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Adaptive Learning Algorithms for Nernst Potential
and I-V Curves in Nerve Cell Membrane Ion
Channels modelled as Hidden Markov Models

Vikram Krishnamurthy, Senior Member, IEEE, Shin-Ho Chung

Abstract— We present discrete stochastic optimization algo-
rithms that adaptively learn the Nernst potential in membrane
ion channels. The proposed algorithms dynamically control both
the ion channel experiment and the resulting Hidden Markov
Model (HMM) signal processor and can adapt to time-varying
behaviour of ion channels. One of the most important properties
of the proposed algorithms are their its self-learning capability
– they spends most of the computational effort at the global
optimizer (Nernst potential). Numerical examples illustrate the
performance of the algorithms on computer generated synthetic
data.

Index Terms— Nernst potential, ion channel currents, Discrete
Stochastic Approximation, Hidden Markov Models

I. INTRODUCTION

An ion channel is a hole or pore in a nerve cell membrane.
In physical structure, an ion channel is a large protein molecule
whose different configurations correspond to the ion channel
being in a closed state or open state. The measurement of
ionic currents flowing through single ion channels in cell
membranes has been made possible by the giga-seal patch-
clamp technique [1], [2]. This was a major breakthrough
for which the authors of [1] won the 1991 Nobel prize
in Medicine. Because all electrical activities in the nervous
system, including communications between cells and the in-
fluence of hormones and drugs on cell function, are regulated
by membrane ion channels, understanding their mechanisms
at a molecular level is a fundamental problem in biology.
Moreover, elucidation of how single ion channels work will
ultimately help neurobiologists find the causes of, and possibly
cures for, a number of neurological and muscular disorders.

Ion channel currents are typically of the order of pico-
amps (i.e. , 10−12 amps). In patch clamp experiments these
minute ion channel currents are obfuscated by large amounts
of thermal noise. Chung et al. [3], [4] first introduced the
powerful paradigm of Hidden Markov Models (HMMs) to
characterize patch-clamp recordings of small ion channel
currents contaminated by random and deterministic noise. By
using sophisticated HMM signal processing methods, [3], [4]
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demonstrated that the underlying parameters of the HMM
could be obtained to a remarkable precision despite the
extremely poor signal to noise ratio. These HMM parameter
estimates yield important information into the dynamics of ion
channels.

Prior to the works [3], [4], HMMs were mainly used in
electrical engineering in the disciplines of artificial speech
recognition and target tracking in defense systems. Since the
publication of [3], [4], several papers have appeared in the
neuro-biological community that generalize the HMM signal
models in [3], [4] in various ways to model measurements of
ion channels, see [5] and the references therein. With these
HMM techniques, it has now possible for neurobiologists to
analyze not only large ion channel currents but also small
conductance fluctuations occurring in noise.

In this paper, we address the deeper and more fundamental
problem of how to adaptively learn and control the behaviour
(open state current level) of a single ion channel in a nerve
cell membrane. By using recent state-of-the art methods from
the electrical engineering disciplines of discrete-event-systems
and stochastic control, we develop algorithms to adaptively
control the applied voltage to a patch clamp experiment in
order to dynamically learn the so called “Nernst” potential
and current-voltage characteristics of the ion channel. This re-
search transcends the work in [3], [4], [5] that dealt exclusively
with HMM signal processing to estimate the channel currents.
It addresses the deeper underlying issue of how to dynamically
learn and adaptively control the behaviour of the ion channel
and the associated HMM signal processing algorithm.

I-V Curve and Nernst Potential: A typical trace of the ion
channel current measurement from a patch clamp experiment
(after suitable anti-aliasing filtering and sampling) shows that
the channel current is piecewise constant discrete time signal
that randomly jumps between two values – zero amperes which
denotes the closed state of the channel, and I(v) amperes
which denotes the open state. I(v) is called the open-state
current level. Sometimes the current recorded from single ion
channel dwells on one or more intermediate levels, known
as conductance substates. For simplicity, here we deal with a
two-state process, but the algorithm we propose can readily
be extended to channel recordings that contain conductance
substates. The open state current level I(v) depends on the
voltage v that is applied by the experimenter to the ion
channel. Let {in(v)} denote the discrete-time ion channel
current sequence with n = 0, 1, . . . , denoting discrete time.

In characterizing different types of ion channels, neuro-
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biologists routinely construct current-voltage (I-V) curves.
The curve represents the variation of the open state current
level I(v) of the ion channel as a function of the applied
voltage value v. Such I-V curves yield a unique signature of a
particular ion channel, revealing its operating characteristics.
Different ion channel types show different shapes of I-V
curves. For example, the relationship may be linear or Ohmic
in some ion channels, whereas it may be superlinear or
sublinear for other ion channels. The magnitude of the current
flowing in one direction at a given potential difference may
be equal in some ion channels, whereas the two arms of the
I-V curve are asymmetrical in other ion channels. The I-V
curve is always monotonically increasing – i.e. , I(v) is a
monotonically increasing function of v.

The zero point of the I-V curve, i.e. , the voltage v∗ at
which the open state current level I(v∗) is zero, is known as
the Nernst potential. The Nernst potential gives information
about the relative concentrations at the two faces of the ionic
channel. The value of the open state current level I(v) is
described by the Nernst-Planck equation that combines Ohm’s
and Fick’s laws.

Fig.1 shows an example of an I-V curve of a membrane ion
channel. The shape of the I-V curve illustrated in the figure
incorporates several features observed in many experimentally
observed I-V curves: linear and nonlinear segments, a satura-
tion of current with increasing driving force (voltage), and an
asymmetry between outward and inward currents (i.e., the I-V
curve for I(v) > 0 and I(v) < 0, respectively). The Nernst
potential (voltage at which vertical broken line intersects the
v axis) is v∗ = −64 mV.
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Fig. 1. Typical I-V curve of Membrane Ion Channel. This graph of I(v)
versus v shows how the open state current level I(v) varies with applied
voltage v. The Nernst potential is the voltage v at which I(v) = 0 (dashed
lines).

Before describing our adaptive learning and control method-
ology, we briefly outline two existing methods for estimating
the Nernst potential and I-V curves:

(i) Filtered Trace Brute force Approach: This method is
widely used by neurobiologists to estimate the I-V curve

and determine the Nernst potential. First, several possible
candidate voltages v are chosen. For each of these voltages
v, a patch clamp experiment is run for a long time – typically
several minutes. The measured ion channel current sequence
{yn(v)} is then heavily low-pass filtered – and an estimate of
the current level I(v) is determined visually. The Nernst poten-
tial is typically deduced by measuring the current levels near
its vicinity and then linearly extrapolating the data points. This
approach is highly unreliable when the signal to noise ratio is
low – which is almost always the case in typical patch clamp
experiments. It is also very expensive since the experiments
are not controlled to extract maximum information about the
Nernst potential.

(ii) HMM Brute Force Approach: Given that ionic chan-
nels can be modeled extremely well by Hidden Markov
Models (HMMs) [4], [5], an obvious improvement to the
above approach is to replace the visual estimation step by
a HMM parameter estimation algorithm operating over long
data sequence {yn(v)} for each voltage value v. The HMM
parameter estimation algorithm yields a maximum likelihood
estimate (MLE) of the open state current level I(v). In this
way by running a separate experiment along with a HMM
estimator for each possible voltage value v, the I-V curve
can be accurately estimated. Such a brute force approach for
estimating the I-V curve is experimentally and computationally
inefficient, since running a single expensive patch clamp
experiment for several minutes and obtaining an estimate of
(I(v), v) at an arbitrary value of v yields no information
about the Nernst potential v∗. Furthermore this approach is
inherently off-line and is not suitable for tracking I-V curves
and Nernst potentials v∗ that change slowly with time.

Our approach: The aim of this paper is to propose algo-
rithms that efficiently learns the I-V curve from the noisy
observed channel current sequence {yn(v)} by dynamically
controlling the applied voltage v. A schematic of our proposed
methodology is summarized in Fig.2. The proposed algorithm
dynamically controls (schedules) the choice of voltage v at
which the ion channel operates in order to efficiently estimate
the Nernst potential (zero current point) and deduce how the
current increases or decreases as the applied voltage deviates
from the Nernst potential. Thus at a given time instant, given
the current estimate from a HMM estimator operating at a par-
ticular voltage, the aim is to devise a scheduling algorithm that
dynamically decides which voltage value to pick at the next
time instant to apply to the ion channel. The most important
aspect of the resulting combined experiment scheduling/HMM
estimation algorithm is its self learning capability – it is
provably convergent to the Nernst potential estimate and is
provably efficient – that is the algorithm spends more time
running the ion channel at the Nernst potential than any other
voltage.

The adaptive learning algorithms (see Fig.2) we propose are
based on recent discrete stochastic approximation algorithms
that have recently been developed in the operations research
literature [6], [7]. The basic idea is to generate a homogeneous
Markov chain taking values which spends more time at the
zero point v∗ than at any other voltage v. We propose a
novel modification to track a time varying Nernst potential
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for adaptive learning.
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Fig. 2. Dynamic Control of Ion Channel for Learning Nernst Potential

In terms of Fig.2 which depicts our approach, the filtered
trace brute force approach (i) outlined above, omits the HMM
processor and learning algorithm and yields very poor esti-
mates of the I-V curve. The brute force HMM approach (ii)
outlined above, omits the adaptive learning step and hence is
highly inefficient.

The rest of this paper is organized as follows. Sec.II
describes the patch clamp experiment setup and formally
presents a stochastic signal model (HMM) for a channel ion
current. In Sec.III the learning algorithm is described. In
Sec.IV an adaptive learning algorithm is presented for tracking
time varying Nernst potentials. Also the performance of the
algorithm is analysed analytically. Finally, Sec.V illustrates
the performance of these algorithms in computer simulations.
These simulations show that using the learning algorithms
result in a remarkable improvement in overall efficiency.

II. ION CHANNEL MODEL AND CURRENT VOLTAGE (I-V)

CURVE

In this section we give a precise formulation of the ion
channel current signal model and the experimental setup. This
allows us to mathematically formulate the Nernst potential and
I-V curve learning problem in Sec.III.

A. Measurements of Ionic Currents Flowing Across Single Ion

Channels

The measurement of ionic currents flowing through single
ion channels in cell membranes has been made possible by the
giga-seal patch-clamp technique [1], [2]. A tight seal between
the rim of the electrode tip and the cell membrane drastically
reduces the leakage current and extraneous background noise,
enabling the resolution of the discrete changes in conductance,
which occur when single ion channels open or close.

neurobiologists widely use either one of the following two
patch clamp experimental setups – the techniques in this paper
apply to both these setups.
(i) Cell-Attached Patch: To record currents from single ion
channels, the tip an electrode, with the diameter of about
1 µm, is pushed against the surface of a cell, and then a tight
seal is formed between the rim of the electrode tip and the
cell membrane. A patch of the membrane surrounded by the

electrode tip usually contains one or more single ion channels.
The current flowing from the inside of the cell to the tip
of the electrode through a single ion channel is monitored.
This is known as “cell-attached” configuration of patch clamp
techniques for measuring ion channel currents through a single
ion channel. Fig.3 shows the schematic setup of the cell in
electrolyte and the electrode pushed against the surface of the
cell.

+

−

cell

Electrode

ci, Ei

co Eo

Fig. 3. Cell-Attached Patch Experimental Setup

In a living cell, there is a potential difference between its
interior and the outside environment, known as the membrane
potential. Typically, the cell interior is about 60 mV more
negative with respect to outside. Also, the ionic concentrations
(mainly Na+, Cl− and K+) inside of a cell is very different
from outside of the cell. In the cell-attached configuration, the
ionic strength in the electrode is usually made same as that
in the outside of the cell. Let Ei and Eo, respectively, denote
the resting membrane potential and the potential applied to
the electrode. If Eo is identical to the membrane potential,
there will be no potential gradient across the membrane patch
confined by the tip of the electrode. Let ci denote the intra-
cellular ionic concentration and co the ionic concentration in
the electrode. Here the intra-cellular concentration ci inside
the cell is unknown as is the resting membrane potential Ei.
co and Eo are set by the experimenter and are known.

Let v = Eo − Ei denote the potential gradient. Both the
potential gradient v and concentration gradient co − ci drive
ions across an ion channel resulting in an ion channel current
{in(v)}. As described in Sec.I, this ion channel current is a
piece-wise constant signal that jumps between the values of
zero and I(v), where I(v) denotes the current when the ion
channel is in the open state.

The potential Eo (and hence potential difference v) is
adjusted experimentally until the current I(v) goes to zero.
This voltage v∗ at which the current I(v∗) vanishes is called
the Nernst potential and satisfies the so called Nernst equation

v∗ = −kT

e
ln

co

ci

= −59 log10

co

ci

(mV), (1)

where e = 1.6 × 10−19 C denotes the charge of an electron,
k denotes Boltzmann’s constant and T denotes the absolute
temperature. The Nernst equation (1) gives the potential dif-
ference v required to maintain electro-chemical equilibrium
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when the concentrations are different on the two faces of the
membrane.

Once the Nernst potential v∗ is determined, by computing
estimates of the current I(v) at several values of v around v∗,
the experimenter can straightforwardly determine if the I-V
response of the ion channel is Ohmic (linear) or not. Often in
the cell-attached experimental setup, the membrane potential
can slowly fluctuate with time which results in the Nernst
potential slowly evolving with time. The proposed algorithm
can track how the membrane potential changes spontaneously
or in response to certain experimental maneuver.
(ii) Excised Patch: A patch of the nerve cell membrane
confined by the tip of the electrode can be detached from the
cell, as shown in Fig. 4. In this excised configuration of patch-
clamp technique, both ci and co, as well as Ei and Eo, are
known. Here again, it is important to determine the reversal
potential Erev accurately. For example, the ionic solutions in
the electrode and the bath may contain a mixture of ionic
species, such as Na+, Cl− and K+. The ion channel contained
in the membrane patch may be permeable to, for example,
Na+ and K+, as the case with the acetylcholine receptor or
Na+ and Cl− as the case with certain mutant glycine receptors
[8]. It is important to deduce the permeability ratio of the ion
channel, namely, the ratio between the number of Na+ ions
and K+ ions that move across the ion channel per unit time.
This ratio can be deduced by accurately determining the zero
current using the Goldman-Hodgkin-Katz voltage equation [9]
of the form:

Erev =
kT

e
ln

PK[K]o + PNa[Na]o + PCl[Cl]o
PK[K]i + PNa[Na]i + PCl[Cl]i

. (2)

Here PK, PNa and PCl refer to the permeability of K+, Na+

and Cl−, respectively. As in the cell-attached configuration, the
reversal potential may drift slowly in time, owing to changes
in the junction potential – implying that the Nernst potential
slowly evolves with time.

+
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Fig. 4. Excised Patch Experimental Setup

B. HMM for Ion Channel Current and Parameter Estimation

of Burst Current State I(v)

Since our aim in this paper is to adaptively learn and
control the behaviour of an ion channel current modelled as

a HMM, in this subsection we formally define the HMM for
the ion channel current and briefly describe MLE algorithms
for HMMs. Such probabilistic models for ion channels based
on HMMs are now widely used [4], [5].

Markov Model for Ion Channel Current: Suppose a patch
clamp experiment is conducted with a voltage v applied across
the ion channel. Then, as described in [4], [5], the ion channel
current {in(v)}, can be modelled as a three state homogeneous
first order Markov chain. The state space of this Markov
chain is {0g, 0b, I(v)} corresponding to the physical states
of gap mode, burst-mode-closed and burst-mode-open. For
convenience, we will refer to the burst mode closed and burst-
mode-open states as the open and closed states, respectively.
In the gap mode and the closed state the ion channel current
is zero. In the open state, the ion channel current has a value
of I(v).

The (3×3) transition probability matrix A(v) of the Markov
chain {in(v)}, which governs the probabilistic behaviour of
the channel current, is given by

A(v) =

0g 0b I(v)
0g a11(v) a12(v) 0
0b a21(v) a22(v) a23(v)

I(v) 0 a32(v) a33(v)

(3)

The elements of A(v) are the transition probabilities aij(v) =
P (in+1(v) = j|in(v) = i) where i, j ∈ {0g, 0b, I(v)}. The
zero probabilities in the above matrix A(v) reflect the fact that
a ion channel current cannot directly jump from the gap mode
to the open state, similarly an ion channel current cannot jump
from the open state to the gap mode. Note that in general, the
applied voltage v affects both the transition probabilities and
state levels of the ion channel current {in(v)}.
HMM Observations: Let {yn(v)} denote the measured noisy
ion channel current at the electrode when conducting a patch
clamp experiment:

yn(v) = in(v) + wn(v), n = 1, 2, . . . (4)

Here {wn(v)} is thermal noise and is modelled as zero mean
white Gaussian noise with variance σ2(v). Typical sample
paths of this HMM observation sequence {yn(v)} are shown
in Figs.2, 3 and 4. Thus the observation process {yn(v)} is a
Hidden Markov model sequence parameterized by the model

λ(v) = {A(v), I(v), σ2(v)} (5)

where v denotes the applied voltage. We remark here that the
results in this paper trivially extend to observations models
where the noise process wn(v) includes a time-varying de-
terministic component together with white noise – only the
HMM parameter estimation algorithm needs to be modified
as in [10].
HMM Parameter Estimation of Current Level I(v): Given
the HMM mode for the ion channel current above, estimating
I(v) for a fixed voltage v, involves processing the noisy
observation {yn(v)} through a Hidden Markov Model max-
imum likelihood parameter estimator. The most popular way
of computing the maximum likelihood estimate (MLE) I(v)
is via the Expectation Maximization (EM) algorithm (Baum
Welch equations). The EM algorithm is an iterative algorithm
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for computing the MLE. It is now fairly standard in the
signal processing and neuro-biology literature – see [11] for a
recent exposition – or [4] which is aimed at neurobiologists.
For convenience the EM algorithm for estimating I(v) is
summarized in the appendix.

Let Î∆(v) denote MLE of I(v) based on the ∆-point
measured channel current sequence (y1(v), . . . , y∆(v)). For
sufficiently large batch size ∆ of observations, due to the
asymptotic normality of the MLE for a HMM [12],

√
∆

(
Î∆(v) − I(v)

)
∼ N(0, Σ(v)) (6)

where Σ−1(v) is the Fisher information matrix. Thus asymp-
totically Î∆(v) is an unbiased estimator of I(v), i.e. ,
E{Î∆(v)} = I(v) where E{·} denotes the mathematical
expectation operator.

III. DISCRETE STOCHASTIC OPTIMIZATION BASED HMM

ALGORITHM

In this section we formulate the ion channel learning/control
problem as a discrete stochastic optimization problem. A novel
discrete stochastic approximation algorithm is presented for
efficiently solving this problem.

A. Formulation as Discrete Stochastic Optimization Problem

As described in the previous section, determining the Nernst
potential v∗ requires conducting experiments at different val-
ues of voltage v. In patch clamp experiments, the applied
voltage v is usually chosen from a finite set. Let

v ∈ V = {θ(1), . . . , θ(M)}
denote the finite set of possible voltage values that the ex-
perimenter can pick. For example, in typical experiments, if
one needs to determine the Nernst potential to a resolution of
4 mV, then M = 80 and θ(i) are uniformly spaced in 4 mV
steps from θ(1) = −160 mV and θ(M) = 160 mV.

Note that the Nernst potential v∗ (zero crossing point) does
not necessarily belong to the discrete set V – instead we will
find the point in V that is closest to v∗ (with resolution θ(2)−
θ(1)). For the rest of this paper with slight abuse of notation we
will denote the element in V closest to the Nernst potential as
v∗. Thus determining v∗ ∈ V can be formulated as a discrete
optimization problem:

v∗ = argmin
v∈V

|I(v)|2

Our choice of using a quadratic objective function (instead
of for example, arg minv∈V |I(v)|) is because it allows us to
conveniently reformulate the optimization problem to be linear
in the expected value – see (10) below.

As explained in the HMM formulation above, due to the
presence of large amounts of thermal noise, I(v) cannot
be exactly evaluated and only unbiased estimates Î(v) are
available. Thus computing the Nernst potential is equivalent
to the following discrete stochastic optimization problem:

Compute v∗ = argmin
v∈V

[
E{Î(v)}

]2

(7)

where Î(v) is the MLE of the parameter I(v) of the HMM.
Since for a HMM, no closed form expression is available
for Σ−1(v) in (6), the above expectation cannot be evaluated
analytically. This motivates the need to develop a simulation
based (stochastic approximation) algorithm.
HMM Brute Force Approach: As explained in Sec.I, the
brute force approach [13, Chapter 5.3] for solving (7) involves
an exhaustive enumeration as follows: For each v ∈ V ,
run an independent experiment to gather the sample path
{y1(v), y2(v), . . . , y∆(v)} for a very large batch size ∆.
Compute the MLE Î(v) via a HMM parameter estimator.
Finally pick v̂∗ = arg minv∈V |Î(v)|2. Since for any fixed
v ∈ V , the MLE Î(v) is strongly consistent [14], Î(v) → I(v)
w.p.1, as the batch size ∆ → ∞. This and the finiteness of V
imply that as ∆ → ∞,

argmin
v∈V

(
Î(v)

)2 → arg min
v∈V

(
I(v)

)2
w.p.1. (8)

Thus in principle, the above brute force simulation method can
solve the discrete stochastic optimization problem (7) for large
∆ and the estimate is consistent, i.e. , (8) holds. However, the
method is highly inefficient since Î(v) needs to be evaluated
for each v ∈ V . The evaluations of Î(v) for v 6= v∗ are
wasted because they contribute nothing to the estimation of
the ion channel current i(v∗) at the Nernst potential v∗. Also
the brute force approach does not exploit the fact that the I-
V curve is monotonically increasing. Finally, the brute force
method is inherently off-line, it cannot be used to adaptively
track a slowly time varying Nernst potential.

For M = 80, the brute force approach to compute the
Nernst potential requires conducting a total of 80 experiments,
one at each value of v ∈ V . For a typical sampling rate of
100 kHz and 10 minutes of data per experiment, 6 × 107

observations are obtained per experiment which need to be
processed by a HMM MLE estimator.

B. Discrete Stochastic Approximation Algorithm

The idea of discrete stochastic approximation [7] is to de-
sign a plan of experiments which provides more observations
in areas where the Nernst potential is expected and less in
other areas. More precisely what is needed is a dynamic re-
source allocation (control) algorithm that dynamically controls
(schedules) the choice of voltage at which the HMM estimator
operates in order to efficiently obtain the zero point and deduce
how the current increases or decreases as the applied voltage
deviates from the Nernst potential. We propose a discrete
stochastic approximation algorithm that is both consistent
(i.e. , (8) holds) and attracted to the Nernst potential. That is,
the algorithm should spend more time gathering observations
{yn(v)} at the Nernst potential v = v∗ and less time for other
values of v ∈ V . Thus in discrete stochastic approximation
the aim is to devise an efficient [13, Chapter 5.3] adaptive
search (sampling plan) which allows to find the minimizer v∗

with as few samples as possible by not making unnecessary
observations at non-promising values of v.

There are several different classes of methods that can be
used to solve the discrete stochastic optimization problem (7);
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see [7], [15] for a recent survey. When the feasible set V is
small (usually 2 to 20 elements), ranking and selection meth-
ods, and multiple comparison methods can be used to locate
the optimal solution. However for large V the computational
complexity of these methods becomes prohibitive.

Problem (7) can also be viewed as a multi-armed bandit
problem — which is a special kind of an infinite horizon
Markov decision process with an “indexable” optimal policy.
However, as mentioned in [7] multi-armed bandit solutions
and learning automata procedures often tend to be conservative
because they are designed to spend as much time as possible
at the optimum solution. Moreover, in the tracking case –
where the Nernst potential slowly evolves with time, a bandit
formulation would require explicit knowledge of the dynamics
of the change of the Nernst potential which is virtually
unknown.

In recent years a number of discrete stochastic approx-
imation algorithms have been proposed. Several of these
algorithms [6], [7], [16] including simulated annealing type
procedures and stochastic ruler [16] fall into the category of
random search. In this paper we construct algorithms based
on the random search procedures in [6], [7]. The basic idea
is to generate a homogeneous Markov chain taking values in
V which spends more time at the global optimum than at any
other element of V . We will show that these algorithms can be
modified for tracking time-varying Nernst potentials. Finally,
it is worthwhile mentioning that there are other classes of
simulation-based discrete stochastic optimization algorithms
such as nested partition methods [15] which combines parti-
tioning, random sampling and backtracking to create a Markov
chain that converges to the global optimum – we will examine
such methods in future work.

Notation: Let n = 1, 2, . . . denote discrete time. The proposed
algorithm is recursive and requires conducting experiments on
batches of data. Since experiments will be conducted over
batches of data, it is convenient to introduce the following
notation. Group the discrete time into batches of length ∆
– typically ∆ = 10, 000 in experiments. We use the index
N = 1, 2, . . . to denote batch number. Thus batch N comprises
of the ∆ discrete time instants n ∈ {N∆, N∆ + 1, . . . , (N +
1)∆ − 1}.
Let DN = (DN (1), . . . , DN(M))′ denote the vector of du-
ration times the algorithm spends at the M possible potential
values in V .

Finally for notational convenience define the M dimensional
unit vectors, em, m = 1, . . . , M as

em =
[
0 · · · 0 1 0 · · · 0

]′
(9)

with 1 in the m-th position and zeros elsewhere.

The discrete stochastic approximation algorithm of [6] is
not directly applicable to the cost function (7) – since it ap-
plies to optimization problems of the form minv∈V E{C(v)}.
However, (7) can easily be converted to this form as follows:
Let Î1(v), Î2(v) be two statistically independent unbiased
HMM estimates of I(v). Then defining Ĉ(v) = Î1(v)Î2(v), it

straightforwardly follows that

E{Ĉ(v)} =

[
E{Î(v)}

]2

= |I(v)|2 (10)

The discrete stochastic approximation algorithm we propose
is as follows:

Algorithm 1: [Algorithm for Learning Nernst Potential ]

• Step 0: (Initialization.) At batch-time N = 0, select

starting point X0 ∈ {1, . . . , M} randomly. Set D0 =

eX0
, Set initial solution estimate v̂∗

0 = θ(X0).

• Step 1: (Sampling.) At batch-time N , sample X̃N ∈
{XN − 1, XN + 1} with uniform distribution.

• Step 2: (Evaluation and Acceptance.) Apply voltage

ṽ = θ(X̃N ) to patch clamp experiment. Obtain two ∆

length batches of HMM observations. Let Î
(1)
N (ṽ) and

Î
(2)
N (ṽ) denote the HMM-MLE estimates for these two

batches which are computed using the EM algorithm of

Appendix A. Set ĈN (ṽ)) = Î
(1)
N (ṽ)Î

(2)
N (ṽ).

Then apply voltage v = θ(XN ). Compute the HMM-

MLE estimates for these two batches, denoted as Î
(1)
N (v)

and Î
(2)
N (v). Set ĈN (v)) = Î

(1)
N (v)Î

(2)
N (v).

If ĈN (ṽ) < ĈN (v), set XN+1 = X̃N , else, set XN+1 =

XN .

• Step 3: (Update occupation probabilities of XN .)

DN+1 = DN + eXN+1

• Step 4: (Update estimate of Nernst potential.) v̂∗
N =

θ(m∗) where m∗ = argmaxm∈{1,...,M} DN+1(m), set

N → N + 1, go to Step 1.
The proof of convergence of the algorithm is given in

Theorem 1 below. The main idea behind the above algorithm is
that the sequence {XN} (or equivalently {θ(XN )}) generated
by Steps 1 and 2 is a homogeneous Markov chain with state
space {1, . . . , M} (respectively, V ) that is designed to spend
more time at the global maximizer v∗ than any other state. In
the above algorithm, v̂∗

N denotes the estimate of the Nernst
potential at batch N .

In Step 3, the vector DN+1 is a counter for the occupation
times of XN in the M possible states, i.e. , DN(m), m ∈
{1, . . . , M} measures the number of times the Markov chain
{XN} has visited the state m until batch N .

The maximization in Step 4 means that the estimate v̂∗
N of

the Nernst potential v∗ is merely the particular state in V at
which the Markov chain θ(XN ) has spent most time. We will
show below that v̂∗

N → v∗ w.p.1, meaning that the algorithm
is both attracted to the maximum (i.e. , spends more time in
v∗ compared to any other state in V ) and is consistent.
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Interpretation of Step 3 as Decreasing Step Size Adaptive
Filtering Algorithm: Define the occupation probability esti-
mate vector as π̂N = DN/N . Then the update in Step 3 can
be re-expressed as

π̂N+1 = π̂N + µN+1

(
eXN+1

− π̂N

)
, π̂0 = eX0

(11)

This is merely an adaptive filtering algorithm for updating π̂N

with decreasing step size µN = 1/N .
Hence Algorithm 1 can be viewed as a decreasing step

size algorithm which involves a least mean squares (LMS)
algorithm (with decreasing step size) in tandem with a random
search step and evaluation (Steps 1 and 2) for generating Xm.
Fig. 5 shows a schematic diagram of the algorithm with this
LMS interpretation for Step 3.
Implementation Details:
1. Since the sequence {v̂∗

N} does not feed back into the
recursive part of Algorithm 1, it does not have to be computed
at each time instant. It is clearly not necessary to store the
sequences {XN}, {v̂N}, {ĈN} {DN} for all N = 1, 2, . . ..
They can be overwritten at each time. The main memory over-
head required for the algorithm is storing the local variables
at batch N , which requires O(M) memory.
2. In Step 2, at batch-time N , instead of running the exper-
iment to record 2 batches of data and computing ĈN (v), in
numerical experiments we used ĈN−1(v) (i.e. , the estimate
from the previous batch). The acceptance step is then: If
ĈN (ṽ) < ĈN−1(v), set XN+1 = X̃N , else, set XN+1 = XN .
In our numerical experiments this did not seem to affect
convergence of the algorithm. With this simplification, Step
2 only requires applying the voltage ṽ to obtain two ∆-length
batches of HMM observations.
3. Complexity: The computational cost of Steps 1, 3 and 4
are negligible compared to Step 2, hence we only consider
the complexity of Step 2. For a batch size of ∆ = 10000
HMM data points, running the EM algorithm for 500 iterations
on a 2 GFlop Pentium 4 takes approximately 0.002 secs.
(This is because each iteration of the EM algorithm for a S-
state Markov chain and ∆ length data batch involves S2∆
multiplications). In comparison, since the experimental data
is obtained at a sampling frequency of 100 kHz, obtaining a
batch of 10000 HMM measurements takes approximately, 0.1
secs. So the computational time of Algorithm 1 is only 2%
of the data acquisition time – meaning that the algorithm is
suitable for real time control of the patch clamp experiment.
In particular, for Step 2 after collecting the first batch of ∆
points, a HMM processor can be used to directly process these
measurements (in 0.002 secs) while the second batch of ∆
points is being collected (which takes 0.1 secs).

Step 1.
Sample X̃N

Step 2. Run
patch clamp expt
at voltages v(XN )

and v(X̃N ).

MLE estimator.

and Ĉ(v).
X̃N

XN

from
{XN − 1, XN + 1}

max

π̂M

v̂∗N
Evaluate ĈN (ṽ) Adaptive filter

Step 3.
Step 2. HMM

step size µN

Fig. 5. Schematic of Algorithm 1.

4. Test for Ohmic I-V Curve: Because Algorithm 1 is attracted
to the Nernst potential v∗, i.e. , it spends more time at v∗ than
any other voltage in V , the algorithm also spends more time
at voltages v ∈ V close to v∗ than those far away from v∗.
This results in improved accuracy of the estimates Î(v) for
v close to v∗. Having determined these estimates Î(v) for v
close to v∗, simple hypothesis tests can be used to determine
if Î(v) vs v is linear in the neighborhood of v∗.

C. Convergence and Attraction of Algorithm 1

Throughout this section we assume:

(N) The batch size ∆ is sufficiently large (e.g ∆ = 10, 000)
so that due to (6), the MLE estimates Î

(1)
N (v), Î

(2)
N (v) are

N(I(v), Σ(v)) Gaussian random variables.

As mentioned above, processing a batch size ∆ = 10, 000
takes negligible time compared to the data acquisition time.
Actually in the theorem below, we only require that Î

(1)
N (v),

Î
(2)
N (v) have symmetric probability density functions with

mean I(v). In [6], the following stochastic ordering assump-
tion was used for convergence of the Algorithm 1.

(O) For any m ∈ {1, . . . , M − 1},

I2(θ(m + 1)) > I2(θ(m)) =⇒

P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
> 0.5

I2(θ(m + 1)) < I2(θ(m)) =⇒

P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
< 0.5

Theorem 1: Under the condition (O) above, the sequence

{θ(XN )} generated by Algorithm 1 is a homogeneous, ape-

riodic, irreducible Markov chain with state space V . Further-

more, Algorithm 1 is attracted to the Nernst potential v∗, i.e. ,

for sufficiently large N , the sequence {θ(XN )} spends more

time at v∗ than an other state. (Equivalently, if θ(m∗) = v∗,

then DN (m∗) > DN (j) for j ∈ {1, . . . , M} − {m∗}.)
Proof: Given that the objective function (10) is exactly

of the form of the cost function in [6], we only need to verify
condition (O). This is done below. It then follows from [6,
Theorem 2.1] that Algorithm 1 converges to a local minimum.
However, I(v) is a monotonically increasing function of v.
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Hence I2(v) has only a single minimum which is the global
minimum. Thus under condition (O), Algorithm 1 converges
to the Nernst potential.

We now verify condition (O) for the HMM estimator based
I-V model. Recall from (10) that Ĉ(v) = Î1(v)Î2(v) where
Î1(v), Î2(v) ∼ N(I(v), Σ(v)) due to normality assumption
(N). Expanding out Ĉ(v) = Î1(v)Î2(v) yields Ĉ(v) =
I2(v) + W (v) where W (v) is a zero mean random variable
with symmetric probability density function. It is proved in
Theorem 3.1 and Lemma 3.1 of [17] that if W (v) is a zero
mean random variable with symmetric probability density
function then condition (O) holds.
Remark: The proof of the above theorem holds as long as
the HMM MLE estimates Î1(v) and Î2(v) are unbiased with
symmetric density functions (not necessarily Gaussian) about
the mean I(v).

IV. ADAPTIVE LEARNING ALGORITHMS FOR TRACKING

TIME-VARYING CURRENT-VOLTAGE (I-V) CURVES

Here we consider the case where due to slow fluctuations
in the membrane potential, the Nernst potential slowly evolves
with time. We denote the time varying Nernst potential by
the sequence {v∗

N}, where as usual N = 1, 2, . . . denotes
batch-time and v∗

N ∈ V . Such non-stationary environments
are at the very heart for applications of adaptive stochastic
approximation algorithms in statistical signal processing to
track time-varying parameters.

A. Constant Step-size Discrete Stochastic Approximation Al-

gorithm

We propose the following constant step-size discrete
stochastic approximation algorithm for tracking the time-
varying parameter.

Algorithm 2: [Adaptive Algorithm for Tracking Time-

Varying Nernst Potential]

• Step 0, 1 and 2 Identical to Algorithm 1.

• Step 3 (Constant Step Size Adaptive Filter to update

Occupation Probabilities). Replace (11) in Step 3 of

Algorithm 1 with the following fixed step-size algorithm

least mean square (LMS) algorithm

π̂N+1 = π̂N + µ
(
eXN+1

− π̂N

)
, π̂0 = eX0

(12)

where 0 < µ < 1 is the constant step size.

• Step 4 Identical to Algorithm 1.
Remark: As long as the step size satisfies 0 < µ < 1, π̂N is
guaranteed to be a probability vector for any N . To see this,
note that with 1M

′ denoting the M dimensional column vector
of ones, 1M

′(eXN+1
− π̂N ) = 0 implying that 1M

′π̂N+1 =
1M

′π̂N = 1. Also rewriting (12) as (1 − µ)π̂N + µeXN+1

implies that all elements of π̂N+1 are non-negative for 0 <
µ < 1.

The constant step size µ introduces an exponential forgetting
of the past occupation probabilities and permits us to track
slowly time-varying Nernst potentials v∗

N . Its schematic is
similar to Fig.5 but with µ now a fixed step size in the LMS
algorithm. Thus Algorithm 2 can be viewed as a discrete
sampling and evaluation step in tandem with a fixed step-size
adaptive filtering (e.g. , LMS) algorithm.

B. Performance Analysis of Algorithm 2

The aim of this section is to analytically characterize the
performance of Algorithm 2 when tracking a randomly time
varying Nernst potential. In contrast, Sec.V examines the
performance of Algorithm 2 via computer simulations.

In presenting Algorithm 2 above we have made no assump-
tion on how the Nernst potential varies with time. In general,
little can can be said analytically about the performance of
a tracking algorithm without making some assumption about
how the underlying parameter (Nernst potential) varies with
time. In adaptive signal processing, a typical method for
analyzing the tracking performance of an adaptive algorithm
is to postulate a random hypermodel for the time variation of
the parameter and then characterize the performance of the
algorithm for this hypermodel.

Since the time varying Nernst potential v∗
N ∈ V belongs to

a finite state space, for the purpose of our analysis, we chose
to describe the evolution of the Nernst potential as a slow
Markov chain on V . Note that this hypermodel assumption is
only used for our subsequent analysis, it does not enter the
implementation of Algorithm 2 in any way. The Markov chain
hypermodel is one of the most general models available for a
finite-state model.

Formally, we make the following assumptions about the
time evolution of the Nernst potential.

(M1) Hypermodel: Assume that there is a small parameter
ε > 0 and that the time varying Nernst potential {v∗

N} is a
discrete-time homogeneous Markov chain, with state space V .
The transition probability matrix of this Markov chain is

P ε = I + εQ, (13)

Here I is an R
M×M identity matrix, and Q = (qij) ∈

R
M×M is a generator of a continuous-time Markov chain (i.e. ,

Q satisfies qij ≥ 0 for i 6= j and
∑M

m=1 qim = 0 for each
i = 1, . . . , M ).
Remark: The quantity ε being small is to ensure that the Nernst
potential v∗

N evolves slowly with time, i.e. , it jumps very
infrequently. The idea behind this hyper-model is that the chain
will spend most of its time at a constant value. However, due to
the presence of the generator Q, from time to time, the chain
jumps into some other location. As a result, the Nernst po-
tential becomes one that is slowly but randomly time-varying.
Note that µ is the step size used in Algorithm 2 for estimating
π̃N . Typically for an adaptive algorithm to successfully track a
time varying optimum, the rate of change in the true optimum
(i.e., ε) should be comparable in magnitude or smaller than
the tracking speed of the tracking algorithm (i.e., µ).
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Theorem 1 says that for fixed Nernst potential v∗
N = v, the

sequence {XN} generated by Algorithm 2 is a conditional
Markov chain (conditioned on v∗

N ). Thus the behaviour of
the sequence {π̂N} generated by Algorithm 2 exactly fits the
following assumption.

(S) Let {XN} be an M -state conditional Markov chain
(conditioned on the true Nernst potential v∗

N at batch-
time N ). The state space of {XN} is {1, . . . , M}. For
each v ∈ M , A(v) = (aij(v)) ∈ S × S, the transition
probability matrix of XN , is defined by

aij(v) = P (XN+1 = j|XN = i, v∗N = v), v ∈ V
(14)

where i, j ∈ {1, ..., M}. Each of the m0 matrices A(v),
for v ∈ M is irreducible and aperiodic.

The assumptions on irreducibility and aperiodicity of A(v)
imply that for each v ∈ V , there exists a unique stationary
distribution π(v) ∈ R

M×1 satisfying (recall M is the number
of elements in V )

π′(v) = π′(v)A(v), and π′(v)1M = 1, (15)

where 1M ∈ R
M×1 with all entries being equal to 1. Given

that (12) is an LMS algorithm for estimating and tracking
π(v∗N ), our aim is to analyse the performance of (12) in
tracking the time-varying distribution π(v∗

n) that depends on
the underlying time varying Nernst potential v∗

n.
The following result gives a mean-squared bound on the

tracking error of the occupation probability estimate π̂N gen-
erated by the adaptive Algorithm 2. Define π̃N = π̂N−π(v∗N ).
Then (12) can be rewritten as

π̃N+1 = π̃N −µπ̃N +µ(eXN+1
−π(v∗N ))+π(v∗N )−π(v∗N+1).

(16)
The theorem below says that for small ε (rate of change of
Nernst potential) and µ (step size), the error in π̂N of Step
3, Algorithm 2 compared to the true occupation probability
π(v∗N ) is small – the error is O(µ). So as µ → 0, this error
goes to zero. The proof is given in [18] and involves some
fairly sophisticated concepts in martingales and stochastic
Lyapunov functions.

Theorem 2: Under the conditions (M1) and (S), if if ε =

O(µ), then for sufficiently large N ,

E|π̃N |2 = O(µ). (17)
Due to the discrete valued nature of the underlying Nernst

potential v∗
N ∈ V , it makes sense to give bounds on the proba-

bility of error of the Nernst potential estimate v̂∗
N generated by

Step 4 of Algorithm 2. Define the error event E and probability
of error P (E) as

E = {v̂∗N 6= v∗N}, P (E) = P (v̂∗
N 6= v∗N ). (18)

Thus E depicts the event that the Nernst potential estimate at
batch-time N is incorrect. Clearly E depends on the batch-
time N ; however, we suppress the N here for notational
simplicity. Based on the mean square error of Theorem 2
above, the following result holds:

Theorem 3: Under conditions (M) and (S), if µ = ε, then

for sufficiently large N , the error probability of the Nernst

potential estimate v̂∗
N generated by Algorithm 2 satisfies

P (E) ≤ Kµ1−2γ , (19)

where K and 0 < γ < 1/2 are arbitrary positive constants

independent of µ and ε.
The above result serves as a useful consistency check for

Algorithm 2: As µ → 0 and ε → 0, the probability of error
P (E) of Algorithm 2 in estimating the Nernst potential goes
to zero. So for small µ and ε, the error probability is small.

Proof: The estimate of the maximum generated by the
discrete stochastic approximation algorithm at batch-time N is
π̂∗

N = argmaxj π̂j
N (where π̂j denotes the jth component of

the M -dimensional vector π̂N ). Thus the error event E in (18)
is equivalent to E =

{
I(argmaxi πi(v∗N ) 6= arg maxj π̂j

N )
}
,

where I(·) denotes the indicator function. Then clearly
the complement event Ē =

{
I(argmaxi πi(v∗N ) =

argmaxj π̂j
N )

}
satisfies

Ē ⊇
{
I(|max

i
πi(v∗N ) − max

j
π̂j

N | ≤ min
i,j

|πi(v∗N ) − π̂j
n|)

}

⊇
{
I(|max

i
πi(v∗N ) − max

j
π̂j

N | ≤ L)
}

where

L ≤ min
i,j

|πi(v∗N ) − π̂j
n| (20)

is a positive constant. Then the probability of no error is

P (Ē) = P (arg max
i

πi(v∗N )

= argmax
j

π̂j
N ) > P (|max

i
πi(vN ) − max

j
π̂j

N | ≤ L) (21)

for any sufficiently small positive number L. Then using the
above equation and Theorem 2

P (E) ≤ P (|max
i

πi(v∗N ) − max
j

π̂j
N ]| > L)

≤ P (max
i

|πi(v∗N ) − π̂i
N | > L)

(22)

Applying Chebyshev’s inequality to (17) yields for any i,

P (|πi(v∗N ) − π̂i
N | > L) ≤ 1

L2
Kµ

for some constant K. Thus (22) yields

P (max
i

|πi(v∗N ) − π̂i
N | > L) ≤ 1

L2
Kµ (23)

It only remains to pick a sufficiently small L. Choose L = µγ

where 0 < γ < 1
2 is arbitrary. It is clear that for sufficiently

small µ, L satisfies (20). Then (23) yields P (E) ≤ Kµ1−2γ .
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V. NUMERICAL RESULTS

Using computer generated synthetic data, we illustrate the
performance of Algorithms 1 and 2. All the examples below
including simulation of the Markov chain and HMM sample
paths were conducted using MatlabTM and its random number
generators.
Simulation Model for Ion Channel: We simulated sample
paths of the ion channel current {in(v)} as a Markov chain
with transition probability matrix A (see (3)) and open state
current level I(v). Here I(v) was generated using I-V curve
of Fig.1 and

A =



0.97 0.03 0
0.3 0.6 0.1
0 0.1 0.9


 (24)

The choice of A in (24) implies that the steady state probability
vector of the Markov chain computed using (15) is π =
[0.834, 0.083, 0.083]′. This is consistent with patch clamp
experimental data which shows that typically the ion channel
current spends about 80% of its time in the gap mode, and
about 10% of its time in each of the closed and open states.
The I-V curve of Fig.1 was used since it is a particularly
difficult case to handle – it is non Ohmic (nonlinear) and has
asymmetric behaviour for positive and negative currents.

The observed channel current at the electrode was simu-
lated by adding white Gaussian noise with standard deviation
σ(v) = 0.3 to the simulated ion channel current sequence
{in(v)}, resulting in the HMM sequence {yn(v)} (see (4)).
Example 1. Learning and Control Performance of Algo-
rithm 1: Given the above simulation model for the ion channel
current, we used Algorithm 1 to determine the Nernst potential
v∗. Experiments were run over batch sizes ∆ = 10, 000.

At Step 0, we selected the starting point at X0 = 1, i.e. ,
initial applied voltage v = −160 mV.

In Step 2, the EM algorithm was run for 500 iterations on
each ∆-length batch of HMM observations. As described at
the end of Sec.III-B, this takes only about 0.002 secs on a
2 GFlop Pentium 4. The resulting MLEs for the 4 batches,
namely Î

(1)
N (ṽ), Î

(2)
N (ṽ), Î

(1)
N (v) and Î

(2)
N (v) were used to

determine ĈN (ṽ) and ĈN (v).
Fig.6 shows the Nernst potential estimates v̂∗

N generated by
Algorithm 1 for batch-times N = 0, 1 . . . , 10000. As can be
seen, the estimate v̂∗

N rapidly converges to the Nernst potential
v∗ = −64 mV. Also shown in Fig.6 is the true open state
current level I(v̂∗

N ) based in the estimated Nernst potential
v̂∗N . As can be seen from the figure, Algorithm 1 dynamically
controls the applied voltage to the Nernst potential v∗, so that
the open state current level I(v̂∗

N ) goes to zero.
To illustrate the attraction (learning) property of Algo-

rithm 1, i.e. , it spends more time gathering information
near the Nernst potential than other voltages, Fig.7 shows
the occupation probabilities computed by Eq.(11) of Step 3.
As shown in Fig.7, Algorithm 1 spends approximately 14%
of its time at the Nernst potential. In comparison, a brute
force HMM approach would spend equal resources at all
voltages v ∈ V , i.e, its would spend 1/320 of its time at
the Nernst potential v∗. Thus Algorithm 1 is approximately 45
times more efficient than the brute force HMM approach. This

implies that to get equally accurate estimates of the Nernst
potential, the brute force HMM approach requires the patch
clamp experiment to be run 45 times longer than the controlled
patch clamp experiment that uses Algorithm 1.
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Fig. 6. Nernst potential learning using Algorithm 1.

Example 2. Learning and Adaptive Control Performance
of Algorithm 2: Here we consider the case where the I-
V curve and hence the Nernst potential jump changes at
infrequent intervals. We illustrate how Algorithm 2 can dy-
namically learn and adaptively control the applied voltage to
efficiently compute the Nernst potential.

Our ion channel current model is as follows: For batch-
time 0 ≤ N < 10, 000, the channel current I-V response and
HMM model was the same as above, i.e. , Fig.1. For batch-
time 10, 000 ≤ N ≤ 20, 000 the I-V response is shown in
Fig.8.

We used Algorithm 2 with step size µ = 5 × 10−4. Fig.9
shows the Nernst potential estimates, v̂∗

N and the correspond-
ing open state current level estimate I(v̂∗

N ) generated by
Algorithm 2. As can be seen from Fig.9, although the I-V
curve and Nernst jump changes at time 10, 000, the algorithm
quickly learns the new ion channel and adaptively controls
the channel current to zero. As is commonly observed with
adaptive filtering algorithms, we noticed a trade off between
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Fig. 7. Occupation probabilities of Discrete Stochastic Approximation

Algorithm 1. These occupation probabilities illustrate the attraction property

of Algorithm 1 – the algorithm spends more time near the Nernst potential

v∗ = −64 mV than other values of v ∈ V .

adaptation speed and steady state convergence depending on
the choice of step size µ. For larger µ, the algorithm quickly
adapted to the change at time 10,000 but it jumped around
the steady state value. For smaller µ the algorithm adapted
slowly to the change at time 10, 000 but did not drift around
the steady state value.

To demonstrate the attraction behaviour of Algorithm 2,
Fig.10 shows snapshots of the occupation probability vector
π̂N (generated by Step 3 of Algorithm 2) at a batch-times
N = 10, 000, 12,000 and 20,000. Until batch-time N =
10, 000, since the Nernst potential is a constant, there is a
single visible peak in π̂10000 at the Nernst potential. At batch-
time N = 12, 000, the algorithm has not yet fully adapted to
the change in the I-V curve and Nernst potential. There are
two peaks in π̂12000, one around the old Nernst potential and
the other about the new one. By batch-time 20, 000 there is a
single pronounced peak in π̂20000 at the new Nernst potential.
Thus Algorithm 2 can dynamically adapt to a time varying
behaviour of the ion channel and spends substantially more
time at the Nernst potential than any other value of v.

VI. CONCLUSIONS AND EXTENSIONS

In this paper we presented two state-of-the art discrete
stochastic approximation algorithms for learning and con-
trolling the behaviour of nerve cell membrane ion channels.
A notable feature of the algorithms is their self learning
capability – they spend more time gathering information about
the Nernst potential than other less interesting voltages. The
algorithms use a novel random sampling scheme combined
with a stochastic adaptive filter and are provably convergent
and attracted to the Nernst potential. In numerical examples on
synthetic experimental data, we have shown that the algorithms
demonstrate remarkable improvements (e.g. , 40 fold im-
provement) in efficiency compared to brute force experimental
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Fig. 8. I-V curve of Membrane Ion Channel from batch-time 10, 000 ≤

N ≤ 20000 for Example 2 of Sec.V. For batch-time N < 10, 000 the I-V

curve is given in Fig.1.

approaches. In future work we will examine the use of other
discrete stochastic approximation algorithms such as nested
partition methods [15] which combines partitioning, random
sampling and backtracking.

APPENDIX I

APPENDIX–EM ALGORITHM FOR MAXIMUM LIKELIHOOD

ESTIMATION OF HMM PARAMETERS

Step 2 of Algorithms 1 and 2 require computing the maxi-
mum likelihood estimate (MLE) ÎN (v) of the HMM parameter
I(v) given a ∆-length batch of observations. Recall that q(v)
denotes the open state level and v ∈ V denotes the applied
voltage. Here we summarize the EM algorithm for computing
the MLE λ̂N (v) = {ÂN (v), ÎN (v), σ̂2

N (v)} of the N th batch
for the HMM λ(v) = {A(v), I(v), σ2(v)} defined in (5).

Given the ∆ length HMM data sequence y1, . . . , y∆ of
the N th batch, the EM algorithm is an iterative algorithm
for computing the MLE, we refer the reader to [19], [4] for
details. The EM algorithm proceeds as follows (for notational
convenience we have omitted the voltage v and subscript N
in the notation below, i.e. , λ̂N (v) is written as λ̂):

Algorithm 3: [EM algorithm for MLE computation of a

HMM (Niter iterations)]

• Step 0: (Initialization.) At iteration J = 0, initialize

parameters λ(0) = {A(0), I(0), σ2(0)}.

• Step 1: (Expectation Step.) At iteration J , set λ =

λ(J), and compute the following statistics.
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Fig. 9. Performance of Adaptive Discrete Stochastic Approximation Algo-

rithm 2 for tracking time varying Nernst potential of Example 2 in Sec.V

Forward recursion: α1(j) = 1/3,

αk+1(j) =

3∑

i=1

αk(i)aijbj(yk+1), k = 1, . . . , ∆ (25)

Backward recursion: β∆(i) = 1 and

βk+1(i) =

3∑

j=1

βk(i)aijbj(yk+1), k = ∆, . . . , 1.

γk(i) =
αk(i)βk(i)

∑3
i=1 αk(i)βk(i)

, k = 1, . . . , ∆

ζk(i, j) =
αk(i)aijβk+1(j)bj(yk+1)∑3
i=1 αk(i)aijβk+1(j)bj(yk+1)

, k = 1, . . . , ∆

Here bj(yk+1) denotes the HMM observation probability

density function: bj(yk+1)
4
= p(yk+1|ik+1 = lj)

bj(yk+1) =
1√
2πσ

exp

(
− (yk+1 − lj)

2

2σ2

)

lj ∈ {0g, 0b, I(v)}
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Fig. 10. Snapshots of Occupation probabilities of adaptive Algorithm 2 at

batch-times N = 10, 000, 12,000 and 20,000 for Example 2 in Sec.V. These

snapshots illustrate how Algorithm 2 adapts to the change in Nernst potential

at batch-time N = 10, 000 and learns the new Nernst potential.

• Step 2: (Maximization Step.) At iteration J , update

parameter estimate λ(J+1) as

a
(J+1)
ij =

∑∆
k=1 ζk(i, j)

∑
+k = 1∆γk(i)

, i, j ∈ {1, 2, 3}

I(J+1) =
1

∆

∆∑

k=1

γk(3)yk

σ2(J+1)
=

1

∆

∆∑

k=1

(
(γk(1)+γk(2))y2

k+γk(3)(yk−I(J+1))2
)

• Step 3: (Termination.) If I < Niter, set J → J + 1

and go to Step 1.

Else set MLE estimate λ̂(v) = λ(J).



IEEE TRANSCATIONS ON NANOBIOSCIENCE, VOL. 2, NO. 5, DECEMBER 2003 13

In the Expectation (E) step, αk is called the forward variable
and βk is called the backward variable [19]. The update
equations in the Maximization (M) step are collectively called
the Baum Welch equations. The nice property of the EM
algorithm is that the sequence of estimates λ(J) generated by
the EM algorithm yield mononotically increasing likelihoods
until converges to the MLE.

In actual implementation it is necessary to scale the vari-
ables αk and βk to avoid numerical underflow, see [19] for
details. Finally the initialization α1 in (25) above is any
arbitrary positive vector – αk is geometrically ergodic and
forgets its initial condition geometrically fast.
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