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ABSTRACT The role of the vestibule in influencing the permeation of ions through biological ion channels is investigated.
We derive analytical expressions for the electric potential satisfying Poisson’s equation with prolate spheroidal boundary
conditions. To allow more realistic geometries we devise an iterative method to calculate the electric potential arising from
a fixed charge and an arbitrary dielectric boundary, and confirm that the analytical expressions and iterative method give
similar potential values. We then investigate the size of the potential barrier presented to an ion by model vestibules of conical
and catenary shapes. The height of the potential barrier increases steeply as an ion enters the vestibule and moves toward
the constricted region of the channel. We show that the barrier presented by, for example, a 15° conical vestibule can be
canceled by placing dipoles with a total moment of about 50 Debyes near the constricted region of the pore. The selectivity
of cations and anions can result from the polarity of charge groups or the orientation of dipoles located near the constricted

region of the channel.

INTRODUCTION

When an ion approaches the boundary between an aqueous
electrolyte solution and a region of low dielectric strength,
such as a protein wall or lipid bilayer, it experiences elec-
trostatic repulsion due to induced charges in the dielectrics.
If the boundary is an infinite plane, the electric potential due
to it is equivalent to that from an imaginary image charge on
the opposite side of the boundary from the real ion, but at
the same distance; hence the term “image force” is used for
this repulsion. The image charge is almost equal to the ion’s
charge; thus the repulsive force can be very large at small
distances. Some other simple boundaries can be solved
analytically using infinite series; we present the solution for
a prolate spheroidal boundary in Appendix A. However, an
analytical solution of the electric potential for more realistic
channel geometries is not possible, and one has to use
numerical techniques.

A cylindrical shape, used to model the gramicidin chan-
nel, has been a popular choice in the study of electrostatic
potential barriers in channels (Parsegian, 1969; Levitt,
1978a,b; Jordan, 1981). By exploiting cylindrical symme-
try, the two-dimensional problem of finding induced surface
charges can be reduced to solving a set of one-dimensional
integral equations, which requires less computational effort.
As computational power is now less of a limiting factor, it
has become possible to solve the original two-dimensional
problem without imposing any symmetry restrictions and
to determine potential barriers in more general channel
geometries.
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Whereas the previous studies have been mainly con-
cerned with the effects of an ion placed inside the mem-
brane pore formed by a short peptide appropriate for the
gramicidin channel (Jordan, 1981, 1982, 1983, 1984a,b,
1987; Levitt, 1978b), we address here a different problem:
that of understanding the roles vestibules play in selecting
ions and transporting them across the cell membrane. A
common feature among ion-selective channels, ligand-gated
or voltage-activated, are prominent vestibules, which extend
about 60 A above and 20 A below the membrane surface.
This feature is not shared by gramicidin channels. The
transverse section of the acetylcholine channel has been
deduced by electron microscope image reconstruction using
crystallographic methods (Toyoshima and Unwin, 1988). Its
vestibules appear to resemble catenaries.

We examined the influence of the dielectric boundary on
an ion entering the vestibule, using an iterative method of
computing the electric field at any point in two different
dielectric media separated by an arbitrary boundary, for
which Poisson’s equation cannot be solved analytically. The
method relies on the fact that the electric field of an ion in
an electrolyte solution induces a surface charge density on
the boundary. We divide the boundary into small sectors
and calculate the charge density appearing on it due to the
electric field from an ion in the electrolyte solution as well
as that emanating from all other boundary sectors. After
confirming that this numerical method of finding the elec-
tric potential agrees closely with that calculated with the
analytical solution for a point charge outside a prolate
spheroid, we compute the magnitudes of the repulsive force
presented to an ion by vestibules, whose dimensions and
shapes roughly correspond to that of the acetylcholine re-
ceptor channels (Unwin, 1989, 1995). We show that this
repulsive force or energy barrier, unless it is canceled by
dipoles located near the constricted region of the channel,
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can severely attenuate the number of ions that can be
transported across it.

METHOD
Potentials in dielectric media

We wish to solve Poisson’s equation for general channel
geometries, without imposing any symmetries either on the
channel shape or on the position of ions. Clearly, this cannot
be achieved using analytical methods, and one has to resort
to iterative numerical techniques. Because the solution of
Poisson’s equation is unique for a closed boundary, conver-
gence of results ensures that the solution found is the correct
one.

Before applying the iterative technique we reduce the
three-dimensional boundary value problem to an equivalent
two-dimensional problem. Denoting the two regions by 1
(water, £; = 80) and 2 (protein or lipid, &, = 2), the
potentials in each region satisfy Poisson’s equation

pi .
2 o o —— =
V (P| sosi, 1 19 2v (1)
where p, and g, refer to the charge densities and the dielec-
tric constants in the two regions. The constant g, is the
permittivity of free space. In addition, the potentials should
satisfy the usual continuity conditions at the boundary

P1= P & Ve fi =gV, i, 2

where i is the unit normal to the surface. Equation 1 can be
expressed in terms of the electric fields E as

lel ‘= 82E2 R (3)

Following Levitt (1978a), we replace this system by an
equivalent system of charges in a vacuum that produces the
same electrical potential throughout space. The charge den-
sities p; are replaced by reduced charge densities p;/e;. The
discontinuity in the electric fields across the boundary can
be represented by polarization charge density, o, induced at
the surface. Using an infinitesimal Gaussian pillbox across
a surface area AS at position r, the two are related by

o
(El “Ez)’ﬁ=s_- 4
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Thus the electric fields can be written as

g
Eex Y ﬁ, (5)
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where E,, is the part due to all the charges except those in
AS. Eliminating E, from Eqgs. 3 and 4 and substituting E,
from Eq. 5, we obtain a relationship between the surface
charge density and the external field
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Here E., - ii is determined from the normal derivative of the
external potential

pi(r’)
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Starting with an initial surface charge density of oy(r') = 0,
one can make an initial estimate of the potential at the
boundary from Eq. 7. This potential is then fed into Eq. 6,
and a new density o,(r) is obtained. Equations 6 and 7 are
iterated until the results converge, that is, the difference
between o~ and o™ is sufficiently small.

The potential energy of the ion is calculated from the
expression

Pex(r) =
@)

1
U(l') = iJ‘P(r)pfree(r) dv - Uselﬁ (8)

by numerical integration. Here U, is the Born self-energy
of the ion, and pg.. refers to the charge density excluding
the polarization charges induced on the boundary.

Iterative method of determining surface charges

This method is implemented as follows. The boundary is
divided into smalls sectors of area AS;, each represented by
a point charge g; at its center. First the charge density at
each point is found using Eq. 6, based on the field from
fixed charges (representing ions or dipoles). Then each
point is assigned a charge equal to its charge density times
the area it represents, g; = 0;AS;. The process is repeated,
using both the fixed charges and the current estimate of the
boundary charges, until the boundary charges converge.

Because the computation time grows with the square of
the number of sectors, it is important to optimize the choice
of sectional area. Two important considerations in this re-
gard are, first, distance of the surface area to the external
charges and, second, curvature of the area. At large dis-
tances from the external charges, the induced charge and the
solid angle it subtends are small; hence one can use rela-
tively larger areas for such sectors without introducing too
much error. In contrast, because the relationship in Eq. 4 is
strictly valid only for a flat surface, one must use relatively
smaller areas in places where the curvature is high. The
method we used for the correction of errors introduced by
the curvature is detailed in the following section. In addi-
tion, the results of control runs indicate that each sector
should have approximately equal vertical and horizontal
spacing, and that although the spacing can be varied be-
tween different regions of the boundary, such variation must
be done smoothly.
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For convergence, we use the condition

(n)
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where g, is the largest charge in the nth iteration. The
calculation is stopped when 8§, < 0.0001 for all surface
charges. The condition of Eq. 9 is preferred over the usual
one with ¢{™ in the denominator, because it requires fewer
iterations without loss in accuracy. The reason is that in-
duced charges at large distances are very small, making
them sensitive to small changes in other charges. Thus they
take a long time to converge to the same level of accuracy as
the larger charges. Yet the effects of these small charges on the
calculated potentials are negligible. We carried out the com-
putations using a supercomputer (Fujitsu VP 2200) with a
vector processor, which is well suited to this type of algorithm.
The iterative method outlined above allows the electric
potentials inside and outside of any arbitrarily shaped ves-
tibule to be computed. Moreover, we are able to include the
effects of an external electric field caused either by a potential
difference applied across the membrane and channel or by the
presence of monopoles or dipoles on the protein wall.

Curvature compensation

Because of the simplifying assumption that sectors are flat,
and the induced charge on each sector is affected by the
charges on all other sectors but not by their own charge, our
method produces small but systematic errors when used on
curved surfaces. It overestimates the potential near convex
surfaces and underestimates that near concave surfaces.
These errors can be reduced by spacing the surface points
more closely, but there is a practical limit to the number of
points that can be used, imposed by the available computer
time and memory.

We use a method of compensating for curved sectors by
incorporating an estimate of self-interaction into the polar-
izability of each sector. We assume that the charge density
o is constant across the sector, and that the electric field E
and normal i1 at the center of the sector are representative of
the whole sector. The charge density is then given by

o= PE -, (10)
where
& — &
P_28082+81 (11

is the polarizability of the boundary. The electric field at the
center of the sector breaks into two components: the exter-
nal electric field E.,, from other sectors and fixed charges,
and the electric field of self-interaction E,; from the other
points of the sector. Hence

0 =PE,,-fi+PE-f (12)

= Oext + el (13)
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where o,,, is the charge density due to the external field,
and o is the charge density due to self-interaction. Be-
cause we assume that the charge density is constant across
the sector, o is directly proportional to o. The constant of
proportionality, which we call Q, depends only on the shape
and size of the sector and the polarizability of the boundary,
not on the external field. So we have

O =0+ Qo (14)
and
1
-9
We now define the modified polarizability P’ so that it

generates the full surface charge density from the external
field alone

Texte 15)

g =

0 = P'Eey i, (16)
then from Eq. 15
1
P'E i = 1o PE,, - ii a7
P = : 18
=1= QP. (18)

By precalculating Q and modifying the polarizability of
each sector we can compensate for curved sectors without
modifying the iterative algorithm.

Validation of the iterative method

To test the validity of the iterative method, we compared the
results with those obtained from an exact analytical solu-
tion. For this purpose, we chose the prolate spheroid bound-
ary with an axis ratio of 5:1 and length of 100 A, which
approximately represents one globular channel protein. The
analytical solutions for an ion outside this boundary are
presented in Appendix A.

For the numerical calculations, we divided the spheroid
vertically into rings with equal spacing At in parameter ¢,
where the cross section of the spheroid is described by

y=bsint. (19)

We used values of 10 A for a, 50 A for b, and 0.05 for At.
The spacing varies from aAt at (0, b) to bAt at (a, 0); note
that the spacing is smallest where the curvature is greatest.
Each ring is divided horizontally into equal segments with
arc length approximately equal to the vertical spacing for
that ring.

We examined the potential of an ion moving past a single
spheroid. Fig. 1 compares the exact and numerical results
for the potential energy of the ion as it moves parallel to the
spheroid’s symmetry axis. At its closest approach the ion
was 4.14 A away from the surface of the spheroid. The
potential energy calculated from the analytical solution
given in Eq. 26 is shown as a solid line in Fig. 1 a.

X=acost,
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FIGURE 1 Comparison between the analytical solution and the iterative

method. A cation is moved parallel to and 14.14 A away from the major
axis of a prolate spheroid that is 100 A long and 20 A in diameter at its
widest section. At its closest approach the ion is 4.14 A from the surface
of the spheroid. Only the first half of the trajectory of the ion is shown,
from the apex of the prolate (labeled as —50 A) to its middle (labeled as
0 A). (@) The energy barrier presented by the spheroid is plotted against the
ion’s position along its trajectory. The values computed from the analytical
solution (solid line) using the equations given in the Appendix are super-
imposed on values calculated using the iterative method (filled circles).
(b) The fractional error, calculated by dividing the difference between the
analytical and numerical values by the analytical value at each location of
the ion, is plotted against the position of the ion along its trajectory. The
maximum error is about 0.5%.

Superimposed on this is the potential energy calculated by
using the iterative method (filled circles). The values de-
rived from the iterative method differed at most by 0.5%
from those obtained from the analytical solution. The frac-
tional error is given in Fig. 1 b.

A simple model for channels

One can make a simple model of a channel by putting four
or five prolate spheroids together as suggested by Unwin
(1989). Approximate analytic solutions for such a channel
can be obtained by superposing the single spheroid solu-
tions given in Appendix A. Comparison with the numerical
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results, however, shows that these approximate solutions
underestimate the potential by up to a factor of 2 because of
the neglect of interactions among the induced charges on
different spheroids. Because there is no advantage (in the
form of analytical solutions) to be gained from the use of a
spheroidal channel, we prefer a simpler geometry, similar to
an hourglass or bicone, which simplifies the computations.

We form the channel surface by rotating the closed curve
around the symmetry z axis. An example of one such biconical
channel is shown in Fig. 2. The biconical channels have a
cylindrical neck region of length 10 A and radius 4 A, conical
vestibules with a side length of 36 A and an angle of 10° to 90°
to vertical, annular top and bottom sections with a length of 10
A, and a cylindrical side section. We connect these sections
with curved corners to keep the surface smooth, as suggested
by Jordan (1982). The inside corners, between the neck, the
vestibules, and the top and bottom, have a radius of 5 A. The
outside corners between top, side, and bottom have a radius of
10 A. The vestibules of catenary channels are formed by
rotating a section of catenary; otherwise they are the same as
biconical channels (see Fig. 4 a).

We place boundary points for channels by dividing the
boundary vertically into rings, and each ring horizontally
into equal segments. We keep the angle of horizontal spac-
ing the same for all rings. This means that the spacing gets
larger in proportion to the radius and that segments in
adjacent rings line up vertically. We keep the vertical spac-
ing between rings approximately equal to the horizontal
spacing between segments in those rings. We used a hori-
zontal angular spacing of 15° in the simulations, yielding a

FIGURE 2 A transverse section of a 15° biconical channel. The surface
of the model channel is generated by rotating the closed curve illustrated in
Fig. 3 a along its symmetry axis. The dimensions of the two conical
vestibules and the constricted segment are given in the text.
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sector size that varies from 1 A at the neck region to 10 A
at the back of the channel (see Fig. 3 a). Typically, a
channel surface was divided into about 1600 sectors. The
number of floating point operations needed to construct a
profile of energy barrier was on the order of 10'°.

Simplifying assumptions

To make the determination of electrostatic potentials in the
model channel computationally tractable, we make the fol-
lowing simplifying assumptions. First, ions outside the

A
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Distance (AO)

FIGURE 3 The magnitude of error introduced by ignoring the interme-
diate dielectric layer at the protein-water interface. In these figures, the
thickness and dielectric constant of the intermediate layer are assumed
to be 2 A and 41, respectively. (a) Electric potentials are plotted as a
function of the distance from the boundary. The distance is measured from
the center of the intermediate layer. The dotted line is derived from the
boundary of the protein-water interface, with no intermediate dielectric
layer. Superimposed on this is a solid line calculated from a boundary that has
a thin intermediate layer. (b) The fractional error, calculated by dividing the
difference between the two potential values at each distance by the value from
the boundary with the intermediate layer, is plotted against the distance of the
ion from the center of the intermediate layer. The fractional error introduced by
ignoring the intermediate layer when the ion is 2 A from the interface is about
4%.
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channel vestibule have a negligible effect on the potential
energy of the ion inside of the vestibule. This is a reasonable
approximation, because the induced charge on the boundary
due to an ion at the position r from it decreases as 1/r* (see
Fig. 6 b; Jordan et al., 1989). At typical biological concen-
trations (140 mM) there are about 400 water molecules per
ion. Each of two 15° conical vestibules in the model channel
shown in Fig. 2 contains 400 water molecules. Thus, on
average there is only one ion in such a vestibule. Further-
more, we limit our discussion of channel potentials here to
only one kind of ion, because all known biological ion
channels are permeable only to anions or cations, not both.
The general case of multiple ions of both kinds will be the
subject of a future paper in which Brownian dynamics will
be used in simulating the motion of ions.

Second, we assume that the dielectric constant changes
sharply at the protein-water boundary, from 2 to 80. Be-
cause dipolar or charged groups at the interface are likely to
be realigned in the presence of a permeant ion, there will be
a thin boundary layer with a dielectric constant intermediate
between those of protein and water. To ascertain the mag-
nitude of errors introduced by ignoring the intermediate
dielectric region, we obtained an analytical expression for
the potential resulting from a point charge near three infinite
slabs having different dielectric constants. Numerical exam-
ples of the analytical solutions of this boundary-value prob-
lem, given in Appendix B, are illustrated in Fig. 3. A plot of
electric potentials against the distance from the interface,
calculated from Eq. 38, reveals that a small but systematic
error is introduced when the intermediate layer is ignored
(Fig. 3 a), but the fractional error decreases with increasing
distance (Fig. 3 b). In these calculations, we took the thick-
ness ¢ and the dielectric constant ¢, of the intermediate layer
tobe 2 A and 41, respectively. At 2 A from the interface, for
example, the magnitude of error introduced by assuming an
abrupt change in the dielectric constant at the interface is 4%.
At4 A, the difference between the two- and three-layer inter-
faces becomes less than 1%. We thus conclude that the sharp
boundary assumption introduces only negligibly small errors.

Finally, the results described here are macroscopic ap-
proximations, which are valid in regions that are large
compared to the diameters of ions and water molecules. The
idealizations implicitly assumed in electrostatic equations
cannot be justifiably extended to the neighborhood of the
constricted region of channel, in which the orientation of
water molecules must be severely constrained. A proper
treatment of ionic motion in the neck region of biological
channels or in the gramicidin channel requires a micro-
scopic approach, such as molecular dynamics calculations
(see, for example, Roux and Karplus, 1991).

RESULTS
Repulsive force on an ion

As an ion moves into the vestibule, it induces charges that
pose an energy barrier that impedes its passage across the
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channel. We calculate the size of this barrier using the
iterative method. The usual convention of zero potential
energy at an infinite distance from the channel is adopted
throughout. This results in a small initial potential energy of
3 X 10722 J (or 2% of the energy at 0 A) for the 15° bicone
at z = —50 A. We use dielectric constants of 80 for water
and 2 for protein or membrane. In general we assume that
we are dealing with a cationic channel and that the perme-
ating ion is a monovalent positive ion.

As illustrated in Fig. 4 for a biconical channel, the po-
tential barrier and repulsive force increase steadily as the
ion moves from the entrance of the cone to the narrow
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FIGURE 4 Potential barrier and repulsive force in a 15° conical vesti-
bule. (a) The two closed curves outlined by dots are rotated along the
(horizontal) symmetry axis to generate the surface of the model channel.
The spacing of the dots represents the sizes of the sectors on the channel
surface used for calculating induced surface charges. Note that the size of
the sectors at the outer rim of the channel is large compared to that near the
narrow region. The ion is assumed to move along the z axis, as indicated
by the arrow. (b) The potential barrier (solid line) and repulsive force (filled
circles) at each location along the ion’s trajectory are shown.
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constricted region. The narrow transmembrane segment is 4
A in radius, and the wall of the conical vestibule is inclined
15° from the horizontal z axis, extending 38 A beyond the
constricted region. At the entrance of the constricted region,
labeled as 0 A in Fig. 4 a, the height of the potential barrier
is 1.7 X 1072°J, and the z component of the repulsive force
is 6 X 1072 N. For reasons stated previously and repeated
in the Discussion, we have not tabulated here or in subse-
quent figures the barrier height or repulsive force on the ion
inside the constricted region.

We have ascertained that the shape and magnitude of the
potential barrier in a catenary vestibule are similar to those
of a conical vestibule. In Fig. 5 a we show the cross section
of a channel with catenary vestibules, like those visible in
the electron microscopic picture of the acetylcholine chan-

40 - e e e e e e . .A ]
oz 20} ' o
o ..-.,.-.. ...,....-
° S
e S Y S —— 4
5 —,
._O .-....-- . feen.
= oo fee.
o . .
x -20 | . .
_40 L . . . . . . . * _
1 1 1
—-60 -30 0 30 60
. . o
Axial distance (A)
20 T T T
/ B
S
H —4 60
;:', 15 |-
2 / z
x ' o
~ |
. o
g 10l 4 40 2
S R
2 ht
— —
5 5
2 w
§ 5 I 4 20
o
a
0+ 4 0
1 1 1
-60 —-40 -20 0

Axial distance (X)

FIGURE 5 Potential barrier and repulsive force in a catenary channel.
(a) To approximate the shape of the acetylcholine receptor channel, ves-
tibules at each side of the membrane are constructed using a hyperbolic
cosine function. The trajectory of the ion along the symmetry axis is shown
with an arrow. (b) The potential barrier (solid line) and repulsive force
(filled circles) at each location along the ion’s trajectory are shown.
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nel given by Toyoshima and Unwin (1988). The vestibule is
generated by a hyperbolic cosine function, y = a cosh x/a,
where a = 4.75 A. The radius of the entrance of the
vestibule is fixed at 15 A; in length and width of vestibules
this channel is very similar to the 15° biconical channel (see
Fig. 4 a). The maximum height of the energy barrier ob-
tained from this channel, shown in Fig. 5 b, is 20% lower
than that from the 15° biconical channel (cf. Fig. 4 b); it is
nearly equal to a 20° biconical channel (see later). The
shape of the repulsive force the ion encounters as it
traverses toward the neck region is slightly different from
that obtained from the biconical channel, rising first slowly
and then sharply as it approaches the maximum. Because
the conical and catenary vestibules give qualitatively similar
potential profiles, all of the subsequent results we illustrate
are derived from the conical vestibule. The same qualitative
conclusions can be drawn from the results of simulations on
the catenary vestibule.

Induced surface charges

Because the polarity of the induced charges on the protein
wall is the same as that of the ion, the predominant force on
the ion is a coulomb repulsion. In Fig. 6 g, the pattern of
induced surface charges on a biconical channel wall at a
fixed position of the ion is shown. These are the surface
charges from the equivalent system described above. The
ion is on the central axis of a 15° bicone, midway between
the entrance of the vestibule and the constricted region of
the pore, as indicated with an asterisk in the inset. Because
each segment on a ring contributes equally to the potential
energy, we show charge density per unit length. The mag-
nitude of induced positive charges, expressed in units of C
m™ !, is maximum at about the closest distance from the ion.
They are distributed mainly on the walls of the cone and, to
a lesser extent, on the wall of the constricted region of the
pore. The induced counter-charges, not shown in Fig. 6 a,
are located on the outer edge of the channel. The induced
positive and negative charges computed with our numerical
method approximately balance each other: the magnitude of
the sum of negative charges exceeds the sum of positive
charges by 2%. This small imbalance is presumably due to
the much larger sectional areas used on the outer edge of the
channel, where the negative charges are located.

The way the magnitude and spatial distribution of in-
duced charges change as the ion moves toward the con-
stricted region is displayed in Fig. 6 b as a three-dimen-
sional graph. For each graph (which represents a fixed
position of the ion), the surface charge per unit of z axis
length on thin rings of the biconical wall are computed,
and these values are plotted against the z axis. The area
under each curve gives the total induced charge on the
channel wall, which is seen to grow rapidly as the ion
moves in.
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FIGURE 6 Induced surface charge density on the channel wall. These

are the surface charges from the equivalent system described in Methods.
(a) The magnitude of the induced surface charge on each circular ring in
the channel wall is computed and then plotted against the axial distance.
The inset shows the position of the ion in the vestibule, indicated with an
asterisk in the outline of a 15° biconical channel. (b) A three-dimensional
plot of the induced charge density is shown as the ion moves from the
mouth of the vestibule (labeled —40 on the z axis) toward the constricted
segment of the channel (labeled 0). The peak and the distribution of the
induced surface charges change progressively as the ion moves into the
channel.

Barrier height changes with conical angle

The magnitude of the potential barrier decreases systemat-
ically with increasing angle of the cone, as shown in Fig.
7 a. The four curves illustrated represent, from top to
bottom, the conical angle of 10°, 20°, 40°, and 90°. The 90°
biconical channel is similar to a gramicidin channel, if we
assume that the dielectric constants of the lipid bilayer and
the protein are about equal. A cation entering this pore



Hoyles et al.
T L °
1
A 20 F 0 5
= 44
-
:T-' 15 | 20
o
= 43
x N
5 10} 40° =
5 42
el 900
]
€ 5 L
Q
2 41
a
0 : L 0
-60 -30 (0]
(-]
Axial distance (A)
B 25 T T T 46
20
= 44
5
- 15 +
o~
IO \. —
— N X
x
= 10+ \
2
;o ‘\‘\‘\‘_\“‘ 42
5 -
0 | 1 1 0
0 30 60 90

Biconical angle (6)

FIGURE 7 Reduction of the potential barrier with conical angle. (a) The
potential barrier presented to the ion is systematically reduced as the angle
of the cone becomes wider. The potential barrier determined for vestibules
is plotted against axial distance. The number accompanying each curve is
the conical angle in degrees. The energy unit given in kT, in this and all
subsequent figures refers to room temperature of 295°K. (b) The total
amount of work required to move an ion from 10 A beyond the top of the
channel to the beginning of the constricted region is plotted against the
conical angle. As the conical angle widens from 10° to 90°, the amount of
work required decreases from 5 kT, to 1.7 kT,.

needs to surmount, in the absence of any anionic amino acid
residue near the pore entrance, 1.7 k7, of the energy barrier.
(Throughout we will refer to the energy in room tempera-
ture units k7,, where k is the Boltzmann constant and T; is
295°K; 1 kT, = 4.07 X 10~2! J = 2.45 kJ/mol). In contrast,
the height of the energy barrier presented to the ion when
the channel vestibule is a 10° cone reaches nearly 5 kT, at
the entrance of the constricted region, labeled 0 A.In Fig. 7
b, the amount of work required to move an ion from the
entrance of the vestibule to the narrow neck region of
the channel, labeled as O A, is plotted against the angle
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of the cone. The acuter the angle of the vestibule, the higher
the energy barrier becomes, and thus the amount of work
needed to transport an ion against the barrier increases
steeply with decreasing conical angle. Note that we keep the
side length of the cone fixed at 36 A as we vary the angle,
so that a decreasing angle implies a longer vestibule with a
smaller radius at the mouth.

Dipoles are needed to cancel the barrier

To get an approximate idea of the effect of the repulsive
force imposed on an ion by the vestibule, we have system-
atically applied a potential across the channel to counteract
this force. A potential difference V is generated by applying
a constant electric field along the z axis and adjusting the
zero point and field strength until the electric potential is 0
at z = —50 A and —V at z = 60 A. One such set of
simulations is shown in Fig. 8 a, using a 15° biconical
channel. The top curve, the potential barrier in the absence
of an applied voltage, is reproduced from Fig. 4 b. The
barrier height decreases steadily as the applied potential
increases. To completely cancel the repulsive force experi-
enced by an ion traversing the conical vestibule, it requires
nearly 250 mV of electrical driving force across the channel.

Alternatively, the repulsive force can be counteracted by
placing dipoles near the neck region of the channel. Fig. 8
b shows the systematic suppression of the potential barrier
caused by placing dipoles on the protein wall of the con-
stricted region. Four dipoles, positioned 90° apart and par-
allel to the z axis, are placed such that the negative charges
are located at the beginning of the constricted region (la-
beled 0 A in Fig. 4 a), and the positive charges 5 A further
inside. For computational convenience, the total dipole mo-
ments applied are varied by changing the amount of charge
on each of the four dipoles. Because the dielectric constant
for a charge at the boundary is not uniquely defined, we
have used the average value for water and protein, which is
equivalent to taking the sum of the charge and its image
charge. The top curve in Fig. 8 b, the potential barrier in a
15° conical vestibule in the absence of any dipoles, is
reproduced from Fig. 4 a and labeled as 0. The remaining
four curves are, from top to bottom, the barrier heights
obtained in the presence of dipoles, whose moments are 0.5,
1, 1.5, and 2 X 10728 C m, respectively. (We note here that
1 Debye = 3.33 X 1073° C m.) The barrier is completely
eliminated when four dipoles with a total moment of 2 X
1028 C m are used. This dipole strength is equivalent to
two dipoles, each with a positive and a negative unit charge
(1.6 X 107'° C) separated by 6 A. With two such dipoles,
there is a small potential well of about 1.5 kT,.

The vertical orientation of dipoles described above yields
the maximum effect in the vestibule but is unrealistic, as the
positive charges on the walls of the constricted region
would completely block the channel to cations. A more
likely scenario is that the dipoles are oriented 50—60° from
the channel axis and are longer (8-10 A), which would
result in a similar potential.
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FIGURE 8 Electric potentials and dipole moments needed to counteract
the repulsive image force. (a) The potential barrier presented to the ion by
a 15° conical vestibule can be reduced by applying a potential difference
across the channel. The energy barrier is plotted against axial distance with
varying magnitude of the applied electric potential. The number accom-
panying each curve refers to the applied potential in millivolts. (b) The
potential barrier presented to the ion by a 15° conical vestibule can be
reduced by placing dipoles at the constricted region of the channel. The
potential barrier is plotted against axial distance with varying moments of
dipoles placed on the channel wall. The number accompanying each graph
is dipole moments in units of X1073° C m.

As one would have expected from the results illustrated
in Fig. 7, the magnitude of the applied potential and of the
dipole moments required to counteract the repulsive force
decreases with the angle of the cone. The electric potential
and dipole moment needed to eliminate the potential barrier
in the vestibule are plotted against the angle of the cone in
Fig. 9. For a gramicidin-like channel, the repulsive force
presented to an ion by a planar lipid layer can be canceled
by placing a dipole with a moment of about 16 Debyes near
the entrance of the pore, assuming that the dielectric con-
stant of the bilayer is the same as that of the protein.
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FIGURE 9 Electric potential and dipole moments needed to eliminate
potential barrier from conical vestibules of varying angles. (a) The applied
electric potential required to cancel the repulsive image force is plotted
against conical angle. The values represent the electrical potential in
millivolts required to reduce potential barrier everywhere in the vestibule
to zero or less. (b) The dipole moment needed to eliminate the repulsive
image force is plotted against the conical angle.

Trajectory of the ion

The path of minimum resistance for an ion to penetrate the
vestibule is the central axis. As the ion moves away from the
central axis the potential barrier increases, at first gradually
and then steeply as the ion approaches the vestibular wall to
within 3 A. This effect is shown in Fig. 10 a for the 15°
biconical channel. The ion is moved 1.75 A from the ves-
tibular walls at the ends of each horizontal track. To reduce
the errors, the grid size for this series of simulations is
reduced to half of the usual spacing. The number accompa-
nying each curve is the distance of the ion from the con-
stricted region of the channel, in angstroms. As the vestibule
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FIGURE 10 High potential barriers near the vestibular wall. (a) From a
fixed position on the z axis of the vestibule, the ion is moved perpendic-
ularly toward the vestibular wall, and the potential barrier is calculated at
each vertical position. The number accompanying each curve refers to the
distance in &ngstroms from the beginning of the constricted channel region.
(b) The magnitude of force on the ion directed toward the z axis is plotted
at three different positions in the vestibule, as indicated by the numbers
accompanying the curves. As the ion approaches the wall, this lateral force
increases steeply, thus restricting the ion near the central axis as the
vestibule narrows.

narrows the ion is confined to a decreasing region around
the central axis. This is clearly shown in Fig. 10 b, in which
the magnitude of force on the ion directed toward the z axis
is plotted. Again, the numbers accompanying the curve
represent the distance of the ion from the constricted region
of the channel.

Effects of excess dipoles

In the previous section, we showed that the repulsive force
resulting from induced charges can be canceled by a dipole
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moment of about 50 Debyes in the neck region (see Fig.
8 b). It is of interest to see the effect of excess dipoles on the
distribution of ionic species in electrolyte solutions.

To investigate the effect of excess dipoles on the potential
profile in the vestibule, we place four dipoles in the neck
region. The total strength of the dipoles is 96 Debyes, nearly
twice that needed to counteract the repulsive image force.
Fig. 11 a shows the electric potential produced by the
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FIGURE 11 Attractive potentials created by excess dipoles. (a) Dipoles

with a total moment of 96 Debyes, nearly twice that required to cancel the
repulsive image force, are placed on the walls of the constricted region.
The potential energy (solid line) and electric potential (broken line) created
by these dipoles, the dielectric boundary, and, in the case of the potential
barrier, a monovalent cation are plotted against axial distance. The poten-
tial well rapidly decays with distance from the location of the dipoles. (b)
The potential barrier presented to a second ion entering the vestibule, given
that one ion already is located in the region of maximum potential well, is
plotted against axial distance. In the inset, the location of the first ion (filled
circle) and the trajectory of the second ion (open circle and arrow) are
schematically shown. The second ion is allowed to approach the first ion
within a distance of 10 A. The number accompanying each curve is the
moment of the dipoles (X1073° C m) placed in the constricted region.



1638

dipoles and dielectric boundary in the absence of any cat-
ions (broken line). It also shows attractive energy well felt
by a monovalent cation in the vestibule due to the dipoles
(solid line); this includes the image repulsion. There is an
energy well of about 5 kT, near the entrance of the con-
stricted segment. The attractive potential decays nearly ex-
ponentially and reaches the 1/e value at a distance of 10 A
from this maximum. Clearly, there will be an increased
probability of finding an ion in the region of the maximum
attractive potential.

However, even in the presence of such an energy well,
the probability of finding two cations in the vestibule is not
appreciably increased. Fig. 11 b shows the energy barrier
seen by the second ion as it enters the vestibule, given that
the first ion is already confined in the potential well. In
the inset, the position of the first ion (filled circle) and the
trajectory of the second ion (open circle and solid line) are
indicated schematically. When the moment of dipoles in the
neck is 48 Debyes, just sufficient to cancel the repulsive
force, the height of the energy barrier presented to the
second ion increases to about 6 kT, as it comes within 10 A
of the first ion (solid line). The barrier height halves when
the moment of dipoles is increased to 96 Debyes (dashed
line). It is only when the dipole moment is tripled to 144
Debyes that the potential barrier presented to the second ion
in the vestibule disappears (broken line), and the mean
distance between the two ions inside the vestibule becomes
similar to that in bulk electrolyte solutions.

Because some biological ion channels are permeable to
calcium, it is relevant to investigate the magnitude of re-
pulsive force and the height of energy barrier presented to a
divalent ion. The two curves shown in Fig. 12 a are calcu-
lated in the same way as those illustrated previously (Fig.
4), except that the ion carries two elementary charges. The
barrier height and repulsive force for a divalent ion are four
times, not twice, those for a monovalent ion. However, as
shown in Fig. 12 b, the image force experienced by the
divalent ion can be nearly canceled by the total dipole
moment of about 100 Debyes, twice that required to have
the same effect on a monovalent ion.

DISCUSSION

Using the iterative method described above, we have deter-
mined the heights of the energy barriers presented to an ion
by conical vestibules with an angle of 10° to 90° as well as
a catenary vestibule. Levitt (1991a,b) proposed a theoretical
scheme for calculating channel conductances from potential
energy profiles using a modified Nernst-Planck equation.
By combining our iterative method of deducing a potential
profile for any arbitrarily shaped channel with Levitt’s
analytical method, it should now be possible to make test-
able predictions about how channel conductance will vary
with various channel configurations. One conclusion
emerging from our simulations is that the height of the
potential barrier presented to an ion by the dielectric bound-
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FIGURE 12 The potential barrier and repulsive image force presented to
a divalent ion by a 15° conical vestibule. (a) The potential barrier (solid
line) and repulsive force (filled circles) presented to a divalent ion are
plotted against axial distance. The magnitudes of the barrier and of repul-
sive force are four times those presented to a monovalent ion (cf. Fig. 4).
(b) The potential barriers in the presence of dipoles of varying moments
are plotted against axial distance. The number accompanying each
curve is the moment (X1073° C m) of dipoles positioned at the
constricted channel region. The minimum dipole moment required to
cancel the repulsive image force is twice that required for a monovalent
ion (cf. Fig. 8).

ary of the vestibular wall is large compared to the ion’s
average kinetic energy. The peak height at the bottom of the
vestibule, when the conical angle is, for example, 15°, is
about 4 kT, (Fig. 7). It requires nearly 250 mV of applied
electric potential to drive the ion against such a barrier
(Fig. 8). The probability that an ion entering the vestibule
can successfully surmount a potential barrier of height V can
be calculated using either simple statistical mechanics
(Kuyucak and Chung, 1994) or the continuum equation
(Dani and Levitt, 1990), or more rigorously by using the
Fokker-Planck equation (Cooper et al., 1988). All of the
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methods basically give the Boltzmann factor e~ V/¥™; thus,
the probability of transmission across such a barrier is rather
low (¢e~* = 0.018). We note that the constricted segment of
the channel will present a further barrier to passage of ions,
reducing the above probability even more.

Because of this barrier the presence of charged groups in
the vestibule is a prerequisite for the free passage of an ion
through the channel. If the vestibule in the ion channel has
indeed shape and dimensions similar to those given by
Toyoshima and Unwin (1988), then the repulsive force due
to the charges on the vestibular wall will severely restrict
transport of an ion unless several charged residues are
placed near the channel’s constricted region. The current
across the channel, in the absence of such charge groups,
will be attenuated by a factor of around 55. The number of
charge groups required to eliminate the potential barrier
depends on several factors. Among these are the location of
counter charges (or the orientation and the strength of dipole
moments) and the exact shape of the vestibule. In our
calculation, it was assumed, for simplicity, that the dipoles
are oriented parallel to the z axis, with the negative charge
pointing to the mouth of the vestibule. With this assump-
tion, the dipole moment needed to cancel the repulsive force
on the ion is 1.75 X 10722 C m (or ~ 50 Debyes) for a 15°
conical vestibule (Fig. 9). This is the minimum moment
required; if the orientations of the dipoles are not perfectly
parallel, the total moment required will be greater.

It is apparent that the selectivity of anions and cations can
result from the polarity of charge groups or the orientation
of dipoles located in the vestibule. For cationic channels,
negative charges must be nearest to the entrance of the
vestibule, whereas for anionic channels, positive charges
must be closer. That the channel is permeable to a cation
only when several dipoles are pointing away from it and
impermeable otherwise raises an intriguing possibility that
the passage or blockage of the ion could be controlled by a
field-effect gate. This is one of the several possible mech-
anisms considered by Hille (1992) by which the channel
may open and close. In principle, the gating could be
controlled by the rotation of several dipoles, and the func-
tion of the vestibules might be to reduce leakage when the
channel was closed, but whether such a mechanism operates
in real biological channels remains to be investigated.

It is possible that there are more charged residues near the
constricted region of the channel than the minimum number
required to counteract the repulsive image force presented
to the ion by the vestibule. The results of our simulation
reveal that the presence of excess dipoles will have the
effect of concentrating ions in the vestibule in the sense of
increasing the probability of finding an ion in the small
volume near the constricted region (see also Jordan, 1987).
However, excess dipoles will not concentrate ions in the
sense of attracting many ions into the vestibule, so that the
concentration throughout the vestibule is significantly
higher than that in the bulk solution. When there are twice
as many dipoles as the minimum required, a potential bar-
rier of about 3 kT, is presented to a second ion that comes
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within 10 A of the first ion. With three times as many
dipoles, the repulsive interaction between the two ions in the
vestibule disappears, and the mean distance between the
ions will be kept at the Debye length, as in bulk electrolyte
solutions (Fig. 11). The precise effect the excess charge
groups will have on the conductance of single channels can
be revealed by detailed calculations involving the Brownian
dynamics method. The dependence or independence of con-
ductance on the number of charged groups in the vestibule
is an important point for further exploration. What is clear
from our studies, however, is that a channel will become
permeable to divalent ions if there are about twice as many
dipoles as the minimum required. This fact may prove to be
a valuable guide in determining the tertiary structure of the
channel from its primary amino acid sequence.

It must be emphasized that conclusions drawn or infer-
ences made from electrostatics are valid only in regions that
are large compared to the diameters of water and ion mol-
ecules. Calculations involving dielectric constants and in-
teractions between point charges describe the behavior of
particles at the macroscopic level. In the channel region
where the radius is less than 4 ~ 5 A, the dielectric constant
falls off very fast with decreasing radius. This is the region
of the nearest-neighbor water molecules, in which the rep-
resentation of the dielectric as a continuous medium is a
very poor approximation. For this reason, we have not
attempted to calculate the potential profile inside of the
constricted segment of the channel or attempted to estimate
what the dielectric constant in it might be (cf. Monoi, 1991).
Clearly, molecular dynamics calculations such as those re-
ported for the gramicidin channel (e.g., Mackay et al., 1984;
Roux and Karplus, 1991; Chiu et al., 1989) will be needed
to elucidate the permeation process inside this region. By
the same token, the values quoted for the dipole moments in
the neck region should be taken as macroscopic estimates
that require further microscopic studies.

APPENDIX A: SOLUTION OF ELECTROSTATIC
POTENTIAL FOR A PROLATE BOUNDARY

Here we present the analytical solution for a point charge outside a prolate
spheroid, the coordinate system of which is shown in Fig. 13. The charge
q is in a dielectric medium with constant g,, and the spheroid has a
dielectric constant &,. The surface of a prolate spheroid is defined by the
relation r; + r, = constant, where r, and r, are the distances from the two
focuses of the spheroid

ro=[¥+y + (- a2)?]"?
(20)
ry =[x+ y* + (z + a/2)*]"
The prolate spheroid coordinates {&, m, ¢} are defined as
E=(r, + r)la,

n=(—r)a, tand=uxly. (21)

Here £ has the range [1, «] and measures the size of the spheroid in units
of a. The orthogonal coordinates 7 and ¢ have the ranges [—1, 1] and
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FIGURE 13 The coordinate system for a prolate spheroid. Three vari-
ables, ¢, 7, and £, define points everywhere in the space.

[0, 2], respectively. Inverse relations are

x =5 1@ = 11 - )] cos ¢,
(22)

y= g [(&-1D1-)]"%ing, z= g én.

Solution of the Laplace equation is given in terms of the Legendre
functions Py, QF and cos me, sin m¢. Because Q' diverges near zero, the
7 solution has only P, whereas the £ solution could have either, depend-
ing on the boundary (Morse and Feshbach, 1953). Thus the most general
potential can be written in the form

¢=2 2 [AmPR(&) + BynQN(O)]
n=0 m=0

(23)
X PY(n)[Asncos me + Bynsin me],
where various constants (A’s and B’s) are to be determined from the

boundary conditions. Potential due to a point charge g at &, 1y, ¢, (& >
£)) is given by Morse and Feshbach (1953) as

@p = 2 2 Camcos m(d — do)PP(mo)P(m)
n=0 m=0

{1 n (&))Qn (é) § > 60}
Pmn(g)an(go) § < go ’
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(n—m)!

2
=2 on+1e- Smo)f“[m] . @5

C. =
™ 27eqa
Superposing the two solutions and noting that, first, in Eq. 23, B,,, = 0
inside the boundary (§ < £)) and A,,, = 0 outside (¢ > §,), and sec-

ond, the ¢ solution in Eq. 23 must have the same form as in Eq. 24, we
have for ¢ < &,

P = 2 AuPR(OPR(m)cos m(d — ¢y),

1
Pour = 8_1 2 [Bannm(g) + Cnmp:nn (Tlo)Qnm(go)P:." (g)]

(26)
X Pr(n)cos m(¢ — d).

Because P;'(m) and cos m(¢ — ¢,) factor out, continuity of d¢/dm and
d¢p/d¢ implies ¢, = @o at &€ = &,. Thus,

slAnmPI:(gl) (27)
= Ban:nn(gl) + Cnman(nO)Q;n(gO)P:](él)
The normal derivatives must satisfy
a‘Pin a‘Pout
e =g s (28)
’ ag & l a§ &
yielding
€2AnmP:|n (gl) l l (29)
Solving Eqs. 28 and 29, we obtain
oY - v
Anm - 82Q:1P:|n’ _ elQ:ln'P::t gIan(nO)Q;n(g{))Cnma
(30)
_ (&1 — &)PYPY ,
Bnm - 8anman’ _ lenm'P:. flP;"(ﬂo)Q;n(go)Cnm-
Here the primes denote derivatives, which are given by
1
Pr=1—pln+ DEPT = (n—m+ DPL], 31

with an identical expression for Q™. The potentials are obtained upon
substituting Eq. 30 in Eq. 26. A few simple checks on the solutions are
provided in the limiting cases. For a conducting ellipsoid, &, — ®, and A,
in Eq. 30 and hence ¢, vanish. For &, = &,, B, = 0 in Eq. 30, and the
solutions reproduce the point charge potential (Eq. 24) everywhere.

APPENDIX B: SOLUTION OF ELECTROSTATIC
POTENTIAL FOR THREE DIELECTRIC SLABS

Here we solve the three dielectric layers problem in a plane geometry. The
results are used in addressing the effects of the sharp boundary assumption
used in the calculation of channel potentials. Let ¢ be the thickness of the
middle layer, its center being located at the distance d from the charge.
Assuming that the charge is at the origin and the plane boundaries sepa-
rating the three layers (with dielectric constants ¢,, €,, €;) are atz = d —
t/2 and z = d + 1/2, the solutions for the electrostatic potentials in the three
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regions can be written as

¢ =3 ;80 ) (311 e+ flek’)Jo(kp) dk,
0
0<z<d-12,
1 (=
?2 = Zrey J (8267 + f,%) Jo(kp) dk, (32)
0
—2<z<d+12,
P = Ze wg3e"‘z.lo(kp) dk, d+12<z

0
where Jo(kp) is the Bessel function of the first kind, order 0, and f;, f5,
25, 83 are unknown functions of k. Applying the usual boundary conditions

at z = d * t/2, we obtain the following four equations for the four unknown
functions

q _ _
8_l+f1ek(2d t)=g2+fzek(2d t)

s.(—— + fie '>) = ex(—g2 + £,

€
(33)
8+ /o = g,
e(—8 +f2ek(2d+')) = T 8383
Solving Eq. 33, we obtain for f,
_4q [(81 —&)(e; + &) + (g, + &)(e; — 83)e_kt]e_2kd

el (1 F 8)(e + &) + (8, — )8, — £5)e” )

(34)

The integral of f, directly gives the potential acting on the charge due to the
induced charges on the boundaries

(Pl(r O) 4‘71'8

fidk. (35)
0

The integrals in Eqs. 34 and 35 are standard and are given by

> ek 1
P dk = p” —,F\(1, a/b; 1 + alb; —1/c),
0
(36)
1 2 (=1)
T 2 a+nb’
n=0
where ,F, is a hypergeometric function and
g+ &)(e, + &
a=2d+i b=y c-BreEre)

(&1 — &)(e; — &)
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Using these results in Eqs. 34 and 35, we obtain for the potential

q & — & (=1
@i(r=0) = Amey €, .Eo [s, +&2d+ (2n— 1)t

e —¢& (—lc)
g +e2d+ 2n+ )t

(38)

The terms in the summation correspond to multiple image charges similar
to multiple reflections in parallel mirrors.

The potential plotted as a function of the distance from the protein-water
interface in Fig. 3 is calculated from Eq. 38.

The calculations upon which this work is based were carried out using the
Fujitsu VP 2200 of the ANU Supercomputer Facility. Throughout the
course of this study, Sarah Lendon has provided excellent technical assis-
tance, for which we are grateful.
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