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ABSTRACT Analytical solutions of Poisson’s equations satisfying the Dirichlet boundary conditions for a toroidal dielectric
boundary are presented. The electric potential computed anywhere in the toroidal conduit by the analytical method agrees
with the value derived from an iterative numerical method. We show that three different channel geometries, namely, bicone,
catenary, and toroid, give similar potential profiles as an ion traverses along their central axis. We then examine the effects
of dipoles in the toroidal channel wall on the potential profile of ions passing through the channel. The presence of dipoles
eliminates the barrier for one polarity of ion, while raising the barrier for ions of the opposite polarity. We also examine how
a uniform electric field from an external source is affected by the protein boundary and a mobile charge. The channel distorts
the field, reducing it in the vestibules, and enhancing it in the constricted segment. The presence of an ion in one vestibule
effectively excludes ions of the same polarity from that vestibule, but has little effect in the other vestibule. Finally, we discuss
how the solutions we provide here may be utilized to simulate a system containing a channel and many interacting ions.

INTRODUCTION

The study of the transport process in membrane ion chan-
nels is complicated by the presence of the protein walls,
whose interaction with ions and water molecules is not well
understood. Ions in solution execute a random Brownian
motion and, when an electric field is applied, they acquire a
drift velocity. Thus it is this interaction between ions and the
electric field (or electric potential profile) in the channel that
determines many of the salient properties of ion channels.
Finding the electric potential profile everywhere in the
channel tends to be difficult. This is because such a profile
results from the superposition of electric fields arising from
several different sources, and these fields become distorted
in a complicated fashion by the low dielectric wall repre-
sented by the protein-water interface. Among the sources
that contribute to the electric field in the channel are 1) the
membrane potential, 2) charge residues on the protein wall,
3) ions inside or in the vicinity of the channel, and 4)
charges induced on the protein wall by those ions. The last
two sources interact dynamically: as an ion moves from one
position to another, the pattern of induced charges changes,
and the induced surface charges together impede the motion
of the ion as it moves toward the narrow neck region of the
channel.

In the past, studies of energy barriers and electric field
profiles in the transmembrane ionic conduit have been car-
ried out almost exclusively in cylindrical geometry (Jordan,
1981, 1982, 1983; Levitt, 1978a,b). One of the advantages
of the cylindrical geometry is the availability of simple

analytical solutions to Poisson’s equation. In a cylindrical
geometry, however, the transport problem is reduced to one
dimension, and its application as a realistic model of chan-
nels beyond the gramicidin channel remains doubtful. A
recent numerical study of the ion-channel potential for
different channel geometries has demonstrated that vesti-
bules, in the form of a biconical or catenary shape, have
dramatically different potential profiles compared to cylin-
drical pores (Hoyles et al., 1996). Thus it appears that for
realistic studies of ion transport in biological channels, one
must employ geometries that more accurately describe the
channel.

Electric potential profiles in ion channels of any arbitrary
geometry can be generated numerically by solving Pois-
son’s equation iteratively. In such a numerical method (e.g.,
Hoyles et al., 1996), the boundary is divided into a large
number of small sectors, and the charge density appearing
on each sector due to the electric field from an ion in the
electrolyte solution as well as that emanating from all other
boundary sectors is calculated. The computational effort
required is modest for constructing the profile of the energy
barrier as a single ion moves toward the narrow neck region
from the mouth of the vestibule. However, it becomes
impractical to attempt to simulate, using such a numerical
method, the motion of many ions in the vicinity of the
channel. To study the dynamics of ions in a channel, one
needs to compute the forces acting on each of the ions due
to various sources, including induced and fixed charges on
the wall and the applied electrical field, and couple these
results with Brownian dynamics simulations. Because this
computation has to be repeated at every step, the existence
of analytical solutions in a relevant geometry is imperative
for simulations at realistic time scales. Analytical solutions
of Poisson’s equation would also be helpful in other meth-
ods utilizing the Nernst-Planck or Boltzmann equations.
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We present here solutions of Poisson’s equation for a
toroidal channel. Of all of the coordinate systems in which
Poisson’s equation separates, the toroidal coordinates come
closest to forming a realistic channel boundary. First we
show that the analytical solutions for the electric potential
are in good agreement with those obtained from the numer-
ical method. Next we study the sensitivity of the potential
profile to the channel shape by comparing the energy bar-
riers presented to an ion traversing the central axis of
biconical, catenary, and toroidal channels. These results
confirm that the toroidal channel, for which analytical so-
lution of Poisson’s equation exists, is a good approximation
of biological ion channels. Using the analytical solutions,
we demonstrate that the orientation of dipoles near the
constricted region of the channel renders it permeable to
cations, while making it virtually impermeable to anions.
We also show that the electric field in the channel, far from
being constant, is enormously enhanced in the transmem-
brane segment by the dielectric boundary. We reveal how
the pattern of the electric potential profile seen by other ions
changes dynamically as a cation moves from one side of the
channel to the other. Finally, we discuss how the solutions
we provide here may be extended to cope with transport
processes occurring in dynamical situations and suggest
further studies that our results now make possible.

IDEALIZED MODEL CHANNEL

We wish to obtain analytical solutions of Poisson’s equation
for a realistic channel geometry and then study the behavior
of charged particles in or in the vicinity of this idealized ion
channel. In this and the companion paper (Li et al., 1997),
we compute the force experienced by an ion as it traverses
the toroidal channel under various conditions and deduce its
molecular trajectories by using stochastic dynamics simu-
lations. The ultimate objective of theoretical studies such as
ours is to relate the macroscopically observable properties
of ion channels, such as conductance, current-voltage rela-
tionships, conductance-concentration curves, and gating be-
havior, to the details of the intermolecular potential operat-
ing between water molecules, ions, and protein wall
containing dipoles and charge residues.

To gain insight into the permeation of ions across the
channel, it is desirable to simulate the motion of all water
molecules and ions in a channel and surroundings (;10,000
molecules) for a period long enough to measure conduc-
tance. This is not technically feasible at present. We there-
fore make the following simplifications and idealizations
about our model channel to make computations tractable.

Shape of the channel

We form the channel surface by rotating by 360° along the
z axis a closed circle, the radius of which is 40 Å and the
center of which is located atx 5 44 Å. The narrowest
segment of the toroidal channel has a radius of 4 Å, and two

vestibules extend to 40 Å from the midline. The radius we
selected for the constricted segment corresponds that of the
potassium ion with its first hydration shell. The shape of the
ACh channel determined by Toyoshima and Unwin (1988)
is better approximated by an hourglass than a toroid, but the
analytical solutions for Poisson’s equation for such a dielec-
tric boundary cannot be derived. It will be shown later that
three different shapes of the vestibule (bicone, catenary, and
toroid) give broadly similar potential profiles (see Fig. 3).

Our model is only of the channel, and does not explicitly
include the surrounding lipid membrane. The analytical
solution is strictly for a toroidal dielectric boundary, and
cannot be extended to include an infinite slab as well, as
would be needed to represent the membrane. The model
does have, however, a large outside radius (44 Å) compared
to that of the ACh channel (;25 Å), and the exterior surface
of the channel could be considered to include part of the
surrounding membrane. We have ascertained that the omis-
sion of the membrane makes virtually no difference to the
potential in the pore. It is the inside boundary of the chan-
nel, between the water in the pore and the protein wall, that
contributes the majority of the potential. To demonstrate the
limited effect of the outside boundary, we reduced the
outside radius of a catenary channel (similar to the one in
Fig. 3 A) from 43 Å to 28 Å, while keeping all other
dimensions constant. The potential barrier height was re-
duced by only 2%. Similarly, when we increased the cat-
enary channel’s outside radius from 43 Å to 73 Å, the
barrier height increased by less than 1%.

Water as a continuum

We treat the water as a continuum and the ions as individual
entities. Individual ions are assumed to move under the
influence of electrostatic forces emanating from other ions,
fixed charges, the applied electric field, and the dielectric
boundary. In the following paper (Li et al., 1997), where
Brownian dynamics simulations are carried out, the effects
of solvation and the structure of water are taken into account
by frictional and random forces. In applying the theory of
macroscopic electrostatics to describe long-range interac-
tions between particles, we use the dielectric constant from
bulk. Confined in each channel vestibule are;500 water
molecules. The effective dielectric constant of such “vici-
nal” water (Drost-Hansen and Singleton, 1992) is not
known; this question deserves further theoretical and exper-
imental attention. Almost certainly the effective dielectric
constant will be lower than that in bulk water. We investi-
gate how the estimated potential barrier will be affected
when the effective dielectric constant in the vestibule is
assumed to be 20 and 40, instead of being 80 (see Fig. 8).
Conclusions drawn and inferences made from electrostatics
are not valid, however, in regions that are small compared to
the diameter of water and ion molecules. In the constricted
region of the channel, where the radius is less than 4–5 Å,
water molecules are ordered and are not free to align with
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the external field. The representation of the dielectric as a
continuous medium in such a region is a very poor approx-
imation. To elucidate the permeation process inside this
region, molecular dynamics calculations such as those re-
ported for the gramicidin channel (e.g., Roux and Karplus,
1991) will be needed.

Smooth water-protein interface

We model the water-protein interface as a single, sharp and
rigid boundary between dielectrics. In reality, however, the
channel wall is not made of a structureless dielectric mate-
rial. Instead, its surface is likely to be lined with hydrophilic
and polar side chains, although their type, orientation, and
density remain to be determined. Owing to the presence of
these polar groups on the protein wall, there will be a
gradual change in the orientation of the water molecules;
those water molecules located nearer to the water-protein
interface tend to be more ordered than those further away
from it. The polar groups and the ordered water near the
interface are not explicitly included in our model, being
represented by the dielectric boundary. It is possible to treat
the interface more accurately by assuming that there is a
thin boundary layer with a dielectric constant intermediate
between those of protein and water. We have shown else-
where that the magnitude of error introduced by ignoring
the intermediate dielectric layer is negligible (Hoyles et al.,
1996). Moreover, we show in the following paper (Li et al.,
1997) that ions in the vestibules tend to be near the central
axis, away from the channel wall.

Dipole rings at the transmembrane segment

We investigate how the permeation of ions across the chan-
nel is influenced by the presence and absence of dipoles on
the protein wall. The number, magnitude, and location of
dipoles or charge moieties on the protein wall of biological
ion channels are unknown. For simplicity, we assume that
these charge moieties are located near the constricted region
of the channel, as suggested by structural studies (e.g.,
Unwin, 1989), and represent them as a ring of four dipoles
at each side of the membrane segment, oriented perpendic-
ular to the central channel axis. These fixed charges repre-
sent the charged side chains thought to form a ring around
the entrance of the constricted region, and their nearby
countercharges. For convenience we adjust the amount of
charge rather than the number or positions of the charges,
but in reality the side chains would have one electron charge
each. Polar groups located in the constricted segment of the
channel that may rotate in and out to form temporary
hydrogen bonds with an ion navigating across it, as found in
gramicidin A pores, are not explicitly modeled in this study.
This will be the subject of a future investigation using
molecular dynamics calculations.

The applied electric field

There are two ways of providing the driving force that can
move the ion across the channel: a potential difference or a
concentration gradient between the two faces of the channel.
On a macroscopic level these two are equivalent, being
coupled by the Nernst-Planck equation, and concentration
differences are often expressed as an equivalent potential.
On a microscopic level, however, the physical processes are
very different. An electric potential gradient applies a force
to every ion, causing it to acquire an average drift velocity.
A concentration gradient causes no forces on the ions and
no average drift velocity, but their random Brownian mo-
tion carries the ions down the concentration gradient. To
mimic the real situation, the potential gradient should be
generated by a diffuse cloud of unpaired positive ions,
representing a surface charge density, in one reservoir and a
cloud of unpaired negative ions in the other. The number of
unpaired ions must be, to be consistent with the situation in
real biological membranes, a small fraction of the total
number of the ionic species present. Thus the clouds of
surface charges cannot be represented explicitly within the
simulation unless the size of the simulation is expanded by
a factor of 100. It is impractical to generate a potential
difference with clouds of the ionic atmosphere, although
this method is self-consistent and theoretically correct.

We therefore provide the driving force by applying an
external electric field, which represents the average effect of
the ionic clouds. From a number of current-voltage relation-
ships obtained with a different number of ions in two
reservoirs, we have ascertained that the reversal potential
occurs at a potential close to that predicted by the Nernst
equation. In our simulation system, as in a macroscopic
system composed of an ensemble of real biological chan-
nels, the force driving ions across the membrane can be
provided either by an externally applied electric field or by
a concentration gradient.

SOLUTIONS OF BOUNDARY-VALUE PROBLEMS

Toroidal coordinates

The system of toroidal coordinates (m,h,f) is illustrated in
Fig. 1. The coordinatem is defined as log(PL9/PL), whereL
andL9 are the limiting points of a set of coaxial circles. The
constantm 5 m1 defines the surface of a torus. When circles
of progressively increasing radii are drawn (dotted linesin
Fig. 1), their centers move out on thex axis toward infinity.
Thus, asm decreases progressively from̀to 0, the circles
grow from the point atL (zero radius) to thez axis (infinite
radius with center at infinity). The coordinateh is defined
by the angleLPL9 and has the range [0, 2p]. For a givenm,
h traces a circle of a fixed radius as it changes from 0 to 2p,
as indicated in Fig. 1. Finally,f is the usual azimuthal angle
about the symmetry axiszwith the range [0, 2p]. As a circle
is revolved around thez axis by 360° counterclockwise, a
toroidal shape is generated. A point anywhere inside and
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outside of the torus, as well as on its surface, can be
represented bym, h, andf.

The toroidal coordinates are related to the Cartesian ones
through the following set of equations (Morse and Fesh-
bach, 1953):

x 5
a sinhm cosf

coshm 2 cosh
, y 5

a sinhm sin f

coshm 2 cosh
,

(1)
z5

a sin h

coshm 2 cosh

In the x-z plane, the circle describing the toroidal surface
will intersect the positivex axis twice,x1 at h 5 0 andx2 at
h 5 p. Thus the radiusr of the torus is related to the
toroidal coordinates by the expression

x1 2 x2 5
a sinhm1

coshm1 2 1
2

a sinhm1

coshm1 1 1
(2)

5
2a sinhm1

cosh2 m1 2 1
5

2a

sinhm1
5 2r

Similarly, the distance from the origin to the center of the
torusRcan be expressed in terms of the toroidal coordinates
as

R5 x2 1
x1 2 x2

2
5 aS sinhm1

coshm1 1 1
1

1

sinhm1
D

(3)

5 a
coshm1

sinhm1
5 a cothm1

Thus, ash changes from 0 to 2p, constantm1 follows a
circle of the minor radius,r 5 a/sinh m1, centered at the
major radiusR 5 a coth m1. By rotating the two circles
around the perpendicularzaxis, the full toroidal boundary is
generated.

We note that the ratio between the minor and major radii,
r/R 5 1/coshm1, is independent ofa and determines the
diameter of the constricted region of the model channel. For
m 5 0, bothr andR are infinite, and the circle becomes the
z axis. In the opposite limit,m 5 `, the major and minor
radii coincide, i.e.,R5 a andr 5 0, and the toroid becomes
a ring of radiusa around thez axis.

Solutions of Laplace’s and Poisson’s equations

Solution of Laplace’s equation in toroidal coordinates is
given in terms of the trigonometric functions forh andf,
and the toroidal harmonics (Legendre functions of half-
order) Pn21/2

m (cosh m), Qn21/2
m (cosh m). The most general

solution can be written as

w 5 f ~m, h! O
n50

` O
m50

`

@AnmQn21/2
m ~coshm!

1 BnmPn21/2
m ~coshm!] (4)

3 cosn~h 2 hnm!cosm~f 2 fnm!

where

f ~m, h! 5 Îcoshm2cosh (5)

and the coefficientsAnm, Bnm, hnm, fnm are to be deter-
mined from boundary conditions.

The potential due to a point chargeq at r0 5 (m0, h0, f0)
is given by (Morse and Feshbach, 1953)

q

ur 2 r 0u
5

q

pa
f ~m, h!f ~m0, h0!O

n50

` O
m50

`

~2 2 dn0!~2 2 dm0!

G~n 2 m1 1/2!

G~n 1 m1 1/2!
3 cosn~h 2 h0!cosm~f 2 f0!

z HPn21/2
m ~coshm!Qn21/2

m ~coshm0!
Qn21/2

m ~coshm!Pn21/2
m ~coshm0!

m , m0

m . m0
J (6)

The change in them solutions reflects the fact thatPn21/2
m

diverges asm3 ` andQn21/2
m diverges asm3 0. Solution

FIGURE 1 Toroidal coordinate system. A torus is generated by rotating
the two circles shown in the upper panel by 180° along thez axis. A point
P anywhere in space can be defined by (m, h, f). The coordinatem
describes a ring of circles. The radius of the circle decreases progressively,
and its center moves in from̀ to pointL on thex axis asm increases from
0 to `. For a givenm, h traces a circle of fixed radius as it goes from 0 to
2p, with h 5 0 furthest from thezaxis, andh 5 p nearest. The coordinate
f is the azimuthal angle about thez axis.
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of Poisson’s equation for the system of a point charge
outside the toroidal boundarym 5 m1 . m0, with dielectric
constantseOne outside andeTwo inside the torus, can be
found by superposing the potentials in Eqs. 4 and 6. As
usual in such boundary value problems, thef solutions are
decoupled, and the phasesfnm in Eq. 4 must be coherent
with f0, so thatfnm 5 f0 for all n, m. The same argument,
however, does not hold for theh solutions. Because of the
square root factorsf (Eq. 5), there is coupling between
different coefficients, and the phase factorshnm are not
necessarily coherent withh0. This is a distinctive feature of
the toroidal coordinates, and complicates solutions of elec-
trostatic problems in comparison with other coordinate sys-
tems. With these caveats, the superposed potential can be
written as

win 5 f ~m, h! O
n52`

` O
m50

`

AnmQn21/2
m ~coshm!

z exp@in~h 2 h9nm!#cosm~f 2 f0!

wout 5 f ~m, h! O
n52`

` O
m50

`

@BnmPn21/2
m ~coshm!exp@in~h 2 h0nm!#

1 CnmQn21/2
m ~coshm!exp@in~h 2 h0!## (7)

z cosm~f 2 f0!

where

Cnm 5
1

4pe0e1

q

pa
f ~m0, h0!~2 2 dm0!

G~n 2 m1 1/2!

G~n 1 m1 1/2!

z Pn21/2
m ~coshm0!

(8)

are constant coefficients. In Eq. 7, we used them . m0

solution for the point charge (Eq. 6), as it is the appropriate
one for the boundary atm 5 m1. Also, we replaced the
cosines with exponentials for theh solutions, because it
simplifies the boundary matching.

Applying the usual boundary conditions atm 5 m1,

win 5 wout, e2

­win

­~coshm!
5 e1

­wout

­~coshm!
(9)

we obtain the following equations for everym:

O
n52`

`

AnmQ exp@in~h 2 h9nm!#

5 O
n52`

`

@BnmP exp@in~h 2 h0nm!# 1 CnmQ exp@in~h 2 h0!##

(10)

e2 O
n52`

`

Anm~ fQ9 1 f9Q!exp@in~h 2 h9nm!#

5 e1 O
n52`

`

@Bnm~ fP9 1 f9P!exp@in~h 2 h0nm!#

1 Cnm~ fQ9 1 f9Q!exp@in~h 2 h0!## (11)

Here we have introduced the compact notation for the
constants,P 5 Pn21/2

m (coshm1), Q 5 Qn21/2
m (coshm1) and

f 5 f (m1, h). Similarly, the primes overP, Q, andf denote
derivatives with respect to coshm evaluated atm 5 m1.
These equations can be further simplified by introducing the
complex coefficients

A9nm 5 Anm exp@2inh9nm#, B9nm 5 Bnm exp@2inh0nm#,

C9nm 5 Cnm exp@2inh0#
(12)

Substituting the above coefficients in Eqs. 10 and 11, we
obtain

O
n52`

`

A9nm Q exp@inh# 5 O
n52`

`

@B9nm P 1 C9nm Q#exp@inh#

(13)

e2 O
n52`

`

A9nm~ fQ9 1 f9Q!exp@inh#

5 e1 O
n52`

`

@B9nm~ fP9 1 f9P!exp@inh#

1 C9nm~ fQ9 1 f9Q!exp@inh##

(14)

Equation 13 now holds for eachn, and hence we can solve
for B9nm in terms ofA9nm:

B9nm 5 ~A9nm 2 C9nm!Q/P (15)

SubstitutingB9nm in Eq. 14 and collecting similar terms
gives

O
n52`

`

A9nm@e2~ fQ9 1 f9Q! 2 e1~ fP9 1 f9P!Q/P#exp@inh#

5 e1 O
n52`

`

C9nm f ~Q9 2 P9Q/P!exp@inh# (16)
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Using f 9 5 1/2f and substituting backf2 5 coshm1 2 cos
h, Eq. 16 can be put in the form

2~coshm1 2 cosh! O
n52`

`

A9nm~e2Q9 2 e1P9Q/P!exp@inh#

1 ~e2 2 e1! O
n52`

`

A9nm Q exp@inh# (17)

5 2e1~coshm1 2 cosh! O
n52`

`

C9nm~Q9 2 P9Q/P!exp@inh#

Notice that the cosh factors in the front leads to coupling of
neighboring coefficients, so that Eq. 17 cannot be solved
trivially, as typically encountered in boundary value prob-
lems involving spherical or cylindrical coordinate systems.
Fourier analysis of the series in Eq. 17 inh (i.e., multiplying
by either sinn9h or cosn9h and integrating from 02 2p)
gives

O
n52`

`

@~2 coshm1~e2Q9 2 e1P9Q/P! 1 ~e2 2 e1!Q!dn9,n

2 ~e2Q9 2 e1P9Q/P!~dn9,n11 1 dn9,n21!#A9nm

5 e1 O
n52`

`

C9nm~Q9 2 P9Q/P!@2 coshm1dn9,n

2 ~dn9,n11 1 dn9,n21)] (18)

Introducing further,

En
m 5 ~e2Q9 2 e1P9Q/P!A9nm

qn
m 5 2 coshm1 1

~e2 2 e1!Q

e2Q9 2 e1P9Q/P

ln
m 5 e1~Q9 2 P9Q/P!C9nm (19)

we obtain the following second-order difference equation
for the coefficientsEn

m:

En11
m 2 qn

m En
m 1 En21

m 5 ln11
m 2 2 coshm1ln

m 1 ln21
m

(20)

The real and imaginary parts of this equation must be
satisfied separately, leading to two difference equations
which, through Eqs. 12 and 19, determine both the ampli-
tudeAnm and the phaseh9nm. Equation 20 also arises in the
problem of a dielectric torus in a uniform electric field
(Love, 1972), and can be solved using techniques of the
Green function. Because it is rather technical, a sketch of
the solution is given in the Appendix. As seen from Eq. 31,
the solution involves an infinite sum of series of products.
Therefore, for a fast, yet accurate computation of the po-
tential, an efficient evaluation of the coefficientsEn is
necessary. A properly optimized computer code has been

written for this purpose, which computes the electric poten-
tial for an arbitrary number of ions under an applied electric
field.

Application of external electric field

The solution for a uniform electric field«0, applied along
the symmetry axis of the torus, follows the same lines as
above, but is much simpler (Love, 1972). Because of the
axial symmetry, the potential is independent of the coordi-
natef. Hence them-sums in Eq. 7 are suppressed. Further-
more, there are no phase differences in theh solutions, i.e.,
they are given by exp[inh] everywhere. The potential for a
uniform field in toroidal coordinates is given by

wap 5 «0z

5 «0

Î8a

ip
f ~m, h! O

n52`

`

nQn21/2~coshm!exp@inh#

(21)

Superposingwap with the free fields in Eq. 4, and applying
the boundary conditions, one obtains again a second-order
difference equation as in Eq. 20, but without them indices.
The coefficientsEn andqn are the same as in Eq. 19, andln

is modified to

ln 5 «1~Q9 2 P9Q/P!«0

Î8a

p
n (22)

The solution of this difference equation is described in the
Appendix.

Calculation of force and potential energy

The electric potential and field from multiple ions and an
applied electric field are built up by using the principle of
superposition. Because we assume that the dielectrics are
linear, any number of permanent charges, as well as the
applied field, can be included simply by adding together
their solutions for the same dielectric boundary. The electric
field and potential at the position of an ion are therefore the
sum of that due to the other ions, the applied field, the
surface charges induced by these, and the surface charges
induced by that particular ion.

The force on the ion is simply the total field multiplied by
the charge on the ion, but there is a subtlety in the calcula-
tion of the ion’s potential energy. The potential energy due
to the other ions, the applied field, and the charges they
induce is the electric potential times the ion’s charge. How-
ever, the potential energy due to the surface charges induced
by the ion itself is only half the electric potential times the
charge. This can be seen by imagining the chargeQ on the
ion being built up as infinitesimal charges dq being brought
in from infinity. Whereas the electric potential due to the
other ions remain the same throughout, that induced by the
ion increases from zero to its full valueQ as the charge is
built up. This involves integratingq dq from 0 toQ—hence

Kuyucak et al. Solutions of Poisson’s Equation for a Toroidal Channel 27



the factor of one-half. Our program takes account of this by
calculating the total field and potential at the postion of an
ion, as well as the potential due only to the ion’s interaction
with the boundary. It then substracts half of this self-
potential from the total for the purpose of calculating the
potential energy.

Fixed charges in the protein wall are included in the same
way as ions. The only change is that they require a slightly
different analytical solution, because they are inside the
toroidal boundary, not outside. The form of Equation 6 with
m 5 m1 , m0 needs to be used, and corresponding changes
need to be made for the rest of the solution.

RESULTS

Validation of analytical solutions

To ensure that the analytical solutions of Poisson’s equation
give the correct value of the electric potential anywhere in
space, we need to compare the analytical results with those
obtained from an iterative numerical method. For this pur-
pose, we examine the potential barrier presented to a cation
and the magnitude of a repulsive force the ion experiences
as it moves along the central axis of the channel. The minor
radiusr and the major radiusR in this and all subsequent
simulations are fixed at 40 Å and 44 Å, respectively. Thus
the narrowest segment of the channel has the radius of 4 Å,
approximately equal to that of a sodium ion with its primary
hydration shell. It is assumed that there are no charge
residues on the protein wall, and there is no external elec-
trical field across the channel.

In Fig. 2 the values calculated from the analytical solution
(solid lines) are superimposed on those calculated by using
the iterative numerical methods (filled and open circles).
For the numerical calculations, the toroidal surface is di-
vided into 1600 sectors, the size of the sectors being small-
est at the narrow channel region and becoming progres-
sively larger at the wider region of the vestibules. As the ion
moves from the mouth of the toroidal channel to its nar-
rowest segment, the height of the energy barrier increases,
first slowly and then steeply, to;15 3 10221 J or 3.7kTr,
wherek is the Boltzmann constant andTr 5 298 K (Fig. 2
A). Throughout we will refer to the energy in room temper-
ature units; 1kTr 5 4.114 3 10221 J 5 2.478 kJ/mol.
Similarly, the repulsive force presented to the ion resulting
from the induced charges on the dielectric boundary in-
creases to;8 pN at the narrow segment of the channel (Fig.
2 B). The values derived from the iterative method differ at
most by 1.5% from those obtained from the analytical
solution. These small discrepancies stem from the finite
sizes of sectors used in the numerical method, and can be
reduced by choosing smaller sector areas. We thus conclude
that our analytical solutions give the correct values of elec-
tric potentials and forces acting on charged particles at all
points in space.

Insensitivity to the vestibular shape

The profile of the energy barrier an ion needs to surmount
is not critically dependent on the shape of the channel
vestibule. Fig. 3A shows cross-sectional outlines of biconi-
cal, catenary, and toroidal channels. For each of the three
shapes of the channels examined, the radius of the narrowest
segment is kept constant at 4 Å, and the vestibule is ex-

FIGURE 2 Validation of analytical solutions. An ion is moved from the
wide end of the vestibule (z 5 240 Å) to the narrowest segment of the
channel (z 5 0), in steps of 1 Å, and the potential barrier and the force
impinging on it at each position are computed both analytically and
numerically. The dielectric constants of water and of the channel wall are
assumed to be 80 and 2, respectively. (A) The potential profile computed
numerically (F) is compared with that computed analytically (——). In
this and subsequent figures, the height of the potential barrier is also shown
in room temperature units,kTr, whereTr 5 298 °K andk is the Boltzmann
constant (1.383 10223 JK21). (B) Thezcomponent of the force impinging
on the ion at each position as it moves along the central axis of the pore is
computed numerically (E) and plotted against the axial distance. The
values derived from the analytical solutions (——) are superimposed on
the numerical data.
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tended to 40 Å from it. The biconical channel has a cylin-
drical neck region of length 10 Å, and conical vestibules
with a side length of 36 Å and an angle of 18°. The vestibule
of the catenary channel, which closely matches the shape of
the ACh channel deduced by electron microscope image
reconstruction and crystallographic methods (Toyoshima
and Unwin, 1988), is generated by a hyperbolic cosine
function,y 5 a cosh(x/a), wherea 5 4.75 Å. The radius of
the entrance of the vestibule is fixed at 15 Å. An ion is
placed on the central axes of these model channels, and then
the potential energies, as it moves along the central trajec-
tories in 1-Å steps, are tabulated. The potential energy
profiles obtained from three different shapes of the channels
are shown in Fig. 3B. The values for the biconical (filled
circles) and catenary channels (open circles) are calculated
numerically, whereas those for the toroidal channel (con-

tinuous line) are computed analytically. Except for the ini-
tial segment, the potential profiles of three different model
channels are broadly similar. The wide radius at the en-
trance of the vestibule of the toroidal channel, compared to
that of the catenary channel, is reflected in the low energy
barrier an ion encounters in the first 20 Å as it traverses the
channel.

Electric field in the channel

In the presence of the membrane potential, the electric field
in the pore, rather than being constant, becomes enhanced
by the dielectric boundary and distorted by fixed charges.
The presence of an ion further warps the field lines in the
channel, and the field becomes continually deformed as the
ion moves in. In the absence of any fixed charges on the
protein or any mobile charge in the channel, the strength of
the electric field across the channel induced by a membrane
potential of 100 mV resembles a Gaussian curve (Fig. 4A).
It increases sharply from 23 106 V/m at the mouth of the
channel to 323 106 V/m at the narrowest segment. To
obtain this potential drop, a uniform field of strength 63
106 V/m has to be applied along the symmetry axis of the
torus. Thus, compared to the applied field, the total electric
field is nearly canceled in the mouth region, but is enhanced
by more than fivefold near the neck region. This enhance-
ment can be intuitively understood from the geometry: the
field lines that represent the field strength are crowded into
a smaller and smaller area as one approaches the narrow
region of the channel. The potential change, in the absence
of fixed and mobile charges, occurs mainly in the central
15–20 Å (Fig. 4B).

The electric field and isopotential contours are further
distorted when an ion is placed in the vestibule and dipoles
are embedded in the protein. In Fig. 5, isopotential lines in
the channel in the presence of dipoles are plotted. Four
dipoles with a total moment of 1003 10230 Coulomb-
meter are placed 5 Å above the midline (0 Å), and another
four dipoles of the same strength are placed 5 Å below the
midline. (Hereafter, Coulomb-meter will be abbreviated as
Cm (1 Debye5 3.33 3 10230 Cm).) The dipoles are
located such that their negative charges are 2 Å inside the
water-protein boundary, and their positive counterparts are
5 Å further inside the channel protein.

Fig. 5 A shows the potential in the absence of ions in the
vestibule. The potential changes from 0 mV near the en-
trance of the vestibule to2180 mV at the midline, and then
increases to2100 mV at the opposite end of the channel
(Fig. 5A). There is a pronounced asymmetry in the potential
changes in the upper and lower halves of the channel. When
a cation is moved along the central axis through the channel,
the isopotential lines undergo profound changes. The
changing patterns of electric potential as a cation moves
from the upper vestibule to the midline and then to the lower
vestibule are shown in Fig. 5,B–D. The electric potential in
the entire upper vestibule becomes positive when a cation is

FIGURE 3 Three model channels. (A) Three closed curves outlined by
solid lines, filled circles, and open circles are rotated along the (horizontal)
symmetry axis to generate the surfaces of the toroidal, biconical, and
catenary channels, respectively. The radii of the narrowest segments of all
three channels are 4 Å. The ion moves along thez axis, as indicated by the
arrow. (B) The potential barriers at each location along the ion’s trajectory
for the toroidal (——), biconical (F), and catenary (E) channels are shown.
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placed in the upper vestibule, at the central axis, 20 Å from
the midline (Fig. 5B). The potential rises from 0 mV
outside the channel to1100 mV in the vicinity of the ion,
falling to 2160 mV near the upper ring of the dipoles, and
then rising again to2100 mV at the other end of the
channel. It is clear from this profile that a second cation in
the vicinity of the vestibule already occupied by an ion will
experience a repulsive potential, the magnitude of which
will be further increased as its induced surface charges
enhance this potential. Fig. 5C shows the potential profile
of the channel when a cation is moved to the midline
(labeled 0 Å). The potential in the entire upper vestibule is
slightly positive, slowly changing from 0 mV at its mouth to
120 mV near the constricted segment. In the narrow trans-
membrane region, the negative poles of the fixed charges on
the protein wall interact with a positive charge in the center,
which in turn induces surface negative charges. The poten-
tial in this region changes rapidly, rising steeply from120
mV to 1100 mV. The potential then declines from 0 mV to
2100 mV in the lower vestibule. Finally, when a cation is

moved into the lower vestibule, 20 Å below the midline, its
influence on the potential profile in the upper reservoir
becomes negligible (cf. Fig. 5,A and D). There is a local
distortion of the potential lines in the vicinity of the ion.

These calculations clearly indicate that the potential pro-
file and electric field in the channel depend in a sensitive
way on the shape of the dielectric boundary and the location
of the fixed charges in the protein. The profiles fluctuate
dramatically with spatial variations of ions inside or in the
vicinity of the channel. The uniform field assumption (un-
der an applied field) is clearly not applicable to a vestibular
shape.

Potential profiles presented to anions
and cations

In Fig. 6 we show the potential energy barriers that ions
have to surmount under various conditions. The trajectories
of a cation moving from outside to inside (left to right) and
an anion moving from inside to outside (right to left) are
indicated as continuous and broken arrows, respectively, in
the inset of Fig. 6A. In the absence of any applied electrical
field or fixed charges, the energy barriers presented by the
image charges on the vestibular wall to a cation outside and
an anion inside of the cell are identical, as indicated by the
dotted line in Fig. 6A. When a potential difference of 60
mV is applied between the inside and outside of the channel,
driving the ions in the direction of the arrows, the heights of
the energy barriers appearing to both cation and anion are
lowered by;1 kTr. The barriers appearing to a cation and
anion are shown, respectively, as filled squares and open
circles in Fig. 6A. Thus in the presence of the membrane
potential of260 mV, a monovalent cation or anion whose
kinetic energy is greater than 2.6kTr will be able to move
across the channel.

The channel becomes exclusively permeable to cations
once charge residues are placed on the protein wall. The
effects of dipoles placed on the protein wall of the con-
stricted region are shown in Fig. 6B. Four dipoles, posi-
tioned 90° apart and perpendicular to thez axis (or the long
axis of the pore), are placed slightly to the left of the center,
and an identical set of four dipoles is placed to the right (see
the insetof Fig. 6 B). The total moment of four dipoles for
the simulations shown in Fig. 6B is 1003 10230 Cm or 30
Debyes. Viewed from a cation navigating from outside of
the channel to inside (left to right in Fig. 6), the combined
potential profile presented by the induced surface charges,
the applied electrical field, and the dipoles on the channel
wall is that of a well, and the net force exerted on it is an
attractive force (filled squaresin Fig. 6 B). In contrast, for
an anion attempting to move in the opposite direction, there
is an insurmountable energy barrier, the height of which is
33 3 10221 J or 8.3kTr. The probability of an ion having a
kinetic energy large enough to surmount such a barrier,
given by the Boltzmann factor, is;1024. From these sim-
ulations, we conclude that the cation-anion selectivity of a

FIGURE 4 Electric field across the channel and isopotential profile. (A)
The z component of the electric field resulting from an applied potential
difference of 100 mV across the channel is plotted against the axial
distance. (B) A potential difference of 100 mV maintained across the
channel changes nonuniformly along the pore. The isopotential lines at the
extreme left and right represent 0 and2100 mV, respectively. A potential
drop of 4.5 mV is indicated by successive isopotential lines.

30 Biophysical Journal Volume 74 January 1998



FIGURE 5 Isopotential contours in the presence of dipoles and a cation in the channel. Four dipoles with total moments of 1003 10230 Cm are placed
on each side of the midline (atz 5 65 Å), and a transmembrane potential of 100 mV is applied across the channel. The resulting isopotential contour is
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channel can, in theory, be achieved by the presence of a few
charge residues near the constricted segment of the channel
wall.

It is of interest to investigate how many charge residues
near the constricted channel segment are needed to ensure
that the channel would be impermeable to anions. Fig. 7
illustrates the systematic changes in the potential profile
presented to an anion and a cation with the strength of
dipole moments placed around the narrow channel segment.

FIGURE 6 Elimination and enhancement of energy barriers by dipoles.
In the absence of both dipoles and a potential difference, the barrier
presented to a cation traversing left to right is the same as that presented to
a cation traversing right to left, as indicated by dotted line inA. This line
is also reproduced inB for ease of comparison. (A) When a potential
difference of 60 mV is applied, the peak heights of barriers seen by a cation
(F) and by an anion (E) are lowered. The barriers experienced by the two
ionic species moving under the influence of the field are the same. (B) The
placement of dipoles of 1003 10230 Cm at each side of the midline alters
the shape of the barriers presented to a cation (F) and an anion (E). Dipoles
are oriented such that their negative poles face the channel lumen.

FIGURE 7 Changes in potential profiles with dipole strengths. A poten-
tial difference of 100 mV is applied across the channel, and then the
potential energy of an ion as it moves along the central axis fromz 5 240
Å to z 5 140 Å is determined. (A) The potential well seen by a cation
becomes progressively deeper as the strength of the dipoles is changed
from 50 to 3503 10230 Cm in steps of 503 10230 Cm. (B). The potential
barrier seen by an anion increases progressively as the strength of the
dipoles increases from 50 to 3503 10230 Cm.

shown inA, where the magnitude of the potential is represented by shades of blue. The potential across the channel changes from220 mV (pale blue) in
the upper vestibule to2180 mV (deep blue) near the constricted segment of the channel. It rises again to280 mV (light blue) in the lower vestibule. In
B, C, andD, a cation is placed on the central axis atz 5 220 Å, z 5 0 Å, andz 5 120 Å, respectively. InB, the potential in the upper vestibule in the
presence of a cation is predominantly positive, rising to120 mV (pale red) near its wide region to1100 mV (deep red) in the vicinity of the ion. InC,
with the ion on the midline, the potential in the upper vestibule in the main is positive, ranging from 0 mV near the entrance of the upper vestibule to120
mV near the narrow segment of the channel. The ion at this position has little effect on the potential in the lower vestibule (cf.A andC). In D, the potential
in the lower vestibule is slightly distorted by the presence of the ion. The potential countour in the upper reservoir is similar to that found in the absence
of any ion in the channel (cf.A andD).
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The applied potential difference across the channel is kept
constant at 100 mV. The total moments of dipoles used to
generate the curves shown in Fig. 7A are increased sys-
tematically from 50 to 3503 10230 Cm. The peak heights
of the potential barrier presented to an anion change from 16
to 903 10221 J. Because the negative poles of the dipoles
are pointing toward the channel lumen, a cation moving
through it encounters a potential well, the depth of which
increases with increasing dipole strengths (Fig. 7B). When
the dipoles, with a total strength of 3503 10230 Cm, are
placed on the channel wall, the depth of the potential well
created for a cation is277 3 10221 J.

Change of the dielectric constant in the vestibule

In calculating the height of barriers, we assumed the dielec-
tric constant of the vestibule to be 80, the same as that of
bulk water. In reality, it is possible that the true value may
turn out to be considerably lower than 80. If so, the mag-
nitude of a true potential barrier will be higher than the one
we provide here.

As an illustration, we compare in Fig. 8 the potential
profiles obtained using three different values of dielectric
constant. The applied electric potential is 100 mV, whereas
the strength of dipoles is 1003 10230 Cm. The potential
profiles seen by a cation moving from outside to inside (left
to right) are shown in Fig. 8A; the three curves are obtained
by using the values of the dielectric constant of 80, 40, and
20. The depth of potential well increases as the dielectric
constant decreases. Conversely, the height of potential bar-
riers seen by an anion moving from inside to outside (right
to left) increases as the dielectric constant decreases (Fig. 8B).

The profiles shown in Fig. 8 are obtained under the
assumption that the dielectric constant is reduced to 20 or 40
everywhere, including the reservoirs. If the dielectric con-
stant of the reservoir is kept at 80 and that of the vestibule
is reduced to a lower value, there will be an energy barrier
for an ion entering the vestibule from the reservoir, resulting
from the change in Born energy. The heights of the barriers
presented to an ion with an effective radius of 3 Å moving
from the reservoir to the vestibule with a dielectric constant
of 40 or 20 will be, respectively, 1.2kTr and 3.5kTr.

DISCUSSION

The solution of Poisson’s equation for a cylindrical geom-
etry has been applied in the past to determine the height of
the energy barrier and the transport mechanisms of ions
across the gramicidin pore, porin, and gap junctions (Chen
et al., 1997; Jordan, 1981; Levitt, 1978a,b). A representation
of an ion channel as a cylindrical hole, which may be
adequate for its short, constricted, transmembrane segment,
does not capture the prominent feature of the nicotinic ACh
receptor channel (Toyoshima and Unwin, 1988). The cross
section of this channel deduced from the electron micro-
scope picture shows a vestibule extending;60 Å from the
membrane into the extracellular space. Approximating the
shape of such a vestibule as a surface generated by rotating
a catenary around its symmetry axis, Hoyles et al. (1996)
devised an iterative, numerical method of calculating the
electric potential arising from a fixed charge near the di-
electric boundary. They showed that an ion permeating such
a model channel experiences a large repulsive force, owing
to induced charges on the vestibular wall, and that the height
of this energy barrier increases steeply as it moves toward
the narrow neck region. This repulsive force can be coun-
teracted by placing charge residues near the neck region of
the channel. Thus it is clear that, to understand many of the
salient properties of channels, a representation of a biolog-
ical channel in any physical calculation must include, in

FIGURE 8 Changes in potential profiles with different dielectric con-
stants. The potential profiles are calculated by using the same procedures
as in Fig. 7, with a fixed dipole strength of 1003 10230 Cm and an applied
potential difference of 100 mV. (A) The potential well seen by a cation
traversing the channel is computed under the assumption that the dielectric
constant of the fluid in the channel is first 80, then 40, and then 20. The
well deepens as the dielectric constant is decreased. (B) The potential
barrier seen by an anion increases progressively when the dielectric con-
stant in the channel is changed from 80 to 40 and then to 20.
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addition to the cylindrical transmembrane segment, the
large extracellular domains that extend up to 60 Å above
and below the membrane surface.

Obtaining numerical solutions of Poisson’s equation sat-
isfying the closed Dirichlet conditions for an arbitrary di-
electric boundary requires a fairly large computational ef-
fort. With an ion located at a fixed position, the number of
floating point operations required to calculate the magnitude
of electric force is;109. Nevertheless, the speed of modern
computers is such that the shape and magnitude of a poten-
tial barrier presented to one ion permeating the channel can
be readily determined by numerical methods. However,
such static calculations of barrier heights are not very in-
formative. Many interesting questions about channels, such
as the effect of residual charges on the ionic concentration
in vestibules, can only be answered unequivocally through
dynamical simulations. In a realistic simulation, one needs
two reservoirs of electrolyte solutions, one above and the
other below the channel, with;100 ions in each reservoir,
and then one must run the simulation for around a million
steps. Because ions execute a Brownian motion, rapidly
changing their positions, the numerical computation of the
field strengths has to be repeated at each step for every ion.
Such a simulation, requiring more than 1017 floating point
operations, is even beyond the powers of supercomputers.
Thus implementation of the numerical solution in a dynam-
ical simulation is not suitable for this task.

The analytical solution for Poisson’s equation for a real-
istic channel geometry we present here is a prerequisite for
dynamical studies of the ion transport problem. Although
the toroidal channel differs somewhat from the shape of the
acetylcholine channel deduced previously (Toyoshima and
Unwin, 1988), the salient electrostatic properties of the
biological channel are captured by this idealization. In this
context, we note that the potential profile obtained from a
toroidal channel does not differ appreciably from that ob-
tained from a biconical or catenary channel (see Fig. 3).
Thus the general conclusions derived by using the toroidal
channel may remain valid for a more realistic geometry,
such as catenary, although quantitative numerical estimates
may differ slightly.

One such conclusion is the drastic effect the channel
boundary has on an applied uniform electric field. The usual
assumption in treating channel problems, which simplifies
the solution enormously, is that the applied field remains
uniform in the channel environment. Although this may be
a reasonable approximation in some simple geometries such
as a cylindrical pore, it is definitely not valid in a vestibular
geometry where the total field exhibits a highly nonuniform
behavior, as depicted here (Fig. 4). Another argument often
made to justify the use of uniform electric field is that when
one averages over long times, fluctuations in the electric
field wash out, and one ends up with, more or less, a
uniform field. Obviously, the time scale in such an averag-
ing is very important, and its premises should be examined
by dynamic simulation methods. Our initial Brownian dy-
namics calculations indicate that nonuniform fields induced

by the boundary play a crucial role in determining ion
motion in the vestibule, which raises doubts about the
validity of time-average arguments (Li et al., 1997).

That charged amino acid residues play an important role
in the anion-cation selectivity has been alluded to by, among
others, Unwin (1989), who showed that a channel perme-
able to cations has more negatively charged amino residues
in its primary sequence and, conversely, a channel perme-
able to anions has more positively charged amino residues.
Our calculations show that a ring of negatively charged
residues near the channel neck counteracts the repulsive
dielectric force presented to a cation entering the vestibule,
while raising the potential barrier for anions (Fig. 7). The
height of the potential barrier for an anion increases steadily
with the magnitude of the surface charges. At the same time,
for a cation, the presence of excessive numbers of such
fixed charges turns the potential barrier into a potential well,
the depth of which increases with increasing magnitude of
negative charges on the protein wall. If the depth of such a
well is large, an ion moving into the vestibule may become
trapped in it, as the applied electric field cannot provide a
sufficiently large driving force to enable the ion to traverse
the channel. It is possible that, in real biological channels,
the number of charged amino acid residues on the con-
stricted pore segment is sufficiently large to cancel the
repulsive dielectric force, but not too large to detain an ion
by its attractive force. This also ensures that the channel is
virtually impermeable to counterions.

One of the uncertainties inherent in electrostatic calcula-
tions on model ion channels is the value of the dielectric
constant in the channel. Chen et al. (1997), for example,
used the customary value of 80 in modeling the synthetic
channel composed of a bundle of sixa-helices, which has a
pore diameter of 8 Å and a length of 30 Å. In contrast, Bek
and Jakobsson (1994) calculated the Coulomb repulsion
between ions in a cylindrical channel, using a dielectric
constant of 20. A biological vestibule contains;500 water
molecules, and when such a small number of molecules are
confined in a space, some of the macroscopic properties of
such “vicinal water” are known to differ appreciably from
those determined in bulk water (Schufle et al., 1976; Drost-
Hansen and Singleton, 1992). A small decrease in the di-
electric constant of a liquid leads to a similar increase in the
potential profile (see Fig. 8), but because the flux depends
exponentially on the potential barrier, even a small increase
could lead to a drastic reduction in the flux. Therefore, it is
highly desirable to determine, perhaps by using molecular
dynamics calculations, how the polarizability of water mol-
ecules changes as the volume containing them decreases.
Such information is not currently available.

It must be emphasized that the electrostatic equations we
use merely describe the phenomena at the macroscopic level
and fail to have meaning microscopically. Implicit in
Laplace’s and Poisson’s equations are the assumptions that
ions can be idealized as point charges and the dielectric can
be represented as a continuous medium. In a narrow cylin-
drical tube of;4 Å radius, where the continuum assump-
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tions are unlikely to be valid and an ion occupies an appre-
ciable space, potentials computed with the electrostatic
equations may prove to be poor approximations of the
physical reality. For this reason, our estimates of the poten-
tial barrier at the narrow neck region, stretching;10 Å at
the midline, need to be revised by molecular dynamics
simulations.

APPENDIX

Here we sketch the solution of the second-order difference equation (Eq.
20). For convenience, we will suppress the superscriptm, but the same
equation, with different coefficientsqn

m andln
m, has to be solved for each

value ofm. The Green function corresponding to Eq. 20 satisfies (see Love,
1972)

Gn11,N 2 qnGn,N 1 Gn21,N 5 dn,N11 2 2 coshm1dn,N 1 dn,N21

(23)

for each value ofN. Heredn,N denotes Kronecker delta. Solutions of Eq. 20
are then given by

En 5 O
N52`

`

Gn,NlN (24)

as can be verified by substituting Eq. 24 in Eq. 20 and using Eq. 23.
Construction of the Green function in Eq. 23 is conceptually similar to

the familiar cases in electrostatics. One first finds the solutions of the
homogeneous equation,

Gn11,N 2 qnGn,N 1 Gn21,N 5 0 (25)

and then implements the “boundary conditions” implied in Eq. 23. The two
independent solutions of Eq. 25 can be found from a study of its asymptotic
form asunu 3 `. In that limit, q3 2 coshm1, and the ratiosGn11,N/Gn,N

for the solutions tend to exp(6m1). The solutions of Eq. (25) with the
correct asymptotics are given in terms of the continued fractions as (see, for
details, Milne-Thompson, 1960)

Gn11,N

Gn,N
5

1

qn11 2
1

qn12 2
1

qn13 2 · · ·

; an11

Gn21,N

Gn,N
5

1

qn21 2
1

qn22 2
1

qn23 2 · · ·

; bn21

(26)

Equation 26 can be written as recursion relations amongan andbn:

an 5
1

qn 2 an11
, bn 5

1

qn 2 bn21
(27)

which provide a simple method for their calculation by iteration. From the
symmetry properties ofPn21/2

m , Qn21/2
m and their derivatives (they remain

invariant undern32n), it follows thatq2n 5 qn in Eq. 19. Using this fact
in Eq. 27, it is seen thatan 5 b2n, and therefore only one set of coefficients
needs to be calculated. Rewriting Eq. 26 as

Gn11,N 5 an11Gn,N, n $ N 1 1

Gn21,N 5 bn21Gn,N, n # N 2 1
(28)

Gn,N can be determined from Eq. 28 recursively, onceGN11,N andGN21,N

are specified. To calculate these two quantities, we use the “boundary
conditions” on Eq. 23 atn 5 N 2 1, N, N 1 1, which gives the following
equations:

~bN22 2 qN21!GN21,N 1 GN,N 5 1

GN21,N 2 qNGN,N 1 GN11,N 5 22 coshm1

GN,N 1 ~aN12 2 qN11!GN11,N 5 1 (29)

where we have substitutedGN22,N 5 bN22GN21,N and GN12,N 5
aN12GN11,N from Eq. 28. These equations can be further simplified by
using bN22 2 qN21 5 21/bN21 and aN12 2 qN11 5 21/aN11, which
follow from Eq. 27. Solution of the set of linear equations in Eq. 29 yields

GN21,N 5
~2 coshm1 2 qN!bN21

qN 2 aN11 2 bN21

GN,N 5
~2 coshm1 2 aN11 2 bN21!

qN 2 aN11 2 bN21
(30)

GN11,N 5
~2 coshm1 2 qN!aN11

qN 2 aN11 2 bN21

Substituting Eqs. 28 and 30 in Eq. 24, we finally obtain for the coefficients
En,

En 5 O
N52`

`
lN

~qN 2 aN11 2 bN21!

z H~2 coshm1 2 aN11 2 bN21!dn,N 1 ~2 coshm1 2 qN!

z Fu~n 2 N! P
k5N11

n

ak 1 u~N 2 n!P
k5n

N21

bkGJ (31)

whereu(x) is the step function, i.e.,u(x) 5 1 if x . 0, and 0 otherwise.
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