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Abstract

Markov chain processes are becoming increasingly popular as a means of
modelling various phenomena in different disciplines. For example, a new approach
to the investigation of the electrical activity of molecular structures known as ion
channels is to analyse raw digitized current recordings using Markov chain models.
An outstanding question which arises with the application of such models is how to
determine the number of states required for the Markov chain 1o characterize the
observed process. In this paper we derive a realization theorem showing that
observations on a finite state Markov chain embedded in continuous noise can be
synthesized as values obtained from an autoregressive moving-average data generat-
ing mechanism. We then use this realization result to motivate the construction of a
procedure for identifying the state dimension of the hidden Markov chain. The
identification technique is based on a new approach to the estimation of the order of
an autoregressive moving-average process. Conditions for the method to produce
strongly consistent estimates of the state dimension are given. The asymptotic
distribution of the statistic underlying the identification process is also presented and
shown to yield critical values commensurate with the requirements for strong
consistency.
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1. Introduction

Early work on hidden Markov chains can be traced back to Blackwell and
Koopmans (1957) and Heller (1965), who were concerned with the probabilistic
properties of such processes, and Baum and Petrie (1966), who addressed the
consistency and asymptotic normality of the maximum likelihood estimator and
provided an early precursor to the EM algorithm associated with Dempster er al.
(1977). Since that time research into hidden Markov chains has been in abeyance in
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the statistical literature until very recently (see Qian and Titterington (1991), Leroux
(1992)), although in engineering the application of hidden Markov chain models has
received considerable attention, particularly in communication applications (Levin-
son et al. 1983). Our interest in the topic is motivated by the need to construct
probabilistic models of data obtained from observations on cell membrane channels.
Such models are required to help us understand and characterize the microscopic
current fluctuations that occur when individual channels in the cell membrane,
known as ion channels, open and close. Because all electrical activities in the
nervous system, including communication between cells and the influence of
hormones and drugs on cell function, are regulated by the opening and closing of ion
channels, understanding the gating mechanism at a molecular level is of fundamental
importance in neurobiology. The gating mechanism cannot be directly observed,
even under an electron-microscope, but measurement of ionic currents flowing
across the membrane has been made possible by the development of the giga-seal
patch-clamp technique. Thus, detailed information on small ion channel currents,
which has hitherto been inaccessible, can now be gleaned from recordings made on
real-world processes. Experimental records obtained with this new tool are,
however, contaminated by unavoidable noise. The aim of biologists is to recover the
true characteristics of the original signal sequence using statistical signal processing
techniques of the type described in this paper; see Chung er al. (1991) for further
details. Such processing is a necessary first step in the construction of a realistic
model that describes the molecular mechanisms underlying the opening and closing
of ion channels.

The basic model that we wish to consider is defined as follows. Suppose that {y,} is
a stationary stochastic process such that

(1) =x+¢
where:

(A1) {x,} is a regular, homogeneous, discrete-time Markov chain:
(A2) {{,} is a zero-mean, white noise process with variance o7.

Assumption (A2) is imposed for simplicity and can be relaxed without affecting the
results presented in the paper. It is necessary, however, to suppose that:

(A3) the noise {{,} is independent of the signal {x,}.

The signal component is specified by giving the initial conditions and the transition
probability matrix P=[p;], i, j=1,-- -, n where n is the state dimension of the
Markov chain and p; =Pr(x,., =s; | x,=s;) with s=(s;,--,s,) € R" being the
state space. Since in what follows we will only be interested in steady state
properties we have supposed that {x;} is regular. This guarantees that there exists
a stationary distribution p=(p;., "+, p,.), Zi=,pi.=1, such that p=Pp, the
dominant eigenvalue of P being one, with all other eigenvalues being inside the unit
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circle. Thus we can regard {x,} as being characterized by its transition probability
matrix P and state space vector s, see Feller (1966) or Karlin (1966).

It is clear that the process {y,} will inherit its stochastic properties from the
unobservable signal and noise components and the statistical question that we wish
to address is whether the precise nature of this inheritance can be exploited so as to
construct a method of identifying the state dimension n from data on {y,}. In what
follows we will show that this can in fact be done by first establishing a stochastic
realization theorem which states that observations on {y,} can be synthesized as data
generated from an autoregressive moving-average (ARMA) process in which the
order of the process is an elementary function of n. This is the subject matter of the
following section. In Section 3 we then use this characterization to motivate the
construction of a statistical algorithm for identifying n. Section 4 brings together the
subject matter of Sections 2 and 3 to show that the technique being advocated will
provide strongly consistent estimates of the state dimension, and Section 5 presents
some asymptotic distribution theory that forms a basis for the practical use of the
procedure.

Before continuing it should perhaps be pointed out that the determination of the
state dimension of a hidden Markov chain is one of the key problems of interest that
must be solved in order for signal processing methods based on hidden Markov
chain models to be of use in biophysical applications. The fluctuation of currents
resulting from the opening and closing of an ion channel cannot be generally
modeled as a first-order binary Markov chain. Numerous types of channel show
multiple current levels: instead of switching between the fully open and closed states
directly, currents can dwell at intermediate levels for variable lengths of time. In
some cases, these sub-levels are clearly spaced in equal steps. Such an n-state
Markov process may be envisaged as a superposition of n—1 identical binary
homogeneous Markov processes, which are neither totally independent nor fully
synchronized but partially coupled. This means that, in terms of our observations,
we will see n distinct current levels although, once buried in noise, it may not be
immediately evident from laboratory measurements. To gain insight into the
underlying physical mechanism, one needs to assess the number of elementary
channels contributing to the observed process and quantify whether the constituent
channels are independent or have some form of linkage. The identification of the
number of states of a hidden Markov chain is thus of considerable theoretical
importance in cell membrane kinetics.

Despite this significance the estimation of state dimension in hidden Markov chain
processes has received little attention. The only other work that we are aware of is
an unpublished PhD thesis by Finesso (1990), which uses the idea of a penalized
likelihood function to construct an estimator of n, an approach that is closely related
to that adopted by Marhav er al. (1989). Unfortunately, practical experience
indicates that these methods do not work well, experience that appears to be
supported by the recent results of Nadas and Mercer (1994). Moreover, in the



408 D. §. POSKITT AND SHIN-HO CHUNG

applications that we have in mind data sets in excess of 100,000 observations are not
uncommon. In such situations it is of some importance to reduce the computational
burden associated with maximizing a highly nonlinear likelihood function, particu-
larly as the likelihood function can be multi-modal and standard algorithms can
appear to have converged at the wrong point, see Nadas and Mercer (1994). Hence
we have chosen to base our approach on least-squares type calculations for which
fast, recursive algorithms are readily available. The method relies on the representa-
tion of {y} as an ARMA process. The problem of order estimation in ARMA
processes has given rise to an extensive literature, much of which is due to Hannan
and his co-authors (see Hannan (1980), Hannan and Rissanen (1982) and Hannan
and Kavalieris (1984) for example), and it would seem that any of the currently
available procedures designed to handle this problem might be appropriate for
identifying n. Evidence on the performance of these techniques does not look
promising, however. We have felt it necessary, therefore, to devise an approach to
the determination of n that takes explicit account of the special structure inherent in
a hidden Markov chain process. The technique that we propose is also of interest in
its own right. It depends on a method of obtaining initial estimates described in
Hannan (1970, pp. 390-391) that appears to have lain dormant for over two decades
without being further investigated and the selection process is conducted via a
sequence of statistical tests. Its appeal lies in the fact that it obviates the need for the
user to specify external design parameters, such as the order of a preliminary
autoregressive approximation or an a priori selection of a choice set from which the
preferred specification is to be selected, in order to implement the procedure in
practice.

2. Realization properties

From (1) and the basic assumptions it is clear that the moments of {y} can be
calculated from those of {x,} and {{}. In particular, E[y,]= u, = p, =E[x,], and

E[y,yi+x]) = E[xX, 4] + 80407 k =0, £1, £2, - - -, where 8;« denotes the Kronecker
delta. It follows that
(2) ')’y(k) = ?.'r(k) + Sﬂ.ka-f'! k =0: il! :|:2, et

wherein we have employed an obvious notation for the autocovariances of a process.
Using (2) we can establish the following basic results.

Theorem 2.1. Let {y,} denote a hidden Markov chain satisfying assumptions
(A1)-(A3). Then there exists a zero mean white noise process {g,} with variance o2,
defined on the same probability space as {y,}, such that y,— p,= ¢ + 3, K;&,—,
where K(z)=1+3,2,K;z7/ is rational. The order of K(z) is n —1 and there exist
coprime polynomials of degree n—1, a(z)=1+3/7 ez and p(z)=1+
3wz, with zeroes inside the unit circle |z|=1, such that K(z)= p(z)/a(z).
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Moreover, a(z)=II-,(1- )\.,z_’), where A;, j=2,---,n, are the sub-dominant
eigenvalues of the transition probability matrix, each counted with its algebraic
multiplicity.

The implication of this theorem is, of course, that realizations of the process {y,} are
equivalent to observations on a stable and invertible mixed autoregressive moving-
average scheme of order (n —1, n —1). The proof of the theorem arises naturally
from the lemmas presented immediately below.

Before we proceed, let us introduce the following symbolism and definitions. Set
P.=[p:p:--:p]. Since {x} is regular, P.=lim,_.. P*, see Feller (1966) or Karlin
(1966) once again, and it follows that P.=PP.=P.P and P. is idempotent.
Now let F =P — P.. Then using these properties it is straightforward to establish
the relationships (P*-P)=(P*'-P)F=F*'F=F* k=1,2,---. Set §=
diag (sy,°-*,s,), R=diag(py., --,pn) and let 1=(1,---,1)" denote the n
element sum vector.

Lemma 2.2. If {x,} is a Markov chain process satisfying assumption (Al) then
e =p's, v.(0)=1SU - P.)Sp and v,(k)=1SF*Sp, k = £1, +2, - - -.

Proof. By definition p, =X, s; Pr(x,=s,) =p's and

E[xi+i) = 2 2 58 Pr (te =i | %, =5;) Pr(x, =5;) =1'SP*Sp, k=0,1,2,---,

im] jmi
where we have used the fact that the entries of P* are the k-step transition
probabilities. It is easy to verify that (p's)’= 3=/, 2., 55,p.p;. =1'SP.SP and
hence it follows that y,(0) =1'S(P° — P.)Sp and v, (k) =1'S(P* — P.)Sp = 1'SF*SP,
k=12, -+,

Similarly, if gy =Pr(x,-;=s|x=s), i,j=1,--+,n, then E[x,_,x,]=1SQ"Sp,
but @=RP'R™' and 1'SR(P')*R'Sp =p'S(P’')*S1 because Sp = RS1. Hence
Yo(=k)=1'SF*Sp, k=1,2,--+, and v,(k)=1SF*Sp, k==x1,+2,--+, as
required,

If S,(w) denotes the spectral density of {x}, then

278 (w)= 2 y:()e" ™ -r=w=mn,
j- -

(©) = rs[(r ~-P)+ zni F’e""“*”]Sp

j=1
=1'S[(I — P.) + 2Re"“)F(I — " "“'F)~"ISp,
the last line being a consequence of the fact that for any matrix A all of whose
eigenvalues are less than one in modulus the Laurent expansion 320 A’ = (I —A)™
is valid and the eigenvalues of F are zero and A;, [Af<1, i=2,---,n, the
sub-dominant eigenvalues of P counted with their algebraic multiplicity. Note that
the characteristic values of P—P* are A\,—Af, i=1,---,n, and since F=
lim,_... P— P* and the eigenvalues of a matrix are holomorphic functions of the
elements of the matrix the eigenvalues of F equal lim,_,.. A, — Af, i=1,-%2,n.



410 D. S. POSKITT AND SHIN-HO CHUNG

To investigate the structure of (3) further, observe that z 'F(I—-z 'F)'=
F(Iz—F) '=QJ(Iz-J)'Q ! where J=Q 'FQ is the Jordan canonical form of

F. Given that F is non-derogatory the Jordan matrix J =diag (J;:---:J,) where
each diagonal block J; is a v; X v; matrix of the form
¢ 1 0 --- 0
0 ¢ 1 --- 0
1
0 &i
i=1,+++,u the ¢, i=1,'++,u, being the unique eigenvalues of F and v, =1,
vy ++ -+ + v, = n, their respective algebraic multiplicities. Set @ = [Q;:---:0Q,] and
Q '=[Q":---:0"] where @, and Q' are nXv; matrices, i=1,--,u, that

determine partitions of @ and its inverse conformable with the block diagonality of
J. A trivial calculation shows that J(Iz —J) '=diag(\(Iz —J)) -
J,(Iz —J,)"") and hence that

4) QJ(Iz -J)'Q7' = le 0J(Iz - J)"(Q").

Now let gy --*,gn and ¢",...,q"™ denote the columns of @; and Q'
respectively. Via some straightforward, if somewhat tedious, algebra we find that
J,(Iz —J,)"! equals an upper triangular Toeplitz matrix with first row [¢(z — @)},
(z —2¢)(z— @)%, (2= 2¢)(z — @) "(—1)"], from which it can be deduced
that each of the summands in (4) gives rise to an expansion of the form

o, % p E=20)(-1Y
"e-@) 5 @z-e@)

(&)

where the second and subsequent terms only appear if v; =2 and

v,—j+1 )
(6) Ry= 3 ag®™y, =1, %

=1

Collecting the components of the expansion together in terms of the lowest common
denominator yields the result that 1'SQJ;(Iz — J;)"'(Q')'Sp = b,(z)/B.(z) where

(7) b(z)= llSI:Ruﬂ(Z = %)w-l + %Rﬂ(z -2¢)(z - ?f)v'_J(_I)J:ISP

and

® B(z)=(z—@)" i=1,",u
Substituting into (4) it follows that 1'S(QJ(Iz —J) '@ ™")Sp = S, bi(2)/Bi(z), the
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index of summation beginning at two because ¢; =0 and v, = 1. This leads us to the
conclusion that

law b =l
225, (0) = 7:0)+ 3, 2 2D

@ ae) |, ale™)

=+ O T ae™)
where
(10) a@ =21 p@=[1a-4:"
and
(11) a@ =23 {b0) I1 B0}
i=2 J=2.j%

From (10) and (11) it is clear that the degree of z" 'a(z) is vo+ -+ v,=n—1.
From expression (7) it is readily verified that the degree of b,(z) is v, — 1, at most,
and that b,(¢;) = 1'SR,,,.SIE’(—@)(—I)“‘a-é 0. This implies, via (11), that the degree of

z"'a(z) is vo++--+v,—1=n—2 and, since b,(z) and B,(z) are relatively prime
and Bi(z) and B;(z) are obviously coprime i#j, that the ratio a(z)/a(z) is
irreducible.

Placing the three terms on the right-hand side of (9) over a common denominator

yields the result that
Sw)=s—2E)

2ra(e“)a(e™™)’

n-=1
p)= X pz

J==n+1
=a(z)a(z™") + y:(0)a(z ") +a(z VHa(z).
The polynomial z" 'p(z) has 2(n —1) roots because p,_;=p;_, = yx(0)a,_, #0

and we may number and group these into two sets {v,,---,¥,,} and
{f,“, <+, %2} such that |v|=1, j=1,---,n—1, because pj=p_; j=
1,-++,n—1 and p(z) is real and non-negative on the unit circle |z| = 1. Since the

coeﬁicienr.s of p(z) are real the roots are real or occur in complex conjugate pairs.
Moreover, p(A;) =p(A; ") =a(A)a(A;')#0, j=2,---,n, because a(z) and a(z)
are coprime. Hence we can construct the operator m(z) = moll}=' (1 - v;z ") where
mo={I1(=v,) "' pn-1}"? such that

o(2) =p,,_1z—"+':lj1 (1= v2)1 - v}'2)

=m(z)m(z™")
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and m(z) and a(z) will be relatively prime. We have, therefore, established the
following property.

Lemma 2.3. The spectral density of a Markov chain process {x;} satisfying
assumption (A1) can be expressed in the rational form
1 |m(e)P
27 |a(e™)?’
where m(z)=mo+mz '+~ +m,_1z7"  and a(z)=14+az7'+-- -+
a,_12 """ are relatively prime and n is the state dimension. Furthermore, if A;,
j=2,-+,n, are the sub-dominant eigenvalues of P, then a(z)=1I}-, (1= A;z™").

Sx(w)= _fr(w(?r,

We remark that alternative formulations for the moments and power spectrum of
a finite state Markov chain have appeared in the literature. The derivations of pu,
and y,(k), k=0, £1, - - - given above parallel those employed by Fredkin and Rice
(1987) in the continuous time case and expansions of S,(w) in terms of partial
fractions, analogous to (9), have been presented in the communications literature,
see Lee and Messerschmitt (1988, Appendix B3), for example. In communications,
however, the emphasis is on Markov chains that exhibit special structure, coded
signals or shift register processes for instance, and interest focuses on the production
of closed form expressions for the power spectrum suitable for direct numerical
evaluation. The formulae presented here are perfectly general and apply to any
discrete time Markov chain process. We are also concerned with the analytic
properties of the power spectrum rather than computation and it is the result given
in Lemma 2.3, that §,(w) is rational, that is critical to our theoretical developments.
Lemma 2.4 given immediately below may be viewed as providing a generalization of
results presented in Pagano (1974, Section 1), see also Engel (1984).

Lemma 2.4. Define the process {v,} via the equation v,=y,+ ey, +--+
@, Yi-n+1 Where {y,} is a hidden Markov chain process satisfying assumptions
(A1)—(A3) and «(z) is determined as in (10). Then {v,} is a moving-average process
of order n — 1 and there exists a zero-mean white noise {€,} with variance o2, defined
on the same probability space as {y,}, such that v,= €+ p &1+ + Pp-1E—ns1s
the coefficients -« +, u,—y having been chosen so that the autocovariance
generating function of {v,} equals o (z)u(z™") and u(z)#0, z|| =1L

Proof. From Lemma 2.3 and standard results on linear filtering we know that the
spectral density of {v} satisfies 278, (w) = [m(e)* + o7 |@(e")]’, which implies that
the autocovariance generating function

n=1
r(z)= E ?}Z-J,ﬁ-=?'_j,f=1,"',ﬂ“1,
J==(n-1)
=m(z)m(z™") + oa(z)a(z™).
As in the derivation of Lemma 2.3 we can now select n — 1 roots of r(z) to construct
w(@)=1+pmz '+ -+ p,1z27""" such that r(z) = o2u(z)u(z'). Since r(e?) =
r(e™®)=|m(e")?+ o}|a(e)?>0, —a<O=m, r(z) has no zeros on the unit
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circle so the roots may be chosen in such a way that u(z)#0, |z| = 1. The existence
of the white noise process {¢,} providing a moving-average representation of {v,} now
follows from the spectral factorization theorem, Rozanov (1967, Theorem 9.1, p.
41).

Armed with the above lemmas it is readily established that S,(w) = o7 |K(e')]*/2n
where K(z)= u(z)/a(z). All that remains in order to complete the proof of
Theorem 2.1 is to confirm that p(z) and «(z) are coprime. Recall that the roots of
a(z) are A, j=2, -+, n, the sub-dominant eigenvalues of P, and a(z) and m(z) are
relatively prime. It follows that oZu(A)p(A; ") =m(A)m(A;")#0, j=2,- -+, n, as
required. Thus K(z) = p(z)/a(z) is irreducible and the order of K(z), the maximum
of the degrees of p(z) and «(z), is clearly n — 1.

At this point let us note that we will require some kind of ergodicity assumption in
order to analyse the properties of the statistical procedure described in the following
section. We will formulate this now in terms of the innovations {g,}.

(A4) The innovation {g} is a stationary and ergodic process satisfying sufficient
regularity conditions to ensure that for Hry=(logT)", 1=a<=, and
Q%=loglog T/T, where T is the sample size, the quantity

TS ydian =l + 0@
for r=0, £1,-+-, £Hr and
7S v = 0@
for r=1,---,Hr. Furthermore, the variables T '?S¢eg_,, r=

0,1,---, Hy, converge in distribution to zero mean Gaussian random

variates with covariance §; ;0%
A sufficient condition that will ensure that (A4) holds commonly used in time series
analysis is to suppose that {g} is a martingale difference process, see Theorems 5.3.1
and 5.3.2 of Hannan and Deistler (1988) for example. Although such an assumption
seems quite natural in the current context, it is in fact inappropriate. The basic
difficulty lies in the fact that although {&} is uncorrelated it is not independent, so
the optimal mean squared error predictor is no longer linear and it is possible to
gain information from higher-order moments than the first and second. Neverthe-
less, assumption (A4) still seems not unreasonable. It is possible to show that a
Markov chain process is mixing, see Blum er al. (1963), and if {{,} is also mixing then
{y.} will be mixing. Inverting the representation given in Theorem 2.1 and expressing
¢ as a linear combination of y,_;, j =0, 1, - - -, with geometrically declining weights
leads to the conclusion that {¢} is near epoch dependent. Thus (A4) may follow as a
consequence of the law of large numbers and the central limit theorem applicable to
near epoch dependent processes. Gallant and White (1988) provide an illuminating
discussion of such processes.
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3. Statistical algorithm

Let y, t=1,+++, T denote a realization of T observations on a hidden Markov
chain {y,} satisfying assumptions (A1)-A(4). The algorithm for identifying the state
dimension # is described in the following steps.

Step 0. Evaluate the sample average y=T7'Z,y, and calculate the mean

corrected values , =y, —y,t=1,--+,T.Setn=1and 62,=T"'SL, 2
Step 1. Putn=n+1.
Stage (i): Evaluate the initial estimates &, j=1,- —1, by solving the
equations
n=1
> &VC,(r—j)=0, r=n---,2(n-1),
j=0

where  C,(r) = C/(=r) = TSI ifiapy= Q/T') SEy Iry(€)ei®”, r=1,--,
T -1, and Ir,(z) = (27T)" YL, vz P with w,’ =2m/T', T'=2T, j=1,---,T".

Stage (ii): Now form for r=1,+ -, n—1,
a=1n-1
C=C-n)=2 X aPaPC/(r+i-})
r——i] j=0

=(@2n/T") 2 |& O™ )P I, (" Ye™i

where @0(z)=1+a@z "+--- + a“’_’lz’ " and set S“”(z) 2x) Bt s Cl™"

Compute the initial estimates g, j=1, - 1 from the equation system
370 BOCI 0 C(NRO( - ;—r)) 0,1= 1 -1, where
'@ (m(e“" )i2
h (B)(“)‘_ 2 g(o)( o )2
Step 2. For i=1,2,--- generate the processes £, 7 and ¥, t=1,---, T
using the recursions
EV =y, + z (a“ Yy, - (: l}g(.f))
=1

‘J—g(ﬂ 2 -u 1) "9;

@}(n = ﬁps _ 2 ﬁf—” -9-);
j=1
and calculate the residual mean square
12 (g{m + E (sa}l)nf!)j sﬁj p® )g(f))
r=1
where the parameter adjustments 8" and 8i", j=1,+++,n—1 are obtained from
the regression of £ on -7, and @2, j=1,-+-,n—1. Construct the revised
estimates &@f=af'""+ 8a” and A’ = p.}’ D+8af, j=1,--+,n—1, and repeat
the iterations until (&{))? converges. Let G2, = lim,_,.. (¢¢))%
Step 3. Evaluate the statistic Ay(n —1)=T(¢7,-, — ¢2,)/2, and compare its
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value to Cr(n —1) where Cy(n —1)>0 is a real valued function, non-decreasing in
T. If Ay(n—1)=Cy(n —1) then return to Step 1. If Ap(n—1)<Cr(n —1) set
fir=n-—1.

Although not stated explicitly, it is assumed that when implementing the
algorithm advantage will be taken of the numerical efficiency of the fast Fourier
transform (FFT), as described in Bingham (1974), when computing the covariances
and convolutions required to determine the initial estimates in Step 1. The FFT can
also be used to evaluate the mean squares and cross product terms needed in
subsequent calculations, although the use of the QR method in conjunction with fast
Givens transformations to solve the least squares problem recursively as the
regressand and regressor variables are generated, see Golub and Van Loan (1989),
could be competitive at Step 2.

4. Consistency of the estimates

In this section of the paper we will follow the format of Section 2 by first stating
the main theorem and then presenting a set of lemmas that form the basis of the
proof of the theorem. Our main result presents conditions on the critical value
Cy(n) to be applied in conjunction with the statistic A7(n) that will ensure that the
value 7ir determined via the procedure just presented will yield a consistent estimate
of the true dimension n, of the hidden Markov chain {y,}.

Theorem 4.1. Suppose that y,, t=1,---, T, is a realization of a hidden Markov
chain process with state dimension n, satisfying (A1)-A(4). If fiy is obtained by
implementing the above algorithm with C+(n) a possibly stochastic function of n and
T, then: (i) if C#(n)/T — 0 almost surely as T — = then fiy = n, with arbitrarily large
probability, as T — <=; (ii) if as T— oo, liminf C(n)/L(T) > 0 almost surely, where
L(T) is a real valued, increasing funcrion of T such that loglog T/L(T)— 0, then
Pr(limy.Air=n,) =1

In what follows we will append a subscript o to quantities of interest to indicate
those values corresponding to the actual data generating mechanism giving rise to
the observations, as we have already done for the state dimension. Thus, ¢, and
K,(z) will represent the true innovation variance and transfer function of the
observed process {y,} and a,(z) and u,(z) will denote the true autoregressive and

moving-average operators with coefficients a, and pu,, j=1,"--,n,—1,
respectively.

Lemma 4.2. Suppose that (Al)—(A4) obtain and set @(z)=1+aPz '+ +
@927 " and fOR)=1+aPz  + -+ gQ, 2

(i) If n<n, deﬁne a*(z) in an obvious manner via the solution to the equations
2

o Z af |K,(e®)Pe“"Pdw=0, r=n,---,2(n+1).

(12)
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Then @%(z)=a*(z)+0(Q7) uniformly in |z|=1, Qr=(loglog T/T)k
Given a“(z) let u*(z) be formed from

T e R Koe)r

lm(r-,‘} P - a v
(13) 2 L SHe)? do=0, r=1--,n
where
n=1
(14) S::'(e'“)- > la*(e)f K (c)Pe "> db.
—-nr=—n+]

Then uniformly in |z|21, g 9(z) = u*(z) + 0(Q7).

(ii) If n>n, then @(z)=¢'2(z)a,(z) + O(Qr) and G (z)= b (z)p,(z)+
O(Q7) uniformly in z, |z|=1, where dP(z2)=1+¢Vz ' +---+d9z7",
r=n-no &9z)#0, |z|2=1.

Proof. (i) From assumption (A4) we know that |C,(r) — y,(r)|=0(Q7), r=
0,:++,Hr=(log T)", a <. Re-expressing the autocovariance of {y;} in terms of
the Fourier transform of the power spectrum in the usual way we recognize that &;”’
and af, j=1,--+,n—1, correspond to the solutions of systems of linear equations
in which the augmented matrices of the two systems differ by O(Q7). The coefficient
matrix of the system of equations is non-singular, since

E B

r=1

Zl 2 3:7_;-(" ts—r— l)ﬁr (o'rm‘(zx)'[

and (272! B,z ")K,(z) is rational of order at least n, —1=n by the fundamental
theorem of algebra and Theorem 2.1; see also An er al. (1983, Theorem 1). We are
therefore led to the conclusion that 37=)' |&” — af| = O(Q7) and the first statement
of the lemma follows since |&@?(z) — a"‘(z)i ‘:E;’ ;‘ & —ap|, lz|Z1.

A completely parallel argument to that just employed will show that i¥(z)=
n*(z) + O(Qr), |z| =1, if it can be verified that the augmented matrices of the two
equation systems defining these two operators are, likewise, O(Q7). To this end, let
HO(w)=]a@e“)?/§P(e”)® and set h*(u)=[*, H*(0)e' " dw, u=0, £1,---,
where H*(w) = |a*(e")[*/S¥(e")>. Since S¥(e') corresponds to the power spectrum
of a finite moving average |h*(u)|<xA"™, for some A, 0<A<1, and |h*(u)-
2 h*(u +jT')| <2k exp (T'log A)/(1 — AT') where, here as elsewhere, « is used to
denote a fixed constant. We can also infer that H'%(w) = H*(w) + O(Q7) uniformly
in w e [—7, n]. Now observe that

IK (etu)ll Twin— ”dcu

(T-1)

2 C(Nh O —r)=}—. 3 Iy DA e

r=—(T-1) j=0
and that an equivalent expression obtains with 2 ®(u — r) replaced by X, h*(u —r +
jT') and H9(w) replaced by H*(w). But

-1
TS €A w]) ~ H(w)le| Ssup AOw) - HY @) G,(0)
j=0
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and

2 € (r)[h*(u -r)- Zh*(u —-r+jT’ )” =4xC,(0)T exp(T'logA)/(1 - ATy
r=—(T-1)

and the right-hand side of both of these expressions are O(Qr) or smaller. Thus the
remaining term that needs to be considered is

[ [mem) - 22 Ko du= 3 16,6) -3 =r),
wherein we have set C,(r)=0, [r|=T. The modulus of the right-hand side of this
equation is less than or equal to kX, <ci0g 71C(r) = V() A" + k2 2 10g 71y (1) —
¥y(r)|A"" and the second term in this expression is bounded by 2«[C,(0)+
¥,(0)]A°**#7/(1 = A). Taking c= —1/(2log A) and using (A4) once again we obtain
the desired result.

(ii) Assume that n =n,. Then it is readily verified that af =@, ;, j=1,- -+, n—1,
provides the solution to (12) and hence (see Lemma 2.3) that S¥(w)=
02, | o(€)?/2. Substituting into the expression for H*(w) we find that the
equation system (13) corresponds directly to the ‘Yule-Walker’ equations con-
structed from the power spectrum 02,/27 |u,(e)’ and hence that u}f=p,,
j=1,--+,n,—1 Using the same argument as employed in (i) above we find,
therefore that @9(z) = a,(z) + O(Qr) and 5V(z) = w,(z) + O(Qr) as required.

Now consider the case n >n,. From Theorem 2.1 we know that the product
a,(e) K, (™) = |u () /a,(e™), from  which it  follows that
J* e, () |K,(e™) e dw =0, u>n, — 1. Using this relationship it is straightfor-
ward to show that the solutions to (12) are characterized by operators of the form
a*(z) = &(z)a,(z) where ¢(z)=1+ ¢,z“ ‘+¢,27", r=n—-n, Moreover,
since Safy,(s-/)=0, s2n, (S afC (5= DS S8 Gy ls =) = s —
NI =0(Qr)Z=¢ laf|. Thus for T sufficiently large we can, with arbitrarily large
probability, determine a measurable solution &”, j=1,--+,n—1, such that
@9z) =& (2)a,(z) + O(Qr) where ¢P(z) #0, |z| = 1. We therefore find that

.4

50 =22 [* S 130 a (K, O do +0(@7)

-x r=1-n

= 22 O (e + O(Qr)

and hence that A®(w) = e, (e™)*/|¢ V(") |1o(e™)I* + O(Q7)-
As before, it follows that i‘9(z) = u*(z) + O(Qr) where p*(z) is formed from
the “Yule-Walker' equations

o__iofx n—1 ! eawlr 1) 0
2 o 0 |$€0)( m)p_ (e.fw)|2
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giving the desired conclusion.
Lemma 4.3. Set

" Fwy (2
Fla(z), .u(z)J— ‘“f",.,;l’z K, ()P do
) 1 (7 la(e)K,(e*) - u(e®)?
=2, [1 +2:r L ()P dw].

If assumptions (A1)-(A4) hold then:

(’) "f” < Ny, 6':';:1 = mjna(z}.n(xJF(a(z )' 1u‘(z )) + O(Q?‘)

(i) Ifn=n,, 62,=T'ZTL., €2+ O(Qr).

Proof. (i) Let Fr(a(z), n(z))=T"'Z e}, where &, =5, + 2 (ajji—; — pwei—), &=
0, t =0. Following the method of proof employed in Poskitt (1987) it can be shown
that Fr(a(z), n(z)) = F(a(z), n(z)) + O(Qr) uniformly in {a(z), u(z)} Thus we
can determine a 87 = O(Q7) such that for T sufficiently large |Fr(-, ) — F(-, *)| < 8¢
almost surely. Set {@(z), fi(z)}=argmin Fr(a(z), u(z)). Then Fr(@(z), i(z))=
Fr(a(z), p(z)) = F(a(z), p(z)) + 87 for all {a(z), n(z)} and

Q(I;I:E” F(a(z), p(z)) — 8r = F(&(2), (z)) — 87 < Fr(@(z), i(z)).

This implies that |Fr(@(z), A(2)) — ming ). F(a(z), p(z))| < 87. Thus the result
will follow if we can show that &2, = Fr(&(z), fi(z)). To achieve this note that the
iterations defined in Step 2 correspond to a Gauss-Newton scheme designed to
minimize Fr(a(z), u(z)) since, to use an obvious generic notation, dFr/du; =
2T7'Z n,je, and aFr/dp; = —-2T'S ¢,_je, j=1,+++,n—1. By an argument that
parallels the proof of Theorem 3 of Kohn (1978), usin g the strong version of Kohn's
(1978) Lemma 8, it can be shown that the iterates {@“(z), Z?(z)}—{@(2), i(z)} as
i— . But by definition, _—
TR =Fr(@ @), a9+ X X (8 72— 8af p2)e?
=1 =1

and T~ ’2 (%€ and T7'Z ¢ #", and therefore also 8af” and 8", j=
j B —1, will converge to zero as i— =, Applying the Cauchy-Schwartz
inequality to the second term leads to the conclusion that |¢¢?— Fr(@(z),
f(z))|—0 as i— = because this quantity is bounded above by |72 — F.(a“ ")(z),
A2+ IFr (@ (2), 84 (2)) - Fr(@(2), A(2))L

(ii) We will establish this by proving by induction %2 = T'S ¢ + O(Q%) for all
i =1, from which the stated equality follows chrect]y. Consider % and suppose
that  {a“"(z), 2“7 2)} ={eo(z)(1 + 4 Vz7), po(z)(1 + 4~z 7)} + O(Qr),
|@“V|<1. Then e

ao(z) c_r{, ])(Z) zwj =3
Ko(z) RYA2) =

where the ¢, are O(Qr) and decline at a geometric rate, so that || < O(Q7)N,
j=1,2,--+, for some A, 0<A<1. This implies that T7'3 (g —?)*=
O@NG,O)/(1-2) and TSI, (g~ EP)e = SLBT ¢ [T'ST, y, 6] + Ry,
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where the remainder Ry is dominated by O(Q7)(C,(0)T ' &)'?A° ¢ T/(1 - A).
Taking ¢ sutﬁciently large and appealing to assumption (A4) gives the result that

TS EM=T7"F e+ O(Q%. Using a similar argument it can also be establ-
ished that 77'S 7?2 and T7'T {2, j=1,---,n—1, are O(Qr). For
examp]e T'Z n‘” 2 can be expressed as a weighted sum of 7' y,_;_,& and
T2 y,j-ile,—&"], k=0,---,clogT, with weights that decline geometrically,
plus a remainder that is bounded by a constant times A°"°®7/(1 - A). The ﬁrst two
components contribute terms that are O(Q7) and the remainder is o(T Y for
¢>—1/2logA. This implies, however, that &’ and 8i", j=1, - -1, are
0O(Q7) and applying the Cauchy-Schwartz mcquahly to ¢¥)? as was done before we
find that &2 =T"'3 97+ O(Q%). Putting this result together with the first one
produces the desired expression and starting the induction at i =1 using Lemma 4.1
(ii) completes the proof.

It is apparent from Lemma 4.3, though not explicitly stated, that if n <n,, &2,

will converge to a value greater than o, as T increases whereas, if n = n,, i, will
converge to o2, It is also implicit in the proof that when n=n,, &2, will, with
probability arbitrarily close to one, equal &{,’ for T large, so that only one iteration
of Step 2 will be required.

Corollary 4.4. If the conditions of Lemmas 4.2 and 4.3 obtain then for T
sufficiently large
(i) 62,> 62,0 if n<n,, and (ii) G%,— 67,1 = O(Q} if n Zn,, almost surely.

Proof. (i) To begin we follow the proof of Theorem 5.2 in Potscher (1983). Let
F" =min, ), F(a(z), n(z)) where a(z) and u(z) are of degree n —1. Clearly,
F"*' =< F". Now suppose that F"*' = F". This implies that the function

ﬁ (1-ae™) a(e)P
7 ) (1=be™) lu(e)P

is minimised at @ =b, |b|<1, leading to the conclusion that K,(z)=a(z)/x(z),
lzI=1, as is shown by Pétscher (1983). Thus we have a contradiction, since by
Theorem 2.1 K,(z) is of order n, — 1 and «(z) and u(z) are of degree n — 1, n <n,.
Hence we can infer that F"*'< F". Now set 0< 8, <(F"—F""')/4. Lemma 4.3
ensures that when T is sufficiently large both the events &;,>F"—§, and
G2, <F"'+8, will occur with probability arbitrarily close to one. Thus
G2, 621> (F' = F"*Y)=25,>4(F" - F"')>0. Statement (ii) is a trivial
consequence of Lemma 4.3 (ii).

K, () dw

F(a, b) =

Note that it is in fact possible to show that for T large the sequence &2,
n=1,2,++- will, with probability close to one, be monotonically decreasing, This
can be established by first observing that the difference between Fr(a(z), n(z)) and
JZ e la(e™)f Ir,(e™)/ |n(e”) dw will converge to zero almost surely as T — .
Replacing &2, |K,(e")]*/2x by Ir,(e") in F(a, b), let us label this Fr(a, b), and
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repeating the same logic as was used in the proof of Corollary 4.4 in conjunction
with % (a, b), recognizing that X y,e" is of order T with probability one, then leads
us to the conclusion that &2, > &2,,.;. Thus the statistics T(52,, — 62,41)/ 32 5+, will
be positive definite for all n almost surely. The importance of the corollary is that it
tells us that the numerator remains bounded away from zero when n <n, but will be
artibrarily small for n = n,. Thus (6%, = ¢%,+,)/6%,+1 >0 whilst Cz(n)/T—0 as
T — = when n <n,, which yields part (i) of Theorem 4.1, whereas when n=n,,
(T(G2,— G2ns1)/G24e1)/L(T)—>0 if loglog T/L(T)—0 whilst liminf Cr(n)/
L(T)>0as T — =, giving part (ii).

5. Asymptotic extreme values

Although Theorem 4.1 specifies the precise order of magnitude of Cr(n) required
to obtain a strongly consistent estimate of 7, the upper and lower bounds on the rate
of increase of Cy(n) with T implied by the theorem are of limited use as a guide to
the actual value to be employed in practice. The computations outlined in Section 3
can be viewed, however, as a method of implementing a sequence of statistical tests
and the following theorem provides the required asymptotic null distribution. This
means, of course, that the standard apparatus associated with hypothesis testing
procedures and the choice of significance levels can be used to determine an
appropriate magnitude for the critical, or extreme, value Cr(n).

Theorem 5.1. If {y,} is a hidden Markov chain process with state dimension n,
satisfying (A1)-(A4) then

"!_im Pr (Ar(n,)=2(loglog T — log 87 + x)) = exp (—2e 7).

Before providing the proof of this theorem let us note that the statistic A-(n,) has
an unusual asymptotic distribution. The distribution function in fact corresponds to
that of the extreme value of a continuous, zero mean, stationary Gaussian process
on the real line with autocovariance function (cosh {( — 5)/2})~". The relevance of
this probability distribution in this context is due to Hannan (1982), who first
obtained the distribution in the special case of testing white noise against a first
order autoregressive moving-average alternative using the likelihood ratio principle.
The results presented by Hannan were subsequently extended to more general
autoregressive moving-average processes by Veres (1987) and the last part of the
proof given below is modeled on the derivations used by these two authors. Observe
also that an immediate corollary of Theorem 5.1 is that if Cr(n) is chosen to
correspond to the (1 —p,)th quantile point of exp (—2e™*) where log (1 —p,) =
—2T"%, §,>0, then x = log T* and the conditions of Theorem 4.1 will be satisfied.
For example, if the probability-value p; is less than the conventional 0.01 significance
level and T =10,000, a sample size not uncommon with cell membrane ion channel
data, x >log T'2.
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Proof. The statistic Ar(n,) = T(62,, — 62,+1)/F¢n,+1 and from Lemma 4.3 (ii) it
follows that the denominator equals o2, +o(1). Moreover, from the proof of the
same result it is straightforward to verify via Markov’s inequality that for n=n,

T n=1

et = ‘E e+ T2 2 (@il saf ¢2)E + o) (T,

=1 j=

where 8a)” and 8, j=1,---,n—1, are determined by solving the equation
system

n—1

%
> (5 a7 0A0, — gL P, = z 70 &0 k=1---,n-1,
=1 =1

21 2 (—8a 706 + 8 31 30,) = 2 PE"  k=1,---,n-1
j=1 =1

Re-expressing these relationships using matrix vector notation we find that the

numerator of Ag(n,) equals T '(RSS, ., —RSS,)+o0,(1) where RSS,=
lim,_... g,M;g,. The gradaent vector g, contams E 72," in location j and T ${?&"
in locationn —1+j, j=1, - —1, and M, denotes a generalized inverse of the

matrix of mean squares and cross products of the associated derivative processes
il and @, j=1,---,n—1. From Poskitt (1987), see also Poskitt and
Tremayne (1981), we know that lim,_,. M, is non-singular but M,, ., converges to a
matrix of rank 2n,—1. For the case n=n,+1 let us therefore make the
transformation from ay, -+, @, to a;,'*,a,-;, ¢, defined by a(z)=a(z)
X(1+ ¢az7") and from py, - -, p,, 10 my, -+, m, _y, &, with u(z)=m(z)(1+
¢mz~"), once again reverting to generic notation. The Jacobean J = diag (J,, J.)
where

(1 ¢,
1 ¢,
J, =
1 ¢,
1 a, . s % . an‘,-l
and J, has the same structure with a,, -+, @, _; and ¢, replaced by m,, - - -, m,,__,

and ¢,, respectively. (The use of a common notation for the Jacobean and Jordan
matrices should cause no confusion as they are employed in totally different
situations.)

Now consider evaluating the quadratic form g, M, g, at {a(z), u(z)} and
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8n, My 181 +1= (Ugn 1) UMy, 1) Jgn oy at {a(z)(1+ éz7"), w(z)(1+¢z7)}
A fairly routine calculation shows that the elements of Jg,_., correspond to those of
8., with the addition of the term X &,_,(¢)e,, where () + d¢,_,(¢) =e¢,, for the
two extra entries associated with ¢, and ¢,,. Similarly, JM, ,,J' contains the
elements of M, supplemented with the mean squares and cross products
T'Z n-jbii(d), T7'S ¢ 16-1(¢) and T 'S £_1(4)* so as to add two further
rows and columns. A generalised inverse of JM, ,,J' can now be constructed by
replacing one of the duplicated rows and columns by zeroes and then inverting the
remaining 2n,—1 linearly independent rows and columns. The value of the
quadratic form so obtained will be invariant with respect to which row and column is
implicitly eliminated.
Let T, =T, denote the 2(n, — 1) order matrix with elements

03‘0 J-Jr eiw{r—s)
=4
21 Jon lao(e™)

Uio 53 eiw(r—s}
e — o iy AW
—r (e )uo(e™™)

2r
and
2 T fwl{r—s5)
o e
— ——dw
2n j—:r o (&)
in locations rs,rs'=n,—1+s and r',s',r'=n,—-1+rrs=1,--+,n,-1,
respectively and let C, (¢) be the 2(n, — 1) component column vector with
a'za Jﬂr e’.‘amr
+ - — g
® o |, mEearee ™

in the rth position and

a'io " efm
SFH Weorermo i
in the r'th. By Lemma 4.2 for all T sufficiently large {&'”(z), @”(z)} will equal
{eo(2), mo(x)} when n =n, and {a,(z)(1+ 6 Pz7"), w,(z)(1+ 627"}, 16 <1,
when n =n, +1 plus a constant times Qr with probability arbitrarily close to one.
Furthermore, by construction the values 8a&” and 8af”, j=1,-+-,n—1, are
determined so as to make the regression sums of squares as large as possible, but in
the proof of Lemma 4.3 we have established that the parameter adjustments will be
O(Qr)- This implies that {@)(z), &“(2)} = {ao(2), Ko(2)} + O(Qr) when n =n, and
{@2), 2%2)} ={ao(2)1 + 827"), po(z)(1+ &z} + O(Qr), 16“| <1, when
n=n,+1 where [ = ¢"V|=0(Qs). From Theorem 1 of Poskitt (1987) it
follows that M, =T, +O(Qr) and the remaining elements of JM, .,J' will
converge to the corresponding components of C,(¢) and oZ,/(1 — ¢*) where & is
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the value that maximizes the regression sum of squares RSS, .;. Using well known
results on partitioned inversion in conjunction with the relationships outlined in the
previous paragraph leads us to the conclusion that A(n,) = (E/0)*[1 +o(1)] +
0,(1) where Zj=maxg.«<i-s [{TZL; &-1(d)en(d, 6) T, h(d, ¢')= 0%/
(1-¢9¢")—C,(8)T,;'C,(¢') and 67 =2/(1 + T?).

The sum 773 &-1(d)eg, converges to a Gaussian random variable. Indeed, from
the second part of assumption (A4), see also Kohn (1978, Theorem 5), it follows
that T'ilg,,",,, obeys the central limit theorem and hence for any finite set of values
¢, j=1,--+, N, |¢;l <1— 87, the quantities T35 £,-1(d,)e, will have an asympto-
tic marginal distribution that is normal with zero mean and covariance o2,k(¢,, ®)),
i,j=1,+-+, N. Duplicating the argument presented in Hannan (1982, pp. 409-410)
or Veres [1987, p. 355] we find that s &,_1(¢)e, is continuous in ¢ uniformly in 7
and from Theorem 1 of Gihman and Skorohod (1974, Ch. VI, Section 4) it follows
that =% converges in distribution to max4.<; #($)* where #(¢) is a zero mean
Gaussian process with autocovariance a2.h(¢d, ¢) *h(d, ¢ )n(d', ¢') L Let 1=
log (1+ ¢)/(1 = ¢) and set (t) = X(d)/o., where ¢ =(1-e"")/(1+e”"). Adapt-
ing the derivation used by Veres (1987, pp. 349-351) we find that Z(r) is a zero
mean Gaussian process with autocovariance function 2/(e” +e~“*). The statement
in the theorem now follows from Theorem 7.1 of Berman (1971) by recognizing that
for ¢ in the interval {¢:|d|=(T'—=1)/(1+TH} lf=logT' and that
max (#(¢)/o.,)* and max Z(t)* have the same distribution.

6. Conclusion

Preliminary simulation evidence, that we hope to present elsewhere, indicates that
the statistical techniques described above behave as would be expected on the basis
of the theoretical results that we have established. If these results are to be of
practical value, however, it will be necessary to ascertain the extent to which the
basic model and its associated assumptions can be thought to provide a sensible
representation of the phenomenon being studied. In cell membrane kinetics there is
considerable evidence to suggest that observed ion currents behave very much like
Markov chain processes and that measurement and background noise obtained using
the giga-seal patch-clamp technique is essentially white, despite the vagaries due to
laboratory experimentation. This suggests that the method of identifying the state
dimension of a hidden Markov chain process that we are advocating could work well
in the context of modelling ion currents.
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