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ABSTRACT The physical mechanisms underlying the transport of ions across a model potassium channel are described.
The shape of the model channel corresponds closely to that deduced from crystallography. From electrostatic calculations,
we show that an ion permeating the channel, in the absence of any residual charges, encounters an insurmountable energy
barrier arising from induced surface charges. Carbonyl groups along the selectivity filter, helix dipoles near the oval chamber,
and mouth dipoles near the channel entrances together transform the energy barrier into a deep energy well. Two ions are
attracted to this well, and their presence in the channel permits ions to diffuse across it under the influence of an electric field.
Using Brownian dynamics simulations, we determine the magnitude of currents flowing across the channel under various
conditions. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase
in dipole strength causes a steady decrease in the channel conductance. The current also decreases systematically when the
effective dielectric constant of the channel is lowered. The conductance with the optimal choice of dipoles reproduces the
experimental value when the dielectric constant of the channel is assumed to be 60. The current-voltage relationship obtained
with symmetrical solutions is linear when the applied potential is less than ;100 mV but deviates from Ohm’s law at a higher
applied potential. The reversal potentials obtained with asymmetrical solutions are in agreement with those predicted by the
Nernst equation. The conductance exhibits the saturation property observed experimentally. We discuss the implications of
these findings for the transport of ions across the potassium channels and membrane channels in general.

INTRODUCTION

Theoretical studies of biological ion channels have been
hampered by a lack of detailed structural knowledge. Until
recently, the exact shape of any channel and the positions,
densities, and types of dipoles and charge moieties on the
protein wall remained unknown. These details are needed to
compute the intermolecular potential operating between wa-
ter molecules, ions, and the protein wall, which is the
essential ingredient for theoretical studies of channels using
molecular dynamics and, to a lesser extent, Brownian dy-
namics calculations. A recent report on the crystal structure
of the potassium channel (Doyle et al., 1998) has prompted
us to carry out electrostatic calculations and simulate the
behavior of ions and water molecules in and near the chan-
nel to gain an insight into the mechanisms underlying ion
permeation and to deduce some of its macroscopically ob-
servable properties. There is a need to develop models that
can relate the structural parameters of channels to experi-
mental data and thereby build a theoretical framework that
can explain different sets of observations. The theoretical
description of the potassium channel we give here is pro-
duced in the hope of furthering this aim.

The potassium channel is modeled here as a transmem-
brane lumen, the shape of which corresponds closely to that
reported by Doyle et al. (1998), with cylindrical reservoirs
containing potassium and chloride ions placed at each end
of the channel. Using this basic model, we have examined
several key issues from three different perspectives—mac-
roscopic, semimicroscopic, and microscopic. First, the elec-
trostatic forces experienced by potassium ions at fixed po-
sitions in the channel are calculated by using macroscopic
approximations. Here, the channel is viewed as a structure-
less wall made of low-dielectric-strength material, and the
water-protein interface is treated as a sharp boundary (Lev-
itt, 1978a, b; Jordan, 1981, 1982, 1983). Second, the trajec-
tories of ions in water interacting with a dielectric boundary
are traced using Brownian dynamics simulations. In these
simulations, water is treated as a continuum in which ions
move under the influence of electrostatic forces and random
collisions (Jakobsson and Chiu, 1987; Chiu and Jakobsson,
1989; Bek and Jakobsson, 1994; Li et al., 1998; Chung et
al., 1998). Finally, to understand what structural features of
the channel render it selectively permeable to potassium
ions and how the ion-water geometry undergoes a transfor-
mation as an ion moves across the narrow conduit, we have
carried out molecular dynamics simulations for all particles
in the selectivity filter, as in previous studies on various
model pores (see, for example, Roux and Karplus, 1991a;
Sansom et al., 1996; Singh et al., 1996; Sankararamakrish-
nan et al., 1996; Tieleman and Berendsen, 1998). The
results of these molecular dynamics calculations are re-
ported in the comparison paper (Allen et al., 1999a).
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METHODS

The channel model

The transverse section of a model channel, shown in Fig. 1A, is generated
by rotating the two curves (Fig. 1B) around the symmetry axis (z axis) by
180°. The channel extends fromz 5 225 Å to 25 Å, with a narrow
selectivity filter of radius 1.5 Å and length 12 Å and a wider segment of
length 23 Å. The selectivity filter extends toward the extracellular space,
whereas the wider pore, whose radius tapers off gradually, extends inward,
toward the intracellular space. The radius at the entrance of the channel
from the intracellular face is 3 Å. The total interior volume of the channel
is 1440 Å3. A cylindrical reservoir of 30 Å radius and variable length is
connected to each end of the channel.

To investigate how the permeation of ions across the channel is influ-
enced by the presence of fixed charges, we place sets of dipoles in the
protein wall with fourfold symmetry around thez axis. First, four rings of
four carbonyl groups are placed along the selectivity filter, located atz 5
10, 13.33, 16.67, and 20 Å. The negative pole of each carbonyl group
(filled circles in Fig. 1B) is placed 1 Å from the boundary and the positive
pole 1.2 Å away from the negative pole, with their orientations perpen-
dicular to thez axis. Second, four helix macrodipoles (open circles), with
their N-terminals pointing at the oval chamber near the middle of the
channel, are placed 90° apart. The positions of the N-terminals of the helix
dipoles arez 5 10.66 Å andr 5 5.66 Å, and those of the C-terminals are
z 5 22 Å andr 5 17 Å (the length of the dipole is 16 Å). Third, at each
entrance of the channel, four “mouth” dipoles (filled diamonds), 5 Å in
length, are placed. These are located atz5 22.83 Å andz5 220 Å. In one
series of simulations, the strengths of the four helix macrodipoles, 16
carbonyl groups, and eight mouth dipoles are systematically changed to
ascertain the strengths that maximize the transfer of ions. In all subsequent

series of simulations, the dipole moments of each carbonyl group and each
mouth dipole are kept constant at 7.2 and 303 10230 Cm, respectively. At
each pole of the helix dipoles, we place a charge of60.6 3 10219 C.

Solution of Poisson’s equation

For a given configuration of ions and fixed charges in the system, repre-
sented by the charge densityr, the electric potentialw is determined by
solving Poisson’s equation,

¹2w 5 2
r

e0e
. (1)

Because the dielectric constante has different values on either side of the
channel boundary (Fig. 1), the solutions of Eq. 1 are subject to the
boundary conditions

w1 5 w2, e1¹w1 z n̂ 5 e2¹w2 z n̂, (2)

where the subscripts 1 and 2 refer to the outside (water) and inside (protein)
of the boundary,w is potential, andn̂ is the unit vector normal to the
surface. Equations 1 and 2 can be solved analytically only for a few
channel shapes (Kuyucak et al., 1998), and for the model channel shown in
Fig. 1, they have to be solved numerically. This can be achieved with an
iterative technique as described by Levitt (1978a) and Hoyles et al. (1996,
1998b). Because the computation of the electric field and potential plays a
central role in the ion transport problem, we give a brief description of the
technique here and refer to the original references for further details.

The boundary is divided into small sectors of areaDSi, each represented
by a point chargeqi at its center. The size of each sector varies from 0.3 Å2

in places of high curvature to;14 Å2 in flat regions. A total of;18,000
sectors have been used in the present potassium channel calculations. The
boundary conditions (Eq. 2) can be manipulated to relate the surface charge
density on each sector to the external electric fieldEex that arises from all
of the charges in the system except those in the sector

s 5 2e0

e2 2 e1

e2 1 e1
Eex z n̂, (3)

whereEex z n̂ is determined from the normal derivative of the external
potential

wex~r ! 5
1

4pe0FOi51

2 E ri~r *!

eiur 2 r *u dV9 1 E
r9Þr

s~r *!

ur 2 r *u dS9G.
(4)

Starting with an initial surface charge density ofs0(r *) 5 0, one estimates
the potential at the boundary from Eq. 4. This potential is then fed into Eq.
3, and a new densitys1(r *) is obtained. Equations 3 and 4 are iterated until
the results converge, that is, the difference ins between two successive
iterations is less than 0.01% on all sectors. A small error arising from the
assumption that the sector is flat is corrected by using the procedure
described by Hoyles et al. (1998b). We use a fixed valuee2 5 2 for the
protein but varye1 in the simulations, which will be denoted simply bye.

Lookup tables for electric potentials and fields

The numerical solution of Poisson’s equation described above takes a
relatively short time on a supercomputer. However, when it has to be
repeated at each time step during a computer simulation (typically, many
millions of times), the computational cost becomes prohibitively high. We
have circumvented this problem by exploiting the huge storage capacity of
supercomputers to construct lookup tables for the electric potentials and
fields. The method is described and validated by Hoyles et al. (1998a) and
used in Brownian dynamics simulations of vestibular channels by Chung et

FIGURE 1 Idealized potassium channel. A transverse section of the
model channel shown inA is generated by rotating the curves outlined in
B along the symmetryz axis by 180°. The positions of dipoles on the
channel wall are indicated inB: F, eight of the 16 carbonyl oxygen atoms;
E, N-terminals of the helix dipoles;}, the mouth dipoles.
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al. (1998). We refer to these references for details of the method and
summarize only its essential points here.

The method involves precalculating the electric potential and field on a
grid of points for various configurations and storing the results in a number
of lookup tables. During simulations, the potential and field at desired
points are reconstructed by interpolating between the table entries. Using
the superposition principle, it is easy to see that the one- and two-ion
configurations are sufficient to construct the potentials in the multiion case.
To this end, we break the total electric potentialVi experienced by an ion
i into four pieces:

Vi 5 VX,i 1 VS,i 1 O
jÞi

~VI, ij 1 VC,ij!, (5)

where the sum overj runs over all of the ions in the system (including the
ones in the reservoirs). The four terms in Eq. 5 represent the following
components of the total potential:

(i) VX,i is the external potential due to the applied field, fixed charges in
the protein wall, and charges induced by these. Because these quantities do
not change during a simulation period,VX,i depends only on the position of
the ion and can be stored in a three-dimensional table.

(ii) VS,i is the self-potential due to the surface charges induced by the ion
i on the channel boundary. Because of the axial symmetry of the channel,
VS,i is independent of the azimuthal angleu and requires only a two-
dimensional (2D) table.

(iii) VI,ij is the image potential due to the charges induced by the ionj.
Again because of the axial symmetry,VI,ij depends only on the relative
angleuij between the two ions and hence can be stored in a five-dimen-
sional (5D) table (instead of six).

(iv) VC,ij is the Coulomb potential due to the ionj, which is computed
directly from

VC,ij 5
1

4pe0

qj

eur i 2 r ju
, (6)

wherer i and r j are the positions of the ions.
The electric field is calculated from the derivative of the potential at the

grid points and decomposed in exactly the same way:

Ei 5 EX,i 1 ES,i 1 O
jÞi

~EI, ij 1 EC,ij!, (7)

with each field component being defined as in the potential (Eq. 5). The
only difference is that three values corresponding to the three Cartesian
components of the field are stored at each table entry instead of one scalar
value in the potential. The dimensions of the 2D, 3D, and 5D tables are
37 3 97, 103 171 3 40, and 73 119 3 7 3 119 3 14, respectively.

The grid points for the tables are evenly spaced in generalized cylin-
drical coordinates. This means that, in cylindrical coordinates, the spacing
along thezaxis (Dz) is fixed, the angular spacing of points around thezaxis
(Du) is fixed, and the spacing of points along the radii (Dr) depends on the
radius of the channel. Different tables have different spacings, to minimize
the interpolation error for their particular tasks. For example, the 2D table
needs very fine radial spacing to minimize error in image repulsion from
the channel walls, while the 3D table needs fine linear and angular spacing
to accurately represent the field from fixed charges.

The linear spacings (Dz) are 1.69 Å for the 2D table, 0.96 Å for the 3D
table, and 1.37 Å for the 5D table. The angular spacings (Du) are 9.2° for
the 3D table and 13.8° for the 5D table. The narrowest part of the channel,
the selectivity filter, has a radius of 1.5 Å. The radial spacings (Dr) here are
0.026 Å for the 2D table, 0.11 Å for the 3D table, and 0.16 Å for the 5D
table. The spacings in the widest part of the channel, the cavity of radius
5 Å, are 0.13 Å for the 2D table, 0.51 Å for the 3D table, and 0.76 Å for
the 5D table. The spacings in the reservoirs are much larger, as these have
a radius of 30 Å.

Born energy

The value of the dielectric constant of water inside the pore is an important
open question in channel studies that is often brushed aside by adopting the
bulk value of 80. There is no direct experimental information on this
quantity, but recent molecular dynamics simulations suggest that it could
be much lower than the bulk value in channels with small radii, like the
potassium channel (Sansom et al., 1997). Therefore, we take a more
flexible approach here and treate as a variable to be determined from
simulations of conductance. The choice ofe , 80 in the pore, in turn, raises
the question of how to describe the change ine from the bulk value in the
reservoir to the lower value in the channel interior. Ideally, one should use
a switching function that changes smoothly from one value ofe to the other
over a given range. However, solution of Poisson’s equation with a
space-dependente is a rather complicated computational problem that
cannot be tackled with the present numerical techniques. Simplification to
a sharp boundary at the channel entrance (similar to the protein boundary)
allows solution of the problem by known techniques, but the solutions
suffer from instabilities as ions cross this boundary. This problem does not
arise with the protein boundary because ions never cross it. As a compro-
mise, we use the same low value ofe in the pore and the reservoirs but
incorporate the neglected energy difference, which is approximately given
by the Born energy,

EB 5
q2

8pe0RB
S1e 2

1

80D, (8)

as a potential barrier at either entrance of the channel. HereRB 5 1.93 Å,
as determined from the enthalpy of hydration for K1 ions (Bockris and
Reddy, 1970). To avoid complications arising from sharp potential energy
changes in Brownian dynamics simulations, we implement this barrier,
using a smooth switching function,

UB~s! 5 ~EB/16!~3s5 2 10s3 1 15s! 1 ~EB/2!, s5
z2 zc

Dz
,

(9)

which has continuous first and second derivatives and rises gradually from
0 to EB ass changes from21 to 1. Here,zc 5 622.5 Å is the location of
the center of the profile andDz 5 71.5 Å is its half-width. To give an
indication of the barrier heights involved, we note that fore 5 20, 40, and
60, EB 5 5.4 kT, 1.8, and 0.6 kT, respectively.

Electrostatic calculations

The potential profile of an ion along thez axis is constructed by solving
Poisson’s equation with the ion fixed at a given position on thez axis and
repeating this procedure at 1-Å intervals. The force experienced by an ion
is calculated from the gradient of the potential energy. As will be shown
later, the potassium channel is usually occupied by two ions. To visualize
the shape of the energy barrier an ion encounters as it attempts to enter a
channel that is occupied by one or more ions, we have constructed multiion
energy profiles. We move one of the ions from the intracellular space into
the channel in 1-Å steps, holding it fixed at each step. We then allow the
other ions in the selectivity filter to adjust their positions so that the force
on them will be zero, thus minimizing the total energy of the system. The
minimization is performed at each step, and the positions of the ions and
the total energy are recorded. This corresponds to the total electrostatic
energy required to bring in the charge on the ions from an infinite distance
in infinitesimal amounts, and it is given by

Utotal 5 O
i

qi

2F2VX,i 1 VS,i 1 O
jÞi

~VI, ij 1 VC,ij!G 1 UB,i ,

(10)
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where the indicesi and j range over all of the ions. The potential terms in
Eq. 10 assume the same significance as in Eqs. 5 and 9. The factors of1⁄2
in the middle three terms arise from the integration of charge during
build-up. Using a modified version of the steepest descent algorithm (see
Press et al., 1989), the total energy of a multiply occupied channel given in
Eq. 10 is successively minimized until the forces on the free ions vanish.

Brownian dynamics

Brownian dynamics (BD) simulations are used to predict the channel
conductance under various conditions and to deduce the optimum strength
of various dipole groups for the most efficient transfer of ions across the
membrane. In BD, the motion of an ion with massmi and chargeqi in a
fluid is governed by the Langevin equation,

mi

dvi

dt
5 2migivi 1 FR~t! 1 qiEi . (11)

By solving the Langevin equation at discrete time steps for each ion in the
system, for each Cartesian component (x, y, z) of the velocity, we deter-
mine the number of ions crossing the channel in a fixed simulation period.
The three terms on the right-hand side of Eq. 11 correspond to, respec-
tively, an average frictional force with a friction coefficient given bymigi,
the stochastic force arising from random collisions with water molecules,
and the total systematic force acting on the particle. The systematic force
is composed of short- and long-range forces. As outlined above, the latter
are obtained from the numerical solution of Poisson’s equation on a grid of
points and stored in a number of lookup tables. During simulations, the
field and potential at desired positions are reconstructed by interpolating
between the table entries. The short-range forces include the Born energy
barrier introduced in Eqs. 8 and 9, and part of the ion-ion interactionUII

and the ion-wall interactionUIW. During the simulations, ions come closer
to each other at times than the sum of their radii. This activates a short-
range repulsion arising from the overlap of their electron clouds, given by

UII~r12! 5
F0

9

~R1 1 R2!
10

r12
9 , (12)

wherer12 is the ion-ion distance;Ri, i 5 1, 2, are the Pauling radii of ions;
and F0 is the magnitude of the short-range force at contact. For the
ion-protein wall potentialUIW, a similar form is used:

UIW~r! 5
F0

9

~Ri 1 RW!10

~r~z! 1 RW!9 , (13)

whereRW is the radius of the atoms making up the wall andr(z) 5 RC(z) 2
r is the distance of the ion from the channel wall atRC(z). We useRW 5
1.4 Å andF0 5 2 3 10210 N in both Eqs. 12 and 13, which is estimated
from the ST2 water model used in molecular dynamics (Stillinger and
Rahman, 1974).

To simulate the effects of short-range forces more accurately, we use a
multiple time-step algorithm in our BD code. A shorter time step of 2 fs is
used in the mouth regions of the channel, whereUB is active, and in the
narrow regions, whereUIW is expected to contribute significantly. A long
time step of 100 fs is used elsewhere. Specifically, there are two short time
step bands,225 , z , 215 and 7.5, z , 25, comprising both entrances
and the selectivity filter. If an ion is in one of these bands at the beginning
of a 100-fs period, it is simulated by 50 short steps instead of one long step;
so synchronization between the ions is maintained. Long-range forces are
calculated normally at the start of the 100-fs period and are assumed to be
constant throughout. The ion-ion interactions are normally treated using the
long time steps, except when both ions are in one of the above bands.

Technical details of simulations

We solve the Langevin equation using the BD algorithm devised by van
Gunsteren et al. (1981, 1982), which consists of the following computa-
tional steps:

Step 1. Compute the electric forceF(t) 5 qiEi acting on each ion at time
tn and calculate its derivative [F(tn) 2 F(tn21)]/Dt.

Step 2. Compute a net stochastic force impinging on each ion over a
time period ofDt from a sampled value ofFR(t).

Step 3. Determine the position of each ion at timetn 1 Dt and its
velocity at timetn by substitutingF(tn), its derivativeF*(tn), andFR(t) into
the solutions of the Langevin equation (Eqs. A6 and A7 of Hoyles et al.,
1998a).

Step 4. Repeat the above steps for the desired simulation period.
Simulations under various conditions, each lasting for 1,000,000 time

steps (0.1ms), are repeated many times, mostly for 5 to 10 trials. For the
first trial, the positions of ions in the reservoirs are assigned randomly with
the proviso that the minimum ion-ion distance should be at least 2.7 Å. For
successive trials, the positions of the ions in the last time step are used as
the initial starting positions of the following trial. The current (given in pA)
is determined from the total number of ions traversing the channel over the
simulation period.

Fixed numbers of potassium and chloride ions are placed in each
reservoir, and the height of the cylindrical reservoir is adjusted to give a
desired ionic concentration. As ions are forbidden to approach the wall of
the reservoir within 1 Å, the effective radius of the cylindrical reservoir is
29 Å. For example, if 13 sodium and 13 chloride ions are placed in each
reservoir and the desired ionic concentration is 300 mM, the height of the
cylindrical reservoirs is adjusted to 27 Å.

When the ionic concentration in the reservoirs is high, ions at times are
able to jump large distances and end up very close to another ion. The
forces at the next time step in such instances can be very large, and the
affected ions may leave the system. To correct this problem, we check
ion-ion distances at each time step. If two ions are within a “safe distance”
(see Chung et al., 1998), chosen to be3⁄4 of the sum of the ionic radii
(Pauling, 1942), then their trajectories are traced backward in time until
such a distance is exceeded. By performing these checks and corrections,
the system is well behaved over the simulation, even for very high
concentrations. Such a minor readjustment of the position of an ion is
needed about once every 100 time steps when the reservoirs and the
channel contain 52 ions. The steep repulsive force at the dielectric bound-
ary due to the image charges and the ion-protein potentialUIW is usually
sufficient to prevent ions from entering the channel protein. We ensure that
no ions appear inside the channel protein by erecting an impermeable hard
wall 1 Å from the water-protein interface. Any ion colliding with this wall
is elastically scattered. A similar hard wall is implemented for the reservoir
boundaries.

To ensure that the desired intracellular and extracellular ion concentra-
tions are maintained throughout the simulation, a stochastic boundary is
applied. When an ion crosses the transmembrane segment, an ion of the
same species is transplanted so as to maintain the original concentrations
on both sides of the membrane. For example, if a potassium ion from the
left-hand side of the channel crosses the pore and reaches the imaginary
plane at z 5 25 Å, then a potassium ion located at the furthermost
right-hand side reservoir is taken out and placed in the far left-hand side of
the left reservoir. When transplanting ions, we choose a point no closer to
another ion than the defined safe distance. The stochastic boundary trigger
points, located atz 5 625 Å, are checked at each time step of the
simulation.

We represent the potential difference across the channel by an applied
electric field of constant strengthE. In the absence of any dielectric
boundary, the potential difference across a channel of lengthd would be
E 3 d. The presence of a dielectric boundary and dipoles on the protein
wall, however, severely distorts the field. Thus, the precise potential
difference across the channel will depend on the selected reference points
at the two sides of the potassium channel. For simplicity, we apply a field
strength of 107 V m21 and refer to it as an applied potential of 100 mV. To
construct the current-voltage relationships and accurately determine the
reversal potentials with different ionic concentrations in the reservoirs,
however, we apply a fixed field strength in the presence of all of the dipoles
(but without placing any ions in the reservoir) and then measure the electric
potential at the middle of each reservoir (usuallyz 5 640 Å) at the central
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axis. The current is then plotted against the potential difference between
these two reference points.

The BD program is written in Fortran and vectorized and executed on
a supercomputer (Fujitsu VPP-300). The amount of vectorization varies
from 67% to 92%, depending on the number of ions in the reservoirs. With
52 ions in the reservoirs, the CPU time needed to complete a simulation
period of 1.0ms (10 million time steps) is;28 h.

Throughout we quote energy in room temperature units (kT) and dipole
moment in Coulomb-meter (Cm). We note 1 kT5 4.113 10221 J or 0.592
kcal/mol and 1 Debye5 3.33 3 10230 Cm. The following physical
constants were employed in our calculations (note that the friction coeffi-
cient is related to the diffusion coefficient via the Einstein relationD 5
kT/mg):

Masses:mK 5 6.5 3 10226 kg, mCl 5 5.9 3 10226 kg.
Diffusion coefficients:DK 5 1.963 1029 m2/s,

DCl 5 2.033 1029 m2/s.
Ionic radii: RK 5 1.33 Å, RCl 5 1.81 Å.
Room temperature:T 5 298 K.

RESULTS

Dipoles and energy profiles

As an ion approaches the boundary between an aqueous
solution and the protein wall, it experiences an electrostatic
repulsion due to induced charges at the boundary. In com-
puting the potential energy of an ion as it moves along the
central axis, we assume initially that the dielectric constant
e in the reservoirs and the pore is 60. The energy of
transition from bulk water, estimated from the Born energy,
is incorporated as a potential barrier at the channel entrance,
as explained in the Methods section.

In the absence of any charge moieties on the protein wall,
an ion attempting to traverse the channel encounters a
significant energy barrier. The potential energy at a fixed
position of an ion is computed numerically, and the calcu-
lation is repeated at 1-Å intervals. The profile presented to
the ion as it moves from inside (left) to outside (right)
increases slowly at first and then rises steeply in the narrow
selectivity filter, reaching a peak of 20 kT, as shown in Fig.
2 A (curve labeled a). Four rings of dipoles, with four
carbonyl groups in each ring, placed along the selectivity
filter, transform a section of the barrier into a well (b), as do
four helix dipoles placed just below the selectivity filter (c).
As will be shown later, two sets of additional mouth dipoles
are needed to render the channel permeable to ions. When
all three sets of dipoles—16 carbonyl groups, four helix
macrodipoles, and eight mouth dipoles—are placed along
the channel wall, the profile an ion encounters while tra-
versing the central axis of the channel is a deep potential
well (d).

The potential well created by the dipoles, reaching a
depth of nearly 30 kT, attracts cations. An ion, upon enter-
ing the channel, will proceed toward the bottom of this well.
A second ion entering the channel sees a different profile,
altered by the presence of the first ion. The well in Fig. 2A
(d) is deep enough to hold two ions in a stable configuration.
Through an iterative energy minimization procedure, one
can determine the equilibrium positions of the pair of ions in
the well. The potential profile seen by either ion while the

other is fixed at the equilibrium position, in the presence of
an applied field of 1.53 107 V/m, is shown in Fig. 2B. At
these positions (indicated byarrows), the z-component of
the force experienced by the ions is zero. The two-ion

FIGURE 2 Electrostatic energy profile of a potassium ion traversing the
channel. (A) The potential energy of an ion along the central axis is
calculated numerically at 1-Å intervals. The profilea is the potential
energy seen by the ion, in the absence of any charge moieties on the
channel wall; profileb is obtained with four sets of four carbonyl groups,
(F in the inset); profile c is obtained with four helix macrodipoles, (E) in
the inset); and profiled is obtained with the carbonyl groups, helix dipoles,
and two rings of mouth dipoles, (}, in theinset). (B) Potential profiles seen
by individual ions while the other is fixed at the equilibrium position
(indicated byarrows). The applied field corresponds to a potential differ-
ence of;150 mV between the channel entrances. The first ion is placed at
the equilibrium positionz 5 10 Å, and the profile seen by the second ion
is computed (solid line). The second ion is now placed atz 5 19.75 Å and
the profile seen by the first ion is computed (broken line). (C) The potential
profile encountered by a third ion, as it moves from left to right. At each
fixed position of the third ion, the stable configuration of the first two ions
is determined iteratively, and then the total energy of the assembly is
computed. This process is repeated at 1-Å intervals fromz 5 240 to 10 Å
to produce the profile shown as a solid line. Unless stated otherwise, the
strengths of each carbonyl group, mouth dipole, and helix dipole are,
respectively, 7.2, 30, and 96.33 10230 Cm.
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potential profiles exhibit relatively deep wells that may
attract a third ion. In Fig. 2C we show the potential profile
seen by a third ion moving into the channel from the left.
Here the potential is calculated at a given position of the
third ion after the equilibrium positions of the first two ions
are found. There is a shallow well near the entrance of the
channel, produced by the ring of mouth dipoles. Once in the
well, the third ion will be delayed until random Brownian
motion allows it to escape. We note here that the potential
minimum is along the central channel axis, so that ions are
preferentially funneled along it. The repulsive force from
the induced surface charges swings into action whenever an
ion strays from the central axis, pushing it back to the axis.
The corresponding electric potential profile along the radial
axis is similar in appearance to a harmonic well, except that
it rises much more sharply near the boundary (see Hoyles et
al., 1996).

The relative contributions of various charge groups in
establishing a potential gradient in the channel are summa-
rized in Fig. 3. The curves reveal the electric potential; they
differ from the potential energy curves in Fig. 2A in that
there are no induced surface charges due to ions. Four
mouth dipoles at each end of the channel produce a potential
well (Fig. 3, (a)). The depths of the wells near the intracel-
lular and extracellular entrances reach, respectively,2226
mV and 2202 mV. The carbonyl groups lining the selec-
tivity filter produce a steep potential well that reaches a
maximum depth of2681 mV atz 5 15.8 Å (b). A broader
well encompassing nearly the entire extent of the channel is
produced by the helix dipoles (c). It reaches a minimum of
2564 mV atz 5 10 Å. The potentials produced by these
three groups of dipoles sum algebraically when all of the
dipoles are placed, as shown in (d). At z 5 14 Å, the
potential experienced by the test charge reaches a minimum
of 21250 mV.

From these electrostatic calculations, we deduce that the
channel is normally occupied by two cations. Conduction is
unlikely to take place unless these ions are resident in the
pore to reduce the energy well created by the charge moi-
eties. Moreover, for the channel to conduct ions, the effec-
tive dielectric constant needs to be quite large.

Dependence of conductance on dipole strengths

For the channel to conduct ions, there is a narrow range of
moments various dipole groups must possess. Using BD
simulations, we have determined how the magnitude of
currents flowing across the channel varies with dipole
strengths and the effective dielectric constant in the channel
lumen.

As shown in Fig. 4A, the conductance increases rapidly
as the moment of each carbonyl group is increased from 0
to 7.23 10230 Cm. The current begins to decline when the
moment is further increased to 14.43 10230 Cm. The three
curves illustrated in Fig. 4A are obtained by letting the
effective dielectric constant of the pore be 80 (top curve), 70
(middle curve), and 50 (bottom curve). The charge placed
on the terminals of each helix dipole and the strength of
each mouth dipole are kept constant at 0.63 10219 C and
30 3 10230 Cm, respectively. In this and subsequent fig-
ures, unless stated otherwise, each point is the average of
five simulations, with each simulation period lasting for 100
ns. The error bar accompanying a data point is one standard
error of means and is not shown if it is smaller than the size
of the data point. Again, unless noted otherwise, 13 potas-
sium and 13 chloride ions are placed in the left-hand reser-
voir (representing the intracellular space), whose volume is
adjusted so as to give an ionic concentration of 300 mM,
and the same number of ions is placed in the right-hand
reservoir (representing the extracellular space). The applied
electric field between the two ends of the reservoirs pro-
duces a potential difference of;150 mV, inside positive
with respect to outside. The peak current is always obtained
when the strength of the carbonyl groups is fixed at 7.23
10230 Cm (2.16 Debye), irrespective of the assumed dielec-
tric constant. In Fig. 4B, the variation of currents with the
dipole moment is determined at three different applied
potentials, 150 mV, 200 mV, and 250 mV, while keeping
e 5 60 throughout. Again the current peaks at about the
same dipole strength.

The results of simulations showing the variation of cur-
rent with the strengths of mouth dipoles (A) and helix
dipoles (B) are illustrated in Fig. 5. The dipole moment of
each carbonyl group in the selectivity filter is kept at 7.23
10230 Cm throughout. The current flowing across the chan-
nel is largest when the charge on each of the four helix
dipoles is 0.63 10219 C. Similarly, the current is maximum
when the strength of each of the mouth dipoles is 303
10230 Cm. Fig. 5 reveals, as does the previous figure, that
the dielectric constant of the channel has a pronounced
effect on the permeability of the channel. With optimum

FIGURE 3 Electric potential generated by dipoles. The electric potential
is calculated numerically at 1-Å intervals. The profiles labeleda, b, andc
are obtained, respectively, with eight mouth dipoles, 16 carbonyl groups,
and four helix dipoles. The potential profile, labeledd, resulting from all
three groups of dipoles, is the sum ofa, b, andc.
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pore helix and mouth dipole strengths,e 5 60 gives a
physiological conductance of;40 pS, as found experimen-
tally (Schrempf et al., 1995). The channel conductance is
progressively suppressed when the dielectric constant in the
pore is lowered and no conduction takes place, with a
driving force of 150 mV, whene # 40.

Here and in all subsequent series of simulations, we
assume that the channel possesses the strengths of various
dipole groups, which enable the maximum number of ions
to be translocated across the channel for a given driving
force, that is, the dipole strengths for each of eight mouth
dipoles, 16 carbonyl groups, and four helix dipoles are,
respectively, 30, 7.2, and 96.33 10230 Cm.

Effects of dielectric constant and diffusion
coefficient on currents

From the results given in the previous section, it is clear
that, for the channel to conduct, the effective dielectric
constante in the pore must be high. In other words, water
molecules resident in the pore must not be tightly bound to
the protein but be able to rotate relatively freely so as to
reduce the interaction energy between the ions and the
charges located on the channel wall. In Fig. 6, we examine
further the influence ofe on the magnitude of current
flowing across the channel. The depth of the energy well
created by dipoles increases ase is lowered. An example of
the energy well created by four mouth dipoles located near
the channel entrance, when there are two ions resident in the

FIGURE 4 Changes in channel conductance with the strength of car-
bonyl groups. Simulations under various conditions, each lasting 100 ns,
are repeated five times. The height of each reservoir is adjusted to give an
ionic concentration of 300 mM, and inside is made 150 mV positive with
respect to the outside. The current (in pA) is determined from the total
number of ions traversing the channel over the simulation period of 0.5ms.
(A) Keeping the moments of each helix dipole and mouth dipole constant
at 96.3 and 303 10230 Cm, the strength of each carbonyl group is
systematically changed. The current (in pA) is plotted against dipole
strength for three values of the dielectric constant,e 5 50, 70, and 80. (B)
The current is plotted against the strength of carbonyl groups for three
values of applied potential, 150 mV, 200 mV, and 250 mV, while keeping
e constant at 60.

FIGURE 5 Changes in channel conductance with the strength of mouth
dipoles (A) and helix dipoles (B). (A) The strength of each mouth dipole is
changed systematically while keeping the moment of each carbonyl group
and helix dipole constant at 7.2 and 96.33 10230 Cm. The current is
plotted against the strength of mouth dipoles for three different values of
dielectric constant,e 5 60, 70, and 80. (B) The charge placed on each helix
dipole is changed systematically while keeping the moments of each
carbonyl group and mouth dipole constant at 7.2 and 303 10230 Cm. The
current (in pA) is plotted against dipole strength for three values of the
dielectric constant,e 5 50, 60, and 70.
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selectivity filter (c.f., Fig. 2C), is illustrated in Fig. 6A.
Here,e is assumed to be 30, and a potential of 300 mV is
applied across the channel. An ion attempting to cross this
well encounters a barrierVB, the height of which decreases
monotonically with increasinge, as shown in Fig. 6B.
Increasing the applied potential from 150 mV to 300 mV
reduces the barrier height by;1.5 kT. A steep increase in
the barrier height ase is lowered suggests that the channel
will not conduct ions ife in the pore is less than 40. The
inference drawn from electrostatic calculations is in accord
with the results obtained from BD simulations. The current

across the channel under the driving force of 150 mV, 200
mV, 250 mV, and 300 mV is plotted againste in Fig. 6 C.
These four curves broadly mirror the way the barrier height
increases withe. The current ceases to flow when the barrier
height reaches 7 kT.

The diffusion coefficient of potassium ionsDK in bulk
electrolyte solutions is 1.963 1029 m2/s. This value is
reduced when an ion is diffusing through a narrow tube
(Roux and Karplus, 1991b; Chiu et al., 1993; Lynden-Bell
and Rasaiah, 1996; Smith and Sansom, 1997; Allen et al.,
1999b). The magnitude of the diffusion coefficient of an
ionic species depends on, among other things, the radius of
the cylinder and the composition of the wall. In the accom-
panying paper (Allen et al., 1999a), we show thatDK in the
wider segment of the potassium channel, including the oval
chamber, is nearly the same as that in bulk solutions,
whereas that in the selectivity filter is on average1⁄3 of the
bulk value. The following series of simulations are carried
out to assess how much the channel conductance is sup-
pressed by a lowDK in the narrow filter.

When ions enter the channel segment extending fromz5
7.5 toz 5 25 Å, their motions are determined by aDK that
is lower than the bulk value. Fig. 7 shows the current across
the channel as a function ofDK at three different values of
dielectric constants,e 5 60 (A) ande 5 50 and 70 (B). The
filled and open circles in Fig. 7A represent, respectively, the
outward and inward currents. The applied potential across
the channel and the ionic concentration in the reservoir are
kept constant at 200 mV and 300 mM, respectively. In
contrast to bulk conductance, where current is proportional
to the diffusion coefficient, the current in the potassium
channel depends onDK in a nonlinear fashion. It decreases
with decreasingDK at a very slow rate at first (untilDK is
reduced to;0.5 of its bulk value) and then becomes more
or less proportional toDK. WhenDK is reduced to1⁄3 of the
bulk value, the current is only suppressed by;30%.

Current-voltage relationships

The current-voltage relationships, shown in Fig. 8, are ob-
tained with symmetrical solutions of 300 mM in both res-
ervoirs. The diffusion coefficient in the selectivity filter is
assumed to be the same as that in bulk electrolytes. Because
the effective dielectric constante of the channel is unknown,
we have determined the current-voltage curves, assuminge
to be 60, 70, and 80. The curves derived from these three
conditions all reveal several distinct features. First, at any
given applied potential, the outward current is larger than
the inward current. Second, the magnitude of current across
the channel at any given driving force increases steadily
with increasing dielectric constant. The outward current at
100 mV is 6.76 1.2, 11.86 2.1, and 15.06 1.0 pA when
e is assumed to be 60, 70, and 80, respectively (Fig. 8).
Because the current begins to saturate with increasing ionic
concentrations (see later), the conductance at 150 mM K1

will be slightly larger than 33, 59, and 75 pS at these three
values of dielectric constants. Third, the relationship is

FIGURE 6 Effects of the effective dielectric constant on conductance.
(A) An energy well near the channel entrance created by four mouth
dipoles is encountered by an ion, given that there are two resident ions in
the selectivity filter. The energy minimization is carried out withe 5 30
and an applied potential of 300 mV. An ion upon entering the well must
surmount a barrier of heightVB to traverse the channel. (B) The height of
the barrierVB is plotted against the effective dielectric constant for two
different values of applied potential, 150 mV (F) and 300 mV (E). (C) The
inward currents under the driving force of 300 mV (E), 250 mV (F), 200
mV (E), and 150 mV (F) are plotted against the effective dielectric
constant. Each point is derived from a simulation period of either 1ms
(150, 200, and 250 mV) or 2ms (300 mV).
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approximately linear when the applied potential is less than
100 mV, but it deviates systematically from Ohm’s law with
a further increase in the membrane potential. This nonlin-
earity results from the presence of an energy barrier in the
channel. Intuitively, a barrier is less of an impediment to an
ion when the driving force is large. Thus, in the presence of
a barrier, the ohmic current-voltage relationship will be
modified by a function of the form

I 5
gV

1 1 b/@exp~eV/VB1! 1 exp~2eV/VB2!#
, (14)

where g is the limiting conductance at largeV, b is a
dimensionless parameter, andVB1 andVB2 are the right and
left barrier heights. The justification for fitting the data with
this equation is given by Chung et al. (1998). Rectification

arises from the fact that ions moving into and out of the cell
see different barriers. The solid lines fitted through the data
points (Fig. 8,A, B, andC) are calculated from Eq. 14.

The current-voltage relationships obtained with asym-
metrical ionic solutions in the two reservoirs are shown in
Fig. 9. The curves exhibited in the figure are obtained by
assuming thate in the channel is, respectively, 60 (A) and 70
(B). The ionic concentrations inside and outside are 500 mM
and 100 mM. The solid lines fitted through the data points
are obtained from Eq. 14, multiplied by the Goldman factor
of the form

F5 2 exp~2eV/kT!

1 2 exp~2eV/kT!G. (15)

FIGURE 7 Effects of the diffusion coefficient on conductance. The
diffusion coefficient of potassium ions in the selectivity filter, extending
from z 5 7.5 to 25 Å, is progressively lowered from the bulk value of
1.96 3 1029 m2/s, and its effect on conductance is examined. (A) The
outward (F) and inward (E) current is plotted against diffusion coefficient
in the selectivity filter, withe 5 60 and an applied potential of 200 mV. (B)
The outward current is plotted against diffusion coefficient in the selec-
tivity filter for e 5 70 (upper curve) and 50 (lower curve). Each point in
A andB is derived from a simulation period of 1ms.

FIGURE 8 The current-voltage relationships. The current measured at
various applied potentials is obtained with symmetrical solutions of 300
mM in both reservoirs. The solid lines fitted through data points are
calculated from Eq. 14. The values ofe used forA, B, andC are 60, 70, and
80, respectively.
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As expected, the asymmetry between the inward and out-
ward currents is accentuated. As with the symmetrical so-
lutions, an increase ofe from 60 to 70 causes an increase in
the magnitude of currents flowing across the channel. The
zero current of the two current-voltage relationships appears
to be somewhere between225 mV and250 mV.

To ascertain how closely the measured reversal potentials
match those predicted by the Nernst equation, we estimate
currents flowing across the channel with two different ionic
concentrations in the reservoirs and under various applied

potentials. The concentrations of K1 in the extracellular and
intracellular aspects of the channel are computed from the
average number of ions in the reservoirs throughout the
simulation periods. The measured ionic concentrations in
the left and right reservoirs in one series of simulations are
71.5 and 482.0 mM, and in another series of simulations are
176.2 and 385.3 mM. Fig. 9C shows the currents flowing
across the channel at various applied potentials. Because the
net current for these driving forces is small, the total sim-
ulation period of 3ms is used to derive each data point. For
the same reason, we usee 5 80 for the effective dielectric
constant of the channel, which results in a larger current
flow. The reversal potential for each asymmetrical solution
is estimated by fitting a polynomial curve through the data
points (solid line in Fig. 9C). There are small but consistent
discrepancies between the reversal potentials deduced from
simulations and those predicted from the Nernst equation
(indicated withopen downward arrows). The zero currents
occur at245 mV and217 mV when the concentration
ratios in the two reservoirs are, respectively, 6.7:1 and 2.2:1.
The predicted reversal potentials are248.1 mV and219.7
mV. These discrepancies between the predicted and mea-
sured zero currents disappear if we take the activity coeffi-
cients of KCl at the measured ionic concentrations into
account (Weast, 1983), as indicated by the filled arrows in
Fig. 9 C. From a number ofI–V curves obtained with
asymmetrical solutions, we conclude that the zero current
occurs at a potential predicted by the Nernst equation within
the errors of simulations.

Ions in the channel

It is of interest to note where in the channel ions dwell
predominantly. To compute the average number of ions
inside the channel, we divide the channel into 32 thin
sections and compute the time averages of potassium ions in
each section. When a potential of 200 mV is applied so as
to produce an outward current, two ions on average tend to
reside in the channel. The preferred positions where ions
dwell are in the selectivity filter atz 5 9.4, 14.1, and 23.4
Å, as shown in Fig. 10A. We note here that, although the
histogram (Fig. 10A) shows three distinct peaks near the
selectivity filter, there are on average 1.5 ions in this region,
as can be deduced by summing the heights of the bars. A
similar sum for the peak near the intracellular entrance gives
0.5 ions; that is, an ion is present there 50% of the time. The
preferential positions of the ions in the channel are shifted
when the direction of the current is reversed by making the
inside negative with respect to the outside. Under this con-
dition, two ions mainly linger aroundz 5 9.4 and 17.2 Å
(Fig. 10 B). Thus the preferred locations of ions in the
channel depend on, among other factors, the direction and
the strength of the applied field.

To better illustrate the behavior of ions under the influ-
ence of the electric and stochastic forces, we bisect the
channel and denote the number of ions on the left-hand and

FIGURE 9 The current-voltage relationships. The current measured at
various applied potentials is obtained with asymmetrical solutions fore 5
60 (A) and 70 (B). The concentration in the reservoir representing the
intracellular space is 500 mM, whereas that representing the extracellular
space is 100 mM. The solid lines drawn through the data are calculated
with Eq. 14 multiplied by the Goldman factor. ForC, obtained withe 5 80,
the measured concentrations in the intracellular and extracellular reservoirs
are 482.0 mM and 71.5 mM (E) and 385.3 mM and 176.2 mM (F). The
open downward arrows indicate the reversal potential calculated from the
Nernst equation. The predicted Nernst potentials taking the activity coef-
ficients into account are indicated with filled downward arrows. The values
of activity coefficients used for 71.5, 176.2, 386.3, and 482.0 mM are,
respectively, 0.79, 0.73, 0.67, and 0.63.
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right-hand sides by [nl, nr]. The occupation probabilities of
distinct states are tabulated in Table 1 for five different
potentials. At the bottom of the table, we give the average
number of ions resident in the channel, which is about two,

regardless of the applied potential. In view of the rapid
change in occupation probabilities of different states (Table
1), this appears as quite remarkable, and reinforces the
earlier inferences made from electrostatic calculations that
two ions must be resident in the pore for conduction to take
place.

When the applied potential is 100 mV, which is relevant
for the operation of the potassium channel, the most com-
mon state is the [0, 2] state. That is, no ion is present in the
first half (intracellular side) of the channel, while two ions
are present in the second half (extracellular side), as illus-
trated schematically in the upper panel of Fig. 11A. In
addition to the states listed in Table 1, there are five other
distinct states that are observed during the total simulation
period of 0.5ms (or 5 million time steps), but the frequen-
cies of their occurrences are less than 1%. About 32,000

FIGURE 10 Concentrations of potassium ions in the channel. The chan-
nel is divided into 32 sections, as indicated in the inset, and the probability
of ions present in each section over a simulation period of 0.5ms is
tabulated (bars). The ionic concentration in the reservoirs is 300 mM. The
applied electric field inA is 2 3 107 V/m, such that the inside (left-hand
side) is ;200 mV positive with respect to outside (right-hand side). The
direction of the field is reversed to obtain the distribution shown inB.

TABLE 1 Occupation probabilities of multiion states [nl, nr]
and the average number of ions in the channel ^nl 1 nr& for
different applied potentials

[nl, nr] 2200 mV 2100 mV 100 mV 200 mV 300 mV

[0, 1] 3.5 3.4 12.1 15.2 17.2
[1, 1] 6.6 3.3 19.2 36.6 41.9
[0, 2] 78.9 78.2 49.2 30.3 25.3
[1, 2] 6.8 12.5 18.4 17.2 14.8
[0, 3] 3.8 2.4 — — —
Total % 99.6 99.8 98.9 99.3 99.2
^nl 1 nr& 2.07 2.11 2.06 2.02 1.98

FIGURE 11 Ions in the channel. (A) With an applied potential of 100
mV, the most commonly occurring configuration is exhibited in the upper
panel. Two ions in the selectivity filter are indicated as open circles. The
mouth dipoles create an energy well, whose depthVB is ;4.4 kT (middle
panel). The average time it takes for an ion to enter the well and then to
climb out of the well (t1) and the time to reach the selectivity filter (t2) are
indicated in the lower panel. (B) The average time it takes for an ion
outside the channel to reach the deepest section of the energy well (z 5
220 Å) after the previous ion successfully climbed out of the well (E) and
the mean velocity of an ion betweenz 5 210 andz 5 114 Å (F) are
plotted against the applied potential. The concentrations of the reservoirs
are kept constant at 300 mM.
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transitions occur between these states when the snapshot of
the channel state is taken once every picosecond. The most
common transitions are between [0, 2] and [0, 1], and be-
tween [1, 2] and [1, 1], which corresponds to the process:
driven by thermal energies, one of the two ions in the
second half of the channel escapes and then reenters. The
forward and backward transitions between these two sets of
states account for 64% of the total transitions. Less frequent
transitions (;20% of all transitions) are between [0, 2] and
[1, 2]. Finally, transitions between [0, 1] and [1, 1] account
for 6% of the total transitions, while the forward transition
between [1, 1] to [0, 2] accounts for only 0.3% of the total
transitions.

For an ion to traverse the channel from inside to outside,
one of the rare sequences of state transitions that must take
place is [0, 2]3 [1, 2]3 [0, 3]3 [0, 2]. With an applied
potential of 100 mV,;40 ions traverse the channel in 1ms,
corresponding to a processing time of 25 ns per ion. Anal-
ysis of the trajectories of ions in the assembly reveals that
the rate-limiting step in conduction is the time it takes for a
third ion to stumble into the channel entrance and then
climb up the energy barrier displayed in the middle panel of
Fig. 11 A. This time, indicated byt1 in the lower panel of
Fig. 11A, is almost equal to the total processing time. The
drift velocity of the ion that successfully climbs over the
barrier is about one order of magnitude larger than the
reservoir value. Thus it takes onlyt2 5 1.0 ns for the ion to
go from the barrier to the selectivity filter (z 5 210 to 14
Å), which is much shorter than one would naively expect
from diffusive kinematics. The ejection of the rightmost ion
in the selectivity filter is concurrent with the processt2;
hence for all practical purposes,t1 determines the process-
ing time.

Further analysis of the timet1 in terms of the channel
access and barrier transit times is complicated because the
transition region between these two processes is not well
defined. In the following, we use the most apparent choice,
namely, the imaginary plane at the channel entrance (z 5
225 Å), to study the voltage and concentration dependence
of the individual waiting time. In Fig. 11B, we plot, as a
function of the applied membrane potential, the average
time it takes for an ion to reach the bottom of the well (z 5
220 Å) after the previous ion has successfully climbed out
of the well. This waiting time, or access time, decreases
steadily from 18.5 ns at the applied potential of 50 mV to
1.45 ns at 300 mV (open circles). Also shown is the average
speed of the ion (to travel fromz 5 210 to114 Å) after it
has successfully climbed over the barrier (filled circles).
The drift velocity in the channel, as expected, increases
monotonically with the applied potential. A similar study of
the waiting times against concentration shows that the pro-
cess exhibits near-saturation, rather than decreasing in-
versely with concentration. The contrary behavior observed
in this analysis results from the fact that the boundary is
placed at the entrance of the channel (z 5 225 Å). The
repulsive forces from the dielectric membrane boundary
restrict the motion of an ion just outside the channel en-

trance to a narrow cylinder. In such a case, the access time
would be determined by the interionic distance, suggesting
a 1/c1/3 dependence on concentration instead of the expected
1/c behavior. The predicted 1/c1/3 dependence is actually
seen in the calculated access times. A study of the time it
takes for an ion to move from the reservoir into a region
farther from the channel entrance would be required to
reveal the expected 1/c concentration dependence. Never-
theless, this analysis clearly reveals that the rate-limiting
step in channel conduction is the time it takes for an ion to
enter the channel and escape the potential well created by
the mouth dipoles.

Conductance-concentration relationships

The transport of ions across the channel thus is determined
by two independent processes, one of which depends on
ionic concentration in the reservoir and one that does not. If
so, we expect that the currentI will first increase with an
increasing ionic concentration [c] and then saturate, leading
to a current-concentration relationship of the Michaelis-
Menten form:

I 5
Imax

1 1 Ks/@c#
, (16)

so that the current approaches the saturation currentImax

when [c] .. Ks.
The magnitude of current across the channel plotted

against the concentrations of potassium ions in the reser-
voirs, shown in Fig. 12, has the same shape as those ob-
served experimentally (Coronado et al., 1980; Rae et al.,
1988). The two curves in Fig. 12,A andB, are the outward
(filled circles) and inward (open circles) currents deter-
mined by assuminge 5 60 (A) ande 5 70 (B). The applied
potentials used for Fig. 12,A andB, are, respectively, 200
mV and 150 mV. The conductance increases rapidly with an
increasing ionic concentration initially and then saturates
with a further increase in concentration. The values ofImax

andKs used to fit the data points are forA, 41 6 1 pA and
1516 11 mM (outward currents), 24.26 0.8 pA and 1276
11 mM; for B, 36 6 1 pA and 1696 15 mM (outward
currents) and 20.66 0.5 pA and 776 9 mM. The concen-
trations for half-maximum currentsKs we derive are slightly
higher than the experimentally determined value for a po-
tassium channel from sarcoplasmic reticulum by Coronado
et al. (1980).

DISCUSSION

Taking advantage of the structural information recently
unveiled (Doyle et al., 1998), we have examined several key
issues on the permeation of ions across the potassium chan-
nel. First, from electrostatic calculations of energy barriers
encountered by ions moving across the channel, we reveal
the importance of the carbonyl groups lining the selectivity
filter, helix macrodipoles pointing toward the inner oval
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chamber and mouth dipoles located near the channel en-
trances. These dipoles render the channel permeable to ions.
Second, the results of BD simulations suggest that the
effective dielectric constant of the channel has to be high for
the conduction of ions to take place. They also provide the
upper and lower bounds that the moments of the dipoles
groups on the channel wall must possess. Finally, using BD
simulations, we deduce many of the macroscopically ob-
servable properties of this channel. Among these are the
channel conductance, the conductance-concentration curve,
current-voltage relationships, and the reversal potential in
asymmetrical ionic solutions.

Electrostatic calculations

Because the motion of ions across the membrane is ulti-
mately determined by electric forces acting on them, ob-
taining correct solutions of Poisson’s equation in dielectric
media is a prerequisite for constructing physical models of

ion channels. There are four sources that contribute to the
electric fields across the membrane conduit: the membrane
potential, charge residues on the protein wall, ions inside or
in the vicinity of the channel, and charges induced on the
protein wall by those ions. The last two sources interact
dynamically. As an ion moves from one position to another,
the pattern of induced surface charges changes, and the
induced surface charges in turn impede the motion of the
ion as it attempts to move across the channel. Using iterative
numerical methods, as detailed elsewhere (Hoyles et al.,
1996, 1998a, b), we derive the potential profile of an ion as
it moves across the channel along the central axis. Although
all sources contributing to the net electric field in and near
the channel, including induced surface charges, are taken
into account in deriving the energy profiles we illustrate
here, they only reveal an approximate and static picture of
how ions may move across the membrane through a narrow
pore formed by the protein wall. An assumption inherent in
macroscopic electrostatics is that the radius of the pore
through which ions travel is large compared to that of water
molecules. In the selectivity filter, whose radius is;1.5 Å,
the representation of the dielectric as a continuous medium
is a poor approximation. Moreover, in constructing the
potential profiles, we assumed that no other ions except the
test particles are present in the assembly.

Despite these simplifying assumptions, the potential pro-
files constructed using the macroscopic approximations re-
veal several salient features of the potassium channel. First,
an ion attempting to traverse the channel in the absence of
any fixed charges encounters a large potential barrier result-
ing from induced surface charges. The height of this barrier,
reaching up to 20 kT near the entrance of the selectivity
filter, renders the channel totally impermeable to ions. Sec-
ond, when 16 carbonyl groups together with four helix
dipoles are placed along the wall lining the selectivity filter,
the potential barrier is transformed into a deep potential
well, the depth of which exceeds 25 kT (Fig. 2). In the
absence of any potassium ions in the channel, the charge
groups together create a large potential gradient. The mag-
nitude of the electric potential near the inner chamber of the
channel (z 5 14 Å) is 21250 mV. This huge potential
source attracts two potassium ions, the presence of which
eliminates the deep well created by the polar groups on the
protein wall (Fig. 3).

Two ions attracted by the potential well come to occupy
the positions at which the total energy of the system is
minimized, and the repulsive Coulomb force experienced
by each of them is zero. Loosely speaking, these positions
are the “binding sites” in the channel. In reaction rate
theory, the diffusion of ions is modeled as a hopping pro-
cess, with ions jumping from one binding site to another,
and a hop being determined by the energy difference be-
tween the sites and the available thermal energy. This men-
tal picture does not adequately capture the essential features
of the diffusion process taking place in the channel. In
reality, rather than being bound to fixed binding sites, ions
are in perpetual thermal motion. At room temperature, the

FIGURE 12 The conductance-concentration curves. The outward (F)
and inward (E) currents are obtained with symmetrical solutions of varying
concentrations in the two reservoirs. An applied potential of 200 mV and
e 5 60 are used forA, while a potential of 150 mV ande 5 70 are used
for B. The lines fitted through data points are calculated with Eq. 16.
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average thermal velocity of potassium ions is;400 m/s,
nearly three orders of magnitude larger than their drift
velocity under the influence of an applied potential of 100
mV. As one of the two ions moves away from its equilib-
rium position under Brownian motion, the location of the
potential energy minimum for the other ion shifts. Thus, the
two ions will oscillate together, like an elastically coupled
pair of pendulums. At times, an ion near the extracellular
face of the selectivity filter will gain sufficient kinetic
energy to escape from the channel, and another or the same
ion reoccupies the energy well created by the ion that had
escaped. In the presence of a membrane potential of 100
mV, about a third of the time, the selectivity filter is occu-
pied by one ion only. Moreover, the preferred ion positions
are sensitive to the strength and the direction of the applied
potential (see Fig. 10). Thus a static picture obtained from
electrostatic calculations does not reveal dynamic interac-
tions taking place between ions and stochastic and system-
atic forces acting on them.

Model approximations for
semimicroscopic calculations

Ideally, we wish to simulate, for a period long enough to
measure conductance, motions of all water molecules and
ions in the channel and in the reservoirs, as well as motions
of all of the atoms that form the channel protein. Such
large-scale molecular dynamics simulations are not cur-
rently feasible. To deduce the macroscopically observable
properties of the channel, it is necessary to make several
simplifications and build an idealized model, which is a
smoothed-out representation of the real microstructure of
the channel. We make the following idealizations. First, we
treat water as a continuum in which ions move under the
influence of electrostatic forces and random collisions. By
making this assumption, we ignore the process of dehydra-
tion that must take place when an ion enters the selectivity
filter. Second, we represent the water-protein interface as a
single, sharp, and rigid boundary between dielectrics, al-
though in reality, the channel wall is lined with either
hydrophobic side chains or polar residues. Third, we apply
an external electric fieldE of a constant strength to repre-
sent a potential difference between the two faces of the
channel (see Kuyucak et al., 1998). In reality, a potential
difference across a lipid membrane is produced by a cloud
of unpaired ions on each side of the membrane; these
diffuse clouds extend up to 200 Å from the electrolyte-lipid
interface. It is not computationally feasible to include these
diffuse clouds of unpaired ions in our simulation. Finally,
the intracellular and extracellular spaces are mimicked by
two small reservoirs connected to the channel. The reser-
voirs contain only a fixed number of potassium and chloride
ions.

Two of the input parameters for BD simulations that are
subject to uncertainties are the diffusion coefficient of ions
in the channel and the effective dielectric constant of the

narrow pore. In a narrow cylindrical tube, ions under an
applied electric field are known to diffuse more slowly than
they do in bulk electrolytes (Allen et al., 1999b). The
magnitude to which the diffusion coefficient is reduced in a
cylindrical tube depends on a number of factors, including
the radius of the cylinder and the nature of the confining
wall. Our molecular dynamics calculations indicate that the
diffusion coefficient of potassium ions in the selectivity
filter is on average1⁄3 of the bulk value, whereas that in the
wider segment of the channel is nearly the same as the bulk
value. In one series of simulations, we systematically reduce
the diffusion coefficient in the selectivity filter to ascertain
how the channel conductance is influenced by this param-
eter (Fig. 7). A reduced ion diffusion in the selectivity filter
has relatively little effect on the conductivity. For example,
the current is attenuated on average by 25%, 32%, and 45%
when the diffusion coefficient is reduced to 40%, 30%, and
20% of the bulk value, respectively.

Molecular dynamics studies of water in spherical cavities
(Zhang et al., 1995) and narrow pores (Sansom et al., 1997)
suggest that the dielectric constante is substantially reduced
compared to the bulk value. The value ofe in the pore has
a pronounced influence on the channel conductance (Fig. 6).
As e is reduced, the current is progressively suppressed and,
at an applied potential of 200 mV, no conduction takes place
for e # 40. Thus, for conduction to take place, the effective
dielectric constant in the lumen must be high. In micro-
scopic terms, polar molecules resident in the pore must be
relatively free to rotate to form a hydration shell around a
potassium ion entering the channel. To fulfill this require-
ment, the wall of the pore must be lined with hydrophobic
amino acid residues. In the narrow selectivity filter, rings of
carbonyl oxygen atoms effectively play the role of water
molecules in the first hydration shell (Allen et al., 1999a).
Thus viewed from the interior of the channel protein, a
potassium ion in the filter would appear to be surrounded by
water molecules.

Channel conductance and
current-voltage relationships

If we make an assumption that the channel possesses three
groups of dipoles, whose moments are optimized so as to
translocate the maximum number of ions per unit time, then
our BD simulations give the strength of each dipole. The
values we derive are, in units of 10230 Cm, 7.2 for each of
the 16 carbonyl groups, 30 for each of the eight mouth
dipoles at the entrances of the channel, and 96.3 for each of
the four helix macrodipoles. The combination of these mo-
ments uniquely yields the maximum conductance of the
potassium channel, and the current is suppressed if the
strength of any of these dipoles is increased or decreased
(Figs. 4 and 5). The amount of charge we place on these
dipoles in our simulations is in accord with the moments
deduced experimentally and theoretically. The experimen-
tally determined strength of a carbonyl dipole is 7.23
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10230 Cm. This is the value used in the molecular dynamics
program CHARMM v25b2 (Brooks et al., 1983). A helix
dipole is believed to carry a charge of 0.83 10219 C on its
terminal (Hol et al., 1978), compared to 0.63 10219 C, the
optimum value we derive. In a previous BD simulation of
the ACh channel approximating the shape described by
Unwin (1989) and Toyoshima and Unwin (1988), a similar
configuration of mouth dipoles with strength 253 10230

Cm were used to match the experimentally determined
conductance (Chung et al., 1998). Similarly, once we know
the conductance of this potassium channel, then our BD
simulations give the effective dielectric constant of the pore.
One biophysical study on the KcsA channel incorporated
into liposome-protoplast vesicles gives several slope con-
ductance values (Schrempf et al., 1995), but it is difficult to
determine which levels are the main conductance and con-
ductance substates. It would be helpful to have careful
biophysical measurements on this channel, using, for exam-
ple, Sf9 insect ovarian cells infected with recombinant
baculovirus bearing the cDNA code (Vasudevan et al.,
1992).

Using the effective dielectric constant of 60 in our model,
we obtain the channel conductance of;40 pS (at 150 mM)
when a membrane potential of 100 mV is applied (Fig. 8).
The current-voltage relationship is ohmic for moderate ap-
plied potential, as is the case with many biological channels,
but it deviates from the linear Ohm’s law as the applied
potential increases. Whenever there is an energy barrier in
the channel that ions traversing across it have to surmount,
a curvature in the current-voltage relationship is expected to
be observed. Intuitively, a potential barrierVB is most
effective when the driving forceeV is small, and it will be
less of an impediment for ions when the driving force is
large. This line of intuitive reasoning suggests a modifica-
tion of Ohm’s law, as in Eq. 14. WheneV is much larger
than the potential barriers, the denominator approaches 1,
and one recovers Ohm’s law. ForeV,, VB, Eq. 14 is again
linear, but with a conductance reduced togV/(1 1 b). The
nonlinearity in the current-voltage curves becomes apparent
only wheneV ' VB, which corresponds to the regionV '
100–200 mV. Careful determination of the current-voltage
relationships for conductance and subconductance current
levels in the range of, say,6250 mV will yield useful
information about the permeation mechanisms in real bio-
logical channels.

There are two ways of providing the driving force that
can move the ion across the channel: a potential difference
or a concentration gradient between the two faces of the
channel. On a macroscopic level, these two are equivalent,
being coupled by the Nernst-Planck equation, and concen-
tration differences are often expressed as an equivalent
potential. On a microscopic level, however, the physical
processes are very different. An electric potential gradient
applies a force to every ion, causing it to acquire an average
drift velocity. A concentration gradient causes no forces on
the ions and no average drift velocity, but their random
Brownian motion carries the ions down the concentration

gradient. The current-voltage relationships constructed with
asymmetrical solutions can be adequately fitted with Eq. 14
multiplied by the Goldman factor (Fig. 9). Thus, despite the
simplifying constant field assumption that is made to inte-
grate the Nernst-Planck equation, the Goldman equation
appears to describe current-voltage curves adequately.

Current-concentration curves

Examining the frame-by-frame snapshots of the channel, we
demonstrate that the rate-limiting steps in conduction are for
an ion to enter the channel and then go over the potential
barrier, as indicated in Fig. 11A. Once an ion climbs out of
the well, it then rushes toward the selectivity filter at a
velocity that is nearly one order of magnitude higher than
the drift velocity. The time it takes for an ion to traverse the
wide section of the channel to the selectivity filter is neg-
ligibly short compared to the time an ion spends in and near
the intracellular entrance of the channel. If the depth of the
well is made deeper by increasing the strengths of the mouth
dipoles, the probability of an ion falling into this well per
unit time will be increased, but at the same time the prob-
ability of an ion climbing over the barrier will be decreased
exponentially.

The average timet it takes for an ion to transit the
channel has two components: the time needed for an ion to
access the channel (t1), and the time it takes an ion to
traverse the channel, allowing for the possibility of the ion
moving against the membrane potential and escaping to the
intracellular space (t2). The former,t1, is dependent both on
the electric fieldE across the channel and the ionic concen-
tration [c] in the reservoir, whereas the latter,t2, depends
solely on the electric field. In symbols,

t1 5 k1/@c#E, t2 5 k2/E, (17)

wherek1 and k2 are constants. The current carried by po-
tassium ions across the channel is

I 5
e

~t1 1 t2!
5

eE

k1/@c# 1 k2
. (18)

For large concentrations, Eq. 18 approaches a maximum
value that we denote byImax 5 eE/k2. Factoring outk2 and
introducingKs 5 k1/k2, Eq. 18 can be written in the form

I 5
Imax

1 1 Ks/@c#
. (19)

The above reasoning gives an intuitive explanation of the
current-concentration curves used in fitting the results in
Fig. 12. By a careful analysis of the average timest1 andt2

in BD simulations, it should be possible to quantify the
relations in Eq. 17 and thus provide a more microscopic
basis for the Michaelis-Menten equation. We plan to pursue
this question, as well as further connections with the tran-
sition-state theory, in a future publication.
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CONCLUDING REMARKS

In this and the accompanying paper, we have attempted to
relate, using two different computational approaches, the
molecular structure of the potassium channel to some of its
macroscopically observable properties. In molecular dy-
namics, the protein complexes that form the selectivity filter
are approximated with four pentapeptide chains. Either a
potassium or a sodium ion together with 198 water mole-
cules is simulated to construct the energy profiles encoun-
tered by these ions along the narrow conduit, deducing the
structural basis for ion selectivity (Allen et al., 1999a). In
this study, the magnitude of currents flowing through the
channel under various conditions is examined by simulating
via Brownian dynamics an assembly of ions interacting with
the protein wall. Both approaches have their shortcomings
when applied to ion channels. Molecular dynamics simula-
tions explain selectivity but cannot predict channel conduc-
tance, which is the most reliably measurable quantity. Con-
versely, the semimicroscopic approach we use here relies on
several judicious approximations to render the computations
tractable (that is, water is treated as a continuum, and the
effects of solvation and the structure of water are taken into
account by frictional and random forces acting on ions),
which, however, makes it impossible to explain the basis of
selectivity in terms of the channel structure.

The model we utilize for Brownian dynamics, which may
be construed as a simplified representation of the real mi-
crostructure of the channel, yields a set of testable predic-
tions that can be compared with patch-clamp recordings,
and the parameters featured in it should be further refined to
better predict experimental quantities. In this way, there can
be a fruitful interaction between experiment and theory, the
former providing hints and clues for further modifications
of the model, and the latter making new testable predictions.

This work was supported by grants from the Australian Research Council
and the National Health and Medical Research Council of Australia. The
calculations upon which this work is based were carried out using the
Fujitsu VPP-300 of the ANU Supercomputer Facility. A video segment of
animations showing the flow of ions across the potassium channel will be
made available upon request.
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