrier in BD
remains larger than the PB result, pointing to a sizable
discrepancy despite the reduction in the potential energy
values.

Compared to the sphere results, the discrepancy between
the two theories is more accentuated in the cylindrical
channels because the access of counterions to a narrow
cylinder is further hindered in BD, while no such hindrance
occurs in PB theory. To quantify this statement, we compare
the anion (Fig. 7A) and cation (Fig. 7B) concentrations
predicted by PB (solid line) and BD (bars) theories for an
r 5 3 Å channel when the test ion is located near the pore
mouth (z 5 12.5 Å). In PB calculations, both anions and
cations uniformly occupy the channel at about the average

concentration, except near the test ion when the former
shoots to very large values and the latter dips to zero as
expected. This difference in the anion and cation concen-
trations leads to a net screening charge of20.61e in the
channel. In stark contrast, both anions and cations are com-
pletely excluded from the channel interior in BD. While
there is some excess of counterions near the channel en-
trance, these only amount to20.01e, which is too small to
provide any shielding as seen from the force atz 5 12.5 Å
in Fig. 4 A. We note that a constant anion concentration of
300 mM throughout the channel would correspond to a total
charge of20.21e. Thus the amount of anion charge is
increased severalfold compared to the background in PB,
while it remains negligibly small in BD.

Rather than repeating the above study for each channel
size, which is not very informative, we demonstrate the
changes in concentration by plotting the total screening
charge in the channel as a function of its radius (Fig. 8A).
This study is carried out for a cation fixed atz 5 12.5 Å,
where the force on an ion is at a maximum. The total
screening charge in PB remains nearly constant with the
increasing radius, the slight increase being due to approach-
ing bulk conditions (note that the screening charge in the
channel remains less than2ebecause the channel volume is
limited to z 5 615 Å). In BD, this charge is negligible at
r 5 3 Å but it steadily rises withr, converging to the PB
value at;r 5 11 Å or 2 Debye lengths. As shown in Fig.
8 B, the force on the test ion atz 5 12.5 Å correlates very
well with the screening charge results in (A). The force in
BD initially coincides with that of a single ion atr 5 3 Å
(no shielding), and with increasing radius, it gradually con-
verges to the PB values at around 2 Debye lengths. This
study establishes the domain of validity of PB theory for
channels as 2 Debye lengths, below which the underlying
mean-field approximation breaks down to an increasingly
larger degree with decreasing radius.

So far we have considered only the central axis in com-
parisons, which may give the impression that an agreement
between the PB and BD results can be obtained in the
larger-size channels (Fig. 4D). However, the central axis is
a rather special place where the forces from the boundary
charges are at a minimum, and the shielding effects in BD
are maximized due to the azimuthal symmetry. From the
sphere results it is expected that as the ion is moved toward
the boundary, discrepancies between the two theories will
resurface. This is quite obvious for the radial component of
the force but not so for thez-component. In Fig. 9 we
present comparisons of thez-component of the force on a
test ion similar to Fig. 4D (reproduced at the top) but along
an axis that is offset from thez axis by 4 Å (Fig. 9 B) and
8 Å (Fig. 9 C). Shielding effects are again overestimated in
PB theory compared to BD as the ion approaches the
boundary. To see this more clearly, we show in Fig. 10 how
the z-component of the force changes as the ion is moved
radially from the center to the boundary. Up to 3 Å from the

FIGURE 7 Variation of the average concentration along anr 5 3 Å
channel for cations (A), and anions (B) when a cation is fixed on thez axis
at z 5 12.5 Å (where the channel starts curving). In BD, the channel is
divided into 32 layers and the average value of the concentration is
calculated at each layer. The PB concentrations are indicated by the solid
curve and the BD ones by the bar graph.
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center the two theories agree, that is, shielding of the force
in PB theory is reproduced in BD. But after that, shielding
progressively weakens in BD in contrast to PB theory,
which provides a very good shielding right up to the bound-
ary. Thus, even in large channels the predictions of the PB
theory are bound to fail as one approaches the channel
walls. Such discrepancies in large channels are relevant, for
example, in calculation of concentrations near a binding
site, but not in ion transport, as ions tend to stay near the
channel axis where the radial force is minimum (Li et al.,
1998; Corry et al., 2000).

The BD results so far clearly indicate that narrow chan-
nels with radii 3–4 Å are pretty inhospitable places for ions
regardless of their background concentration. Therefore, for

ion permeation to take place it is essential to reduce the
energy barrier of a bare channel by placing fixed charges of
opposite sign on the protein wall. To test the PB theory in
this more realistic case, we place a set of negative charges
in the walls near the each end of anr 5 3 Å channel. Eight
monopoles with charges20.09e are spread evenly around
the channel circumference atz 5 12.5 Å andz 5 212.5 Å,
where the channel starts curving. The PB, BD, and single
ion results for thez-component of the force on a test cation
(as in Fig. 4 A) are compared in Fig. 11A. The fixed
negative charges on the channel wall reduce the presence of
counterions in the channel and the associated shielding, and
hence lead to much larger forces in PB theory compared to
Fig. 4 A, in better agreement with the BD results. The
fourfold discrepancy observed in the bare channel (Fig. 4A)
is now reduced to about a factor of 2. The fixed charges also
prevent the occurrence of anomalous shielding in the chan-
nel interior; the BD results now closely track those of the

FIGURE 8 Pore size dependence of the screening charge and force on a
cation held atz 5 12.5 Å. (A) The net screening charge in the channel
(from z 5 215 to 15 Å) is plotted as a function of the channel radius. The
PB results are shown by the solid line and the BD values by the filled
circles fitted with the dotted line. (B) Force on the cation as the channel
radius is increased. The PB (solid line), BD (filled circles fitted with a
dotted line) and single ion results (dashed line) are indicated in the figure.

FIGURE 9 Comparison of thez-component of the force on a test ion in
an r 5 11 Å channel when it is offset from the central axis byr 5 4 Å
(middle) and r 5 8 Å (bottom). The top figure is the same as Fig. 4 D.

2358 Moy et al.

Biophysical Journal 78(5) 2349–2363



single ion, reinforcing the earlier conclusion that no shield-
ing is possible inside a narrow channel. As the test ion is
moved away from the channel, shielding becomes more and
more effective and the force in BD goes gradually from the
single ion curve toward the PB result. In Fig. 11B we show
the potential energy profiles obtained from the force curves
in Fig. 11A. Besides the usual discrepancy between PB and
BD theories, perhaps a paradoxical result is that shielding
actually increases the energy barrier in BD compared to that
of a single ion. The reason for this ironic result can be seen
from Fig. 11A; shielding operates when the ion is outside
the channel where the force is attractive, but not inside when
it is repulsive.

As a final study in cylindrical channels, we consider the
possibility that the dielectric constant inside the channel
may be smaller than 80, especially in narrow channels. This
can be implemented in a straightforward manner in the PB
algorithm where a three-dimensional grid is used, but it is
not so easy in the BD simulations where a boundary element
method is used in solving Poisson’s equation. This problem
has been tackled in previous BD simulations (Chung et al.,
1998, 1999) by using the reduced value of the dielectric
constant,ec, in both the channel and reservoir, and including
the neglected Born energy difference between the channel-
reservoir configurations withec-80 and ec-ec as a short-
range energy barrier at the channel entrances. We refer to
the above references for details of this implementation in
the BD program. The Born energy difference for a 3 Å
channel is calculated using the PB program at zero concen-
tration, which gives a barrier height of 3.5kT for ec 5 40
and 11.8kT for ec 5 20. In PB calculations the change ine
is implemented in five equal steps from the channel en-
trance atz5 17.5 Å toz5 12.5 Å, and similarly at the other
end. The potential energy profiles forec 5 20 and 40 are

compared in Fig. 12. The barrier height for a single ion
increases roughly as 1/ec, and a similar trend is seen in BD.
At lower ec, BD results deviate more from those of single
ion because of the appearance of shielding at the mouth
region. We attribute this to the stronger Coulomb attraction
between the test ion and counterions, which increases as
1/ec. The corresponding increase in barrier height is much
faster in PB theory, so that the discrepancy with BD gets
smaller with decreasingec (but stays severalfold in any
case). This faster increase of barrier height in PB is related
to the loss of shielding inside the channel with reduction in
e, which affects the PB results but not BD. Nevertheless, the
overall conclusion remains the same as before; greater
shielding in PB results in much lower energy barriers com-
pared to BD.

Catenary channel

The above study in cylindrical channels gives a good idea
about the expected working range of the PB theory. To

FIGURE 10 Comparison of thez-component of the force on a test ion in
an r 5 11 Å channel as it is moved radially from the center to the channel
boundary atz 5 8.75 Å.

FIGURE 11 Effect of placing fixed charges in the channel wall in anr 5
3 Å channel. (A) Force on a cation as in Fig. 4A but with fixed charges.
(B) Potential energy profiles as in Fig. 6A but with fixed charges.
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demonstrate the robustness of those conclusions, we repeat
the force and potential energy calculations in a more real-
istic channel geometry with vestibules. This catenary-
shaped channel is generated by rotating the closed curve
shown in Fig. 13 about the axis of symmetry. The vestibule
of this channel is similar in shape to that visible in the
electron microscope pictures of the acetylcholine receptor
channel (Toyoshima and Unwin, 1988), making this a better
approximation of a real biological ion channel. The vesti-
bules are generated by a hyperbolic cosine function,z 5 a
cosh(x/a), wherea 5 4.87 Å. The entrance to the vestibule
has a fixed radius of 13 Å. Two such identical vestibules are
connected to a cylindrical transmembrane segment of radius
4 Å and length 10 Å. It is assumed for convenience that the
vestibules have the same shape and size, although the elec-
tron microscope images show the extracellular vestibule to
be larger than the intracellular vestibule.

In Fig. 14A we show thez-component of the force as the
test ion is moved along the central axis of the channel. The
concentration is maintained at 300 mM in both the PB
calculations and the BD simulations. As before, PB calcu-
lations are shown by the solid line, the BD results are
indicated by the filled circles which are fitted by the dotted
line, and the dashed line shows the force on a single ion.
The BD calculations of force closely track the single ion
results in the narrow parts of the channel (up toz 5 10 Å),

and reinforce the earlier conclusion on impossibility of
shielding in narrow parts of the channel. There is a large
discrepancy between the PB and BD results in this region as
in Fig. 4, A andB. As the ion is moved further along thez
axis, the channel expands and shielding becomes more and
more effective in BD. This is reflected in the force values in
BD gradually moving from the single ion curve to the PB
results in thez 5 10–30 Å range. The potential energy
profiles obtained from the force curves in Fig. 14A are
shown in Fig. 14B. Shielding is seen to have reduced the
energy barrier of a single ion by 40% in BD; however, the
barrier in BD is still three times larger than the PB result.
Thus, in a channel with vestibules, shielding definitely plays
some role but its effect is nowhere near the PB predictions,
where shielding demolishes the barrier presented to a single
ion for all practical purposes.

CONCLUSIONS

The comparisons of PB theory with BD simulations in
various configurations provide clear answers on the range of
validity of the former. When the distance of an ion from the
channel wall is less than 1 Debye length, the PB calculations
largely overestimate the shielding effects and cannot be
expected to give reliable values of the force on and potential
energy of an ion. The convergence of the PB and BD results
occurs when the ion’s distance from the channel wall is;2
Debye lengths, depending on the quantity and the geometry
considered. Because the radii of membrane channels are
typically smaller than the Debye length, the PB theory cannot

FIGURE 12 Effect of changing the dielectric constant in the channel,ec,
on the potential profile of a test ion in anr 5 3 Å channel without fixed
charges. (A) ec 5 20; (B) ec 5 40.

FIGURE 13 Diagram showing the cross-section of the catenary geome-
try that approximates the shape of the acetylcholine receptor channel. A
three-dimensional channel is generated by rotating the curves about the
central axis by 180°. Vestibules at each side of the membrane are con-
structed using a hyperbolic cosine function,y 5 a cosh(x/a) wherea 5
4.87 Å. The radius at the entrance of the vestibule is 13 Å and at the
cylindrical transmembrane segment 4 Å. Cylindrical reservoirs (not
shown), 30 Å in radius and 22 Å in height, are attached to the vestibules.
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be used to obtain reliable estimates of electrostatic force and
potential energy of an ion in the channel environment.

Our BD results demonstrate that if the radial profile of a
channel is less than the Debye length throughout, it is
unlikely to contain any counterions. This conclusion is
especially reinforced in realistic channel configurations
where fixed charges of opposite sign, which are necessary
for ion permeation, make it virtually impossible for any
counterion to enter the channel (cf. Fig. 11). For such
channels, it is clearly better to use Poisson’s equation rather
than PB, as no shielding due to ionic atmosphere is possible.
This conclusion appears ironical in the historical context of
the field because PB theory was advanced as an improve-
ment of Poisson’s equation in ion channels. Channels whose
radial profiles exhibit large variations are more difficult to
reconcile with the existing continuum theories because each
is valid in a limited range. For such channels, BD simula-

tions certainly offer a more reliable method for calculations
of forces and potentials. Nevertheless, if one insists on using
a continuum description, one could presumably extrapolate
from Poisson’s to the PB equation as the channel widens by
using the BD results as a guide.

APPENDIX

Algorithm for solving the PB equation

We use a finite difference method to solve the PB equation. The problem
is discretized by placing a rectangular grid of points with cell dimensions
hx 3 hy 3 hz over the region of interest. The value of the potential at each
grid point represents the average value off in the rectangular box centered
at the grid point. Each surface element between neighboring grid points is
assigned a dielectric constant according to the position of the midpoint, that
is, e 5 80 if it is in the electrolyte ande 5 2 if it is outside. Similarly, a
value ofr0 5 2en0/e0 (see Eq. 3) is assigned to grid points that are in the
electrolyte, andr0 5 0 to points that are outside. To correspond with the
BD simulations, ions around the test ion are excluded from a spherical zone
with radiusrt 1 r i, wherert is the radius of the test ion andr i is that of
anions or cations. Thus, unlike the primitive model, a different exclusion
zone can be used for anion and cation concentrations if they have different
radii.

To obtain the finite difference form of the PB equation, we integrate Eq.
3 over a rectangular box of volumeV 5 hxhyhz around each grid pointi at
position r i (Klapper et al., 1986)

E
V

¹ z @e~r !¹f~r !#dV5 E
V

r0~r !sinh@ef~r !/kT#dV

2E
V

~rex/e0!dV. (13)

Using Gauss’ theorem, the left-hand side of Eq. 13 is converted to a surface
integral, and then the derivatives off are written as finite differences

E
V

¹ z @e~r !¹f~r !#dV5 E
S

e~r !¹f~r ! z dS

5 O
j51

6

ej

f~r i 1 hjj ! 2 f~r i!

hj

V

hj
. (14)

Here the sum is over the six surfaces of the rectangular box withh1 5 h4 5
hx, h2 5 h5 5 hy, h3 5 h6 5 hz, and ĵ 5 x̂, ŷ, ẑ for j 5 1, 2, 3, and2x̂,
2ŷ, 2ẑ for j 5 4, 5, 6. The terms on the right-hand side of Eq. 13 are
evaluated similarly by replacing the integrands with their average values at
the grid point

E
V

r0~r !sinh@ef~r !/kT#dV 5 Vr0~r i!sinh@ef~r i!/kT#,

E
V

~rex/e0!dV 5 Vrex~r i!/e0 5 q~r i!/e0.

(15)

FIGURE 14 (A) Thez-component of the force on a cation for a 300 mM
electrolyte in a catenary channel is plotted against its axial position. The
force obtained from the PB theory is shown by the solid curve and the BD
results are indicated by filled circles with error bars fitted with the dotted
line. The dashed line indicates the force in the case of a single ion (c0 5
0). (B) The potential energy profiles obtained from the force curves in (A).

Poisson–Boltzmann versus Brownian Dynamics 2361

Biophysical Journal 78(5) 2349–2363



Substituting Eqs. 14 and 15 back into Eq. 13, we obtain an expression for
the potential at theith grid point in terms of the values of the potential,
charge, and dielectric constant at this grid point and its immediate neighbors

fi 5
Oj ejfj/hj

2 1 qi/~e0V!

Oj ej/hj
2 1 r0isinh~efi/kT!/fi

, (16)

where the subscriptsi andj onf, q, andr0 refer to the grid positionsr i and
r i 1 hj ĵ , respectively. Note that a similar expression for the linear PB
equation can be obtained from Eq. 16 by substituting sinh(efi/kT)/fi3e/kT
leading to

fi 5
Oj ejfj/hj

2 1 qi/~e0V!

Oj ej/hj
2 1 r0ie/kT

. (17)

Equation 16 is solved using an iterative relaxation scheme. The potential
values at the edge of the grid are set using appropriate boundary conditions.
Both Jacobian and Gauss–Seidal relaxation techniques are considered
(Press et al., 1989). In Jacobian relaxation, an initial guess is made for the
potential at all grid points, which are then used in Eq. 16 to recalculate the
potential at each grid point. This process is iterated until the potential
values at all grid points converge to a stable solution. In Gauss–Seidal
relaxation, when available, updated values of the potential in neighboring
points are used in evaluating Eq. 16. This speeds up the convergence, hence
it is the preferred method in scalar machines. In Jacobian relaxation, the
number of iterations required for convergence is larger. However, because
the program can be vectorized readily with this method, it may be more
suitable for use in a vector machine. In the present PB calculations,
Gauss–Seidal relaxation has been used throughout.

For faster convergence, we also use an over- or under-relaxation method
(Press et al., 1989). After each iteration, the value of the potential at a grid
point is updated according tof 5 (1 2 v)fold 1 vfnew, wherev is the
relaxation parameter that varies in the range [0, 2]. The case ofv 5 1
obviously corresponds to no relaxation,v , 1 is called under-relaxation
andv . 1 over-relaxation. Under-relaxation is useful in situations where
the potential diverges or oscillates around the actual value after each
iteration. Barring these occurrences, over-relaxation is preferred as it leads
to a quicker convergence.

It is well known that the algorithm for the linear PB Eq. (17) converges
to a stable solution (Nicholls and Honig, 1991). In the nonlinear case, this
algorithm was shown to converge in most cases if under-relaxation is used
(Jayaram et al., 1989). In practice, we have found that the algorithm
converges to stable solutions for all the situations we consider with both
over-relaxation (typically,v 5 1.6) and under-relaxation (v 5 0.6). The
convergence criterion used is that the maximum change in potential be-
tween successive iterations at any grid point is smaller than the tolerance
value, which is typically set to 1026 V.

The calculations upon which this work is based were carried out using the
Fujitsu VPP-300 and the Linuxa cluster of the ANU Supercomputer
Facility.

This work was supported by grants from the Australian Research Council
and the National Health and Medical Research Council of Australia.
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