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Reservoir Boundaries in Brownian Dynamics Simulations of lon Channels
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ABSTRACT Brownian dynamics (BD) simulations provide a practical method for the calculation of ion channel conductance
from a given structure. There has been much debate about the implementation of reservoir boundaries in BD simulations in
recent years, with claims that the use of improper boundaries could have large effects on the calculated conductance values.
Here we compare the simple stochastic boundary that we have been using in our BD simulations with the recently proposed
grand canonical Monte Carlo method. We also compare different methods of creating transmembrane potentials. Our results
confirm that the treatment of the reservoir boundaries is mostly irrelevant to the conductance properties of an ion channel as

long as the reservoirs are large enough.

INTRODUCTION

The goal of elucidating the structure—function relationships
in biological ion channels has gained a new impetus with
the determination of the KcsA potassium channel structure
(Doyle et al., 1998). Most of the theoretical efforts in
modeling the KcsA channel have so far focused on molec-
ular dynamics (MD) simulations of potassium ions in the
channel (Guidoni et al., 1999, 2000; Allen et al., 1999,
2000; Shrivastava and Sansom, 2000; Aqvist and Luzhkov,
2000; Luzhkov and Aqvist, 2000; Berneche and Roux,
2000; Roux et al., 2000). These studies provide valuable
information on the selectivity mechanism and the energetics
of ion permeation in the channel, but do not make predic-
tions about the quantity that can be directly measured by
experiment, namely the conductance. In arecent 100-nsMD
simulation, Crozier et al. (2001) calculated the conductance
of asimplified channel in somewhat extreme conditions (1
M solution with a 1.1-V applied potential). This gives hope
that it may be possible to determine conductance of biolog-
ical channels from MD studies under physiological condi-
tions in the not too distant future. Currently, however,
typical MD simulations of biological channels can be run
for ~10 ns, which is too short to estimate the channel
conductance, or even to explore the dynamics of a single-
conduction event. Of course, thisis not a new problem, and
permeation models of lower resolution such as Brownian
dynamics (BD) (Cooper et d., 1985; Kuyucak et al., 2001)
and Poisson—-Nernst—Planck equations (L evitt, 1986; Eisen-
berg, 1999) have long been considered in the literature. The
latter approach has recently been shown to be invalid in a
narrow pore environment because it neglects the self-energy
of ions (Corry et a., 2000). There has also been someinitia
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development of a “solvent primitive model” in infinite
cylinders with no dielectric boundaries, in which uncharged
solvent molecules are explicitly simulated (Tang et al.,
2001). This technique has not been applied to biological
channels so far, and, as such, its accuracy is yet to be
determined. This leaves BD simulations as a computation-
ally tractable tool for calculating a channel’s conductance
from its structure.

BD simulations were first proposed as away to study ion
channels by Cooper et a. (1985). The early simulations
involved one-dimensional (1D) studies of schematic chan-
nels (Jakobsson and Chiu, 1987; Bek and Jakobsson, 1994),
but the extension to three-dimensional (3D), necessary for
realistic modeling, has not been achieved until recently. The
difficulty liesin the calculation of the forces on ions at each
time step, typicaly found from the solution of Poisson’s
equation, which is computationally too expensive if done
numerically (Hoyles et a., 19984). Thus, the first 3D BD
simulations were performed by Li et a. (1998) using a
torus-shaped channel, for which analytical solutions of
Poisson’s equation are available (Kuyucak et al., 1998). For
a channel with an arbitrary shape, this problem was finally
resolved by storing the potential and electric field valuesin
a set of lookup tables, and interpolating the required values
during simulations from the table entries (Hoyles et al.,
1998b). Since then, 3D BD simulations have been used in
model studies of acetylcholine receptor (Chung et d.,
1998), KcsA potassium (Chung et al., 1999, 2002; Allen et
a., 2001), L-type calcium (Corry et al., 2001), and Porin
channels (Schirmer and Phale, 1999; Im et al., 2000; Phale
et a., 2001).

Recently, questions have arisen about the methods of
implementing the boundaries in BD simulations of ion
channels. Another problem, distinct from the issue of the
boundaries, is that of accurate representation of the forces
onionsin the channel. In our simulations, we have concen-
trated on representing the forces acting on ions accurately
because, ultimately, they are responsible for driving theions
across the channel. Also, the calculated conductance values
could be very sensitive to errors in electric fields and
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potentials, e.g., conductance has an exponential dependence
on energy barriers in channels. In contrast, we regard the
implementation of reservoir boundaries, required to main-
tain ion concentrations and create driving potentials, as a
secondary issue. The purpose of the reservoirs is to move
the necessarily unphysical system boundaries away from the
critical part of the simulation. Provided the reservoirs are
large enough, a simple implementation of the boundaries
should then suffice. We implement the boundaries by ap-
plying a uniform electric field across the channel and keep-
ing a fixed number of ions in the reservoirs. The chosen
concentration values in the reservoirs are maintained by
recycling ions from one side to the other whenever there is
an imbalance due to a conduction event: this process mimics
the current flow through a closed circuit. There has, how-
ever, been a great deal of debate in the field about the
appropriateness of such a simple stochastic boundary. Most
recently, Im et al. (2000) have proposed a more elaborate
treatment of boundaries using a grand canonical Monte
Carlo (GCMC) method. In this paper, they aso question the
validity of the simple method, but unfortunately do not
support this criticism with any hard evidence, such as a
comparison of the two methods. A separate issue is that
their treatment of forces on the ions is less sophisticated
than in our simulations, in that the self-energy of theions (or
the reaction field) is ignored. Although the authors recog-
nize that thisis an important deficiency and plan to improve
their technique, the work of Im et a. (2000) has been
deemed to be the most rigorous so far for BD simulations of
ion channels (e.g., Phale et al., 2001; Tobias, 2001; Tiele-
man, 2001).

The source of this preoccupation with boundaries in BD
appears to arise from association with MD simulations
where the correct treatment is known to be crucia (Sagui
and Darden, 1999). However, the nature of the electrostatic
forces in BD is very different from those in MD: first, an
ion’s electric field (or potential) in water is reduced by a
factor of 80 due to the dielectric shielding, and second,
shielding due to the counterions completely annuls the
remaining field strength beyond 4 Debye lengths. For phys-
iological concentrations (150 mM), this length scale is
about 30 A. With this provision on the reservoir dimensions,
we believe that a simple boundary method should be ade-
quate for the purpose of calculating the conductance of a
channel from BD.

In view of the debate outlined above, however, it seems
prudent to perform additional tests on the validity of our
simple stochastic boundaries. The work of Im et al. (2000)
provides us with an opportunity to do so. We have modified
our computer programs to deal with the more sophisticated
boundaries, and have carried out BD simulations of model
channels using the two different methods. We have aso
experimented with different methods of representing the
transmembrane potential. The purpose of these tests is to
determine whether the GCM C boundaries (or the aternative
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representations of the membrane potential) make any dif-
ference to the conductance of the model channel, or to the
concentrations of ions near the mouths of the channel. If
not, we feel safe in concluding that the reservoirs are
adequately insulating the channel from the boundary con-
ditions, and that our simulations accurately reflect the phys-
ical processes taking place in ion channels.

METHODS

Brownian dynamics

Because the application of BD simulations to redlistic 3D channel geom-
etries has been discussed in detail in our earlier papers (e.g., Li et al., 1998;
Hoyles et a., 1998b; Chung et al., 1998, 1999; Corry et al., 2001), we give
only a brief description of the method here and focus on the boundary
methods that are to be compared. In BD, the motion of individual ions are
simulated using the Langevin equation,

dv,
Mg = ~MwY + Fr(t) + gE + Fs, 1)

where m;, g, and v; are the mass, charge, and velocity of theith ion. In Eq.
1, the effect of the surrounding water molecules is represented by an
average frictional force with a friction coefficient myy;, and a stochastic
force Fg arising from random collisions. The last two terms in Eq. 1 are,
respectively, the electric and short range forces acting on the ion.

The total electric field at the position of the ion is determined from
solution of Poisson’s equation, and includes al possible sources due to
other ions, fixed and induced surface charges at the channel boundary, and
the applied membrane potential. For the proposed channel boundaries used
in this study, Poisson’s equation can only be solved numerically. This is
achieved using the boundary charge method (Levitt, 1978), which is
improved by including the effect of curvature of sectors in the solutions
(Hoyles et al., 1998a). Because solving Poisson’'s equation at each time
step is computationally prohibitive, we store precalculated values of the
electric field and potential due to one- and two-ion configurations in a
system of lookup tables, and interpolate values from these during simula-
tions (Hoyles et a., 1998b). The short-range forces are used to keep the
ions in the system and also to mimic other interactions between two ions
that are not included in the simple Coulomb interaction. These include
short range repulsion and hydration effects as described previously (Corry
et a., 2001).

The Langevin equation (Eq. 1) is solved at discrete time steps following
the algorithm devised by van Gunsteren and Berendsen (1982). To simulate
the short-range forces more accurately, we use a multiple time-step algo-
rithm in our BD code. A shorter time step of 2 fsis used across the channel
where short range ion—on and ion—protein forces have the most impact on
ion trgjectories, whereas, elsewhere, a longer time step of 100 fsis used.

Simulations under various conditions, each lasting for one million time
steps (0.1 us), are repeated numerous times. Initially, a fixed number of
ions are assigned random positions in the reservoirs with velocities also
assigned randomly according to the Boltzmann distribution. The cylindri-
cal reservoirs have a fixed radius of 30 A, and their height is adjusted to
obtain the desired concentration. The concentrations in each of the reser-
voirs are maintained using one of two stochastic boundary techniques
described below. The current is determined from the number of ions
crossing the channel during the simulation period.

The BD program is written in FORTRAN, vectorized, and executed on a
supercomputer (Compaq AlphaServer SC). The time to complete the
simulations depends on the number of ions, how often ions enter the short
time-step regions, and whether the simple or GCMC boundaries are used.
A temperature of 298 K is assumed throughout and a list of the other
parameters used in the BD simulations is given in Table 1. (Note that the
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TABLE 1 Parameters used in the BD simulations for ionic
mass m, radius r, and bulk diffusion coefficient D

lon m (10~2° kg) r (A) D (107° m?s)
Na* 38 0.95 1.33
K* 6.5 1.33 1.96
Cl~ 59 1.81 2.03

diffusion coefficient is related to the friction coefficient my in Eq. 1 by the
Einstein relation, D = my/kT.)

Reservoir boundaries

To maintain the specified concentrations in the reservoirs, we apply sto-
chastic boundaries. Here, we compare the use of a simple boundary that
maintains a fixed number of ions in the system with a more sophisticated
GCMC boundary that allows fluctuations in the number of ions.

Simple stochastic boundary

The simple stochastic boundary is designed to maintain the desired ion
concentrations in the reservoirs by keeping the number of each ion species
in the system fixed. Also, when an ion crosses the channel, say from left
to right, an ion of the same species is transplanted from the right reservoir
to the left. For this purpose, the furthermost ion on the right-hand side is
chosen, and it is placed to the far left-hand side of the | eft reservoir, making
sure that it does not overlap with another ion. The stochastic boundary
trigger points, located at either pore entrance, are checked at each time step
of the simulation. In this way, the total number of each type of ion in each
reservoir remains constant throughout the simulation. We emphasize that
the exact placement of the trigger pointsis not crucia because the change
in potential inside the channel due to moving an ion from one reservoir to
another is only a few millivolts (as found by explicitly measuring the
potential in the channel just before and just after the ion is moved). Thisis
much smaller than the potentials from most other sources e.g., other ions,
induced charges on the boundary, applied potential, and fixed charges.

Grand canonical Monte Carlo method

In an electrolyte solution, the total number of ions within a given region
varies with time as ions wander in and out. To allow such fluctuations in
the number of ions in the reservoirs, we implement as an alternative a
GCMC stochastic boundary as developed by Im et a. (2000). We use
essentially the same procedure but include a brief description of the method
for completeness.

Fluctuations in the number of particlesin an open system are described
using the grand canonical ensemble with the grand partition function

=Na

% =11 2 = expln,ir/kT]

a Ne=0

X [ dV exp[ —W({n})/KT], (2)

where n, and ., refer to the expected number and chemical potential of
ions of species a, W({n,}) isthe free energy of the configuration{n_}, and
the volume integral is carried over all the ion coordinates in the system.
The probability for aparticular configuration 2({n,}) can be read off from
Eqg. 2 by removing the sum and integral, and dividing by %. To achieve a
variable number of ionsin afinite BD simulation, ions must be created or
destroyed from within the reservoirs. Using the principle of detailed
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balance and %({n,}), one can derive the following expressions for the
transition probabilities corresponding to the creation and destruction of
ions of species a (Im et al., 2000)

@cre(na g na + 1)

_ (R/n, + 1) exp[— (AW — f1,)/KT]
=11 (A, + 1) exp[— (AW — poikt] e O

9])d%(hoz — N, — 1)

1
=11 (Agn,) exp[(AW + k] @

Here, AW is the free energy difference between the fina and initia
configurations.

The probabilitiesin Egs. 3—4 are used in Monte Carlo steps to create or
destroy ions in the reservoirs as follows. First, a random number between
0 and 1 is picked and a creation is attempted if it is less than 0.5 and a
destruction if it is greater (equal probability is required to preserve micro-
scopic reversihility). In case of creation, an ion of species « is introduced
in a random location and the probability in Eqg. 3 is caculated. If it is
greater than a newly picked random number, the creation is accepted,
otherwise the ion is removed. Similarly, in the case of destruction, one of
theions of species « is randomly chosen and the probability of its removal
from the system is calculated using Eq. 4. If arandom number is below this
value, then the ion is removed from the system, otherwise it remains.

Such particle creation and destruction is unphysical and is meant to
represent the movement of ions into and out of the reservoirs. So, we must
make sure that this does not affect the dynamics of ions near the ion
channel by limiting such events to “buffer regions,” sufficiently distant
from the channel. Figure 1 depicts the BD system used with the GCMC
boundary conditions. An ion channel (cylindrical in this case, but any
shape is possible) is connected to reservoirs at each end. Cylindrica
reservoirs are used here to be consistent with our previous BD simulations,
although again any geometry is possible. lons move throughout this chan-
nel—reservoir system according to the BD algorithm described above. The
outside edge of the reservoirs form the buffer zones in which the GCMC
creation/destruction routine takes place. In our studies, we used a buffer
thickness of 10 A.

The chemical potential is calculated from the excess solvation energy,
Ap,, of each ion type for the specified average concentration in the
relevant buffer. In a similar fashion to Im et a. (2000), we use the
hypernetted chain approximation (Hansen and McDonad, 1976). The
method used closely follows that of Rossky and Friedman (1980) and
incorporates the short-range and hydration interactions (Corry et a., 2001),
instead of the Lennard—Jones potential used by Im et a. (2000) that ignores
the contributions of solvent molecules. (Note that the solvation energies
could be calculated in other potentially more accurate ways, such as direct
grand canonical simulation.) Once the excess solvation energies are deter-
mined, they are adjusted to account for any driving potentialsin the system
as follows:

I‘_}“aﬁ = Al“‘a + qszB, (5)

where g, is the charge on ion type «, and V is the potential in buffer 3.

To alow the GCMC boundary procedure to accurately enforce the
boundary conditions, many more GCMC steps (a creation or destruction of
each type of ion in each reservoir) should be performed for every BD time
step. In this study, 10 GCMC steps are performed for every BD step. The
concentration in the reservoirs varies during a GCMC-BD simulation as
ions are created and destroyed. The average concentration, though, isfound
to be always dlightly lower than the specified input value.

Biophysical Journal 82(4) 1975-1984
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FIGURE 1 Diagram of the channel and reservoir system used in BD/
GCMC simulations. The protein and membrane forms a 3D channel when
rotated about the central axis by 180°. In this case the channel is cylindri-
cal, dthough it may have any shape. Attached to each end of the channel
are cylindrical reservoirs. During BD simulations, ions move within this
channel and reservoir system. When the GCMC procedure is used to
maintain ion concentrations in the reservoirs, ions are created and de-
stroyed in the buffer zones around the outside edge of the reservoir
indicated by the dashed lines. The dimensions shown are those for the
cylindrical channel discussed in the text.

Transmembrane potentials

A second issue to do with reservoir boundaries is how to apply a potential
difference that drives ions through the channel. There are at least three
possibilities that have been considered in the past, and there has been much
debate as to which is most appropriate.

In al our recent BD simulations, we have created a transmembrane
potential by simply applying a uniform electric field through the system.
This applied field isincluded in the solution of Poisson’s equation with the
dielectric boundaries so that it induces surface charges of it own. The
resulting potential is far from being linear across the system—it drops
much more rapidly through the channel than in the reservoirs.

Another approach is to fix the potential at the desired values along the
far ends of the reservoirs. This creates an equipotential surface at each end,
which can be set independently to create a potential drop across the
channel. This is similar to placing electrodes at the far end of each
reservoir, though, in an actual experiment, the electrodes would be much
farther from the channel than in atypical simulation. To use such ascheme,
we solve Poisson’s equation with the specified boundary potentials using a
finite difference method (Moy et a., 2000). The results due to the trans-
membrane potential, fixed chargesin the protein wall, and charges induced
by these are stored in a 3D lookup table.

A final method, which has been introduced by Im et a. (2000), is to
make the potential more realistic by moving the fixed potential surfaces far
away from the simulation system. The electrolyte solution in between the
reservoir and the fixed potential surface is treated as a continuum by
solving the Poisson-Boltzmann (PB) equation in this region. The potential
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in the system is thus calculated using a modified PB equation, which
reduces to Poisson’s equation in the BD simulation system where ions are
treated explicitly. We implement this procedure by using afinite difference
method to solve the modified PB equation when constructing the 3D
lookup table.

For the purpose of comparing the stochastic boundary techniques used
for maintaining concentrations in the reservoirs, it is important that we use
the same applied potentials. Thus, in all the simulations discussed here,
except for thefinal section on transmembrane potentials, we utilize the first
“uniform field” approach.

RESULTS AND DISCUSSION
Equilibrium ion distribution

We first demonstrate that the BD simulations with either the
simple or GCMC procedure maintains the desired equilib-
rium conditions by examining the relative distribution of
ions in bulk solution. For this purpose, we set al dielectric
constants in the system equal to 80 so that there are no
dielectric boundaries in the system, and ignore ions that are
within 8 A of the reservoir boundaries to avoid edge effects
in sampling. In Fig. 2, we show the radial distribution
functions for K-Cl (A) and K—K (B) ion pairs, obtained
from BD simulations of a 500-mM KCl solution for 10°
time steps (0.1 ws), in one case with the GCMC routine in
place (triangles) and in another without (filled circles).
When testing the GCMC procedure, the buffer regions are
enlarged to occupy the entire reservoirs (so that ions can be
created or destroyed anywhere) because the test isfor a bulk
solution. The curves agree closely and depict the peaks due
to the contact and solvent-separated minimain the potential
of mean force. They also closely follow the results obtained
from the hypernetted chain equations indicated by the solid
line. This agreement indicates that the equilibrium structure
of the electrolyte is accurately reproduced in BD simula-
tions with or without the GCMC routine.

Cylindrical channels

Because we are interested in comparing different treat-
ments of the boundary in BD simulations, it matters little
which channel model we use. Thus, for simplicity, we
first make our comparisons in a simple cylindrical chan-
nel, before demonstrating the robustness of these results
in the more complex potassium channel model we have
studied previously.

The cylindrical channel model is formed by rotating the
curve shown in Fig. 1 about the central axis. The channel
radius is set to 3 A and its entire length to 35 A. First, we
set the dielectric constant of the protein to 80, equal to that
of the electrolyte in the channel and reservoirs. In this case,
because there is no dielectric boundary, no reaction field can
be induced. Although not redlistic, this provides the sim-
plest case in which to test the stochastic boundary methods,
and it also helps in showing the importance of the reaction
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FIGURE 2 Radial distribution function for (A) K*—Cl~ and (B) K*—K*
ion pairs moving in the reservoirs as found from BD with the GCMC
routine in place throughout the reservoirs (triangles), BD simulations
without the GCMC routine (filled circles), and the HNC equations (solid
line). The BD plots were calculated by sampling from simulations using a
cylindrical channel with no dielectric boundaries and ignoring ions within
8 A of the reservoir boundaries.

field when these results are compared to those with a
realistic choice of dielectric constant. The overall concen-
tration in the simple boundary simulations is set to be the
same as the average concentration during the GCMC sim-
ulations. For compatibility with earlier simulations, all stud-
ies in the cylindrical channels are carried out using NaCl
solution.

1979

lon distributions and fluctuations

Im et a. (2000) show that, when the GCM C method is used,
the number of ions in the reservoirs fluctuates considerably
during aBD simulation, and therefore, they claim “BD with
afixed number ions cannot describe the permeation process
in a satisfactory manner.” Such a connection between chan-
nel current and variations in the ion numbers is far from
being obvious. For one thing, fluctuations in concentration
in any volume in the vicinity of the channel occur at amuch
faster rate than conduction of ions, and hence a direct
correlation between the two quantities is unlikely. Second,
even if such fluctuations did have an effect on channel
current, these will be at the level of noise in the stochastic
BD simulations, and will be lost when the average current is
determined (which should depend only on the average con-
centration). Finally, fixing the total number of ions in the
reservoirs does not mean that they do not fluctuate near the
channel where such effects, if important, should be modeled
correctly.

In Figs. 3 and 4, we demonstrate this third point by
comparing the predictions of the simple boundary (A) with
the GCMC method (B) for the distribution of ions near the
channel. In each figure, the probability of finding a given
number of ionsin afraction of the reservoir volume around
the channel (denoted by X) is plotted. In Fig. 3, x = 0.5,
corresponding to al the volume outside the buffer zone in
the GCMC method as indicated by the dashed linein Fig. 1.
In Fig. 4, x = 0.25, that is, half of the volume used in Fig.
3 (around the mouth of the channel). Given N particlesin a
box, the probability of finding n of them occupying x
fraction of the volume is given by the binomial distribution,

P(n, x) = P XL =%, (6)

N!

n! (N—n)
which is indicated by the dashed line in Figs. 3 and 4. As
expected, the probability distributions when using the sim-
ple boundary method show that the number of ions in these
regions varies significantly during a simulation, the distri-
butions closely following the binomial onein both Figs. 3 A
and 4 A. Even though the total number of ions in the
reservoir is constant during the simulation, the number of
ions near the channel is not fixed. The GCMC distribution
is dlightly more spread out in Fig. 3 B, where the effect of
the number fluctuations in the buffer zone is maximal. But,
as shown in Fig. 4 B, as soon as one moves away from the
buffer boundary, the GCMC distribution also reverts to the
binomial distribution. Thus, away from the boundary re-
gions, ion numbers fluctuate according to the binomial
distribution regardless of whether one fixes the total number
of ionsin the system or alowsit to fluctuate according the
GCMC method.

We emphasize that the boundary conditions imposed in
either method contain unphysical elements, and one has to
make sure that these regions are well separated from the

Biophysical Journal 82(4) 1975-1984
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FIGURE 3 Fluctuations in cation numbers in a region around the chan-
nel mouth comprising 50% of the volume of one reservoir when (A) the
simple stochastic boundary is used and (B) when the GCMC procedure is
used. A dielectric constant of 80 is used everywhere. The number of ions
in the region is sampled every 100 BD steps and the relative frequency is
calculated during a 0.2-u.s simulation period. The average concentration in
the simulation is ~280 mM, corresponding to 15 ions of each type in each
reservoir. The average number of ionsin the region and the standard deviations
areindicated by nand o, respectively. The dashed line shows the correspond-
ing binomial distribution from Eq. 6 with N = 15 and x = 0.5.

channel. The rule of thumb is to put the boundaries ~4
Debye lengths away from the channel mouths to allow for
near complete ionic screening. Once the boundaries are at
such distances, their effects are totally washed out in the
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FIGURE 4 Fluctuations in cation numbers as in Fig. 3 except in a
smaller region near the channel mouth containing 25% of the entire
reservoir volume using (A) the simple boundary and (B) the GCMC
boundary.

vicinity of the channel so that all methods should lead to
similar fluctuations in ion numbers there.

Channel currents

Because the distribution of ions and the fluctuations in ion
numbers are very similar near the channel mouth with both
the simple and GCMC methods, they should aso lead to
similar conductance properties. To demonstrate that the
choice of boundary makes no difference on the channel
conductance, we next compare the current passing through
the cylindrical channel during BD simulations with the
simple and GCMC boundaries.

In Fig. 5 we plot the current-voltage curve in a 3-A-
radius cylindrical channel found from BD simulations using
either the simple stochastic boundary (filled circles) or the
GCMC boundary (triangles). For this plot ¢ = 80 is used
everywhere so that there are no dielectric boundaries and
thus no ion self energies or image charges. This situation is
the same as that used in the control study of an earlier paper
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FIGURE 5 Comparison of the current-voltage curves in a cylindrical
channel using the simple stochastic boundary (filled circles) or the GCMC
boundary (triangles). A 3-A-radius channel is used with ¢ = 80 every-
where and 265 mM NaCl solution. lons are driven across the channel by an
electric field of 2 X 107 V/m, corresponding to a potential drop of
approximately 200 mV across the system. Sodium and chloride currentsare
plotted separately and each set of results is fitted by the solid line.

(Corry et al., 2000) and is similar to the simulations of Im
et al. (2000), in which reaction fields are ignored. Because
there are no fixed charges or other sources that can bias the
potential, both cations and anions pass through the channel
in opposite directions. The current carried by the cations and
anions are plotted separately in the figure, and there is a
greater anion current due to chloride having a larger diffu-
sion coefficient than sodium. Rather being ohmic, the cur-
rent—voltage relationship is notably nonlinear. This is most
likely a conseguence of the fact that, at larger voltages, the
ion transit time through the channel is shorter. Because the
channel istoo narrow for ions to pass each other, yet cations
and anions are trying to permeate through the channel in
opposite directions, the shorter transit time would aid con-
duction by clearing the channel ahead of the next conduc-
tion event. It is clear from this plot that the currents calcu-
lated using either the simple and GCMC boundaries are
essentially the same, the two agree to within the statistical
uncertainty of the data. Thus, the channel current does not
depend on which boundary technique is used.

If we change the dielectric constant of the protein to the
realistic value of 2, then a dielectric boundary is formed,
and reaction field effects come into play. When an ion
approaches a protein boundary with a lower dielectric con-
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FIGURE 6 Comparison of the current—voltage curves in a cylindrical
channel with fixed charges using the simple stochastic boundary (filled
circles) or the GCMC boundary (triangles). A 3-A-radius channel is used
with eight monopoles placed at each end as described in the text. A
dielectric constant of 2 is assigned to the protein and 80 everywhere else.

stant, it induces surface charges that repel theion away from
thisinterface. Indeed, as discussed in previous papers (Moy
et al., 2000; Corry et a., 2000), these reaction fields can be
the dominant electrostatic effect in ion channels and should
not beignored. In this case, the repulsive forces prevent ions
from entering the channel, and so the current is reduced to
zero. Not surprisingly, the choice of stochastic reservoir
boundary has no effect—no ions cross the channel with
either technique. The most important physical effects for
simulating the channel are those between the ion and the
channel itself, not those due to the reservoir boundaries or
ions far from the channel.

Next we create a conducting cylindrical channel with
dielectric boundaries by including fixed chargesin the chan-
nel walls. A ring of eight monopoles are placed at each end
of the channel (at z = +12.5 A), each carrying a charge of
—0.09e as done previously (Corry et al., 2000). These
charges help cations overcome the image forces and enter
the channel, while preventing anions from entering, creating
a cation-selective channel. The cation current passing
through the channel is plotted against the driving potential
using both the simple and GCMC boundaries in Fig. 6. As
in the case of Fig. 5, the currents found from simulations
using the GCMC boundary are almost identical to those
found using the simple boundary. Note that the nonlinearity
in this case results from the residual barriersin the potential
energy profile.

Biophysical Journal 82(4) 1975-1984



1982

More complex channels

We have seen that the choice of stochastic boundary used to
maintain concentrations in the simulation reservoirs has no
effect on the currents flowing through ssimplified cylindrica
channels. As a final test, we check to make sure that this
conclusion is valid in a more complex and realistic multi-
ion channel that we have modeled previously, and checking
it at arange of concentrations. To do this, we use the KcsA
potassium-channel model that has been described in an
earlier paper (Allen and Chung 2001). An open-state KcsA-
channel shape has been constructed using MD from the
known closed-state crystal structure (Allen et al., 2000). A
dielectric interface is then constructed by tracing out a
boundary using a water molecule and assigning the dielec-
tric constant a value of 2 in the protein and 60 in the
channel. The final shape, and the pore-forming peptide
helices are shown at the top of Fig. 7. Charges are assigned
at positions corresponding to the protein atoms using the
extended cHArRMM-19 parameter set. More details can be
found in the above references.

In Fig. 7, we plot the current—concentration curve in the
KcsA potassium channel surrounded by KCI solution under
a driving potential of 200 mV. The results of our simula-
tions show a saturation of channel current with increasing
conductance, and are fitted by a Michaelis-Menton curve to
indicate this. The data from simulations carried out using
the simple stochastic boundary, indicated by the filled cir-
cles, are those published elsewhere (Allen and Chung,
2001). When the GCMC boundary is used, the new data
shown by the triangles reproduces this curve well at all
concentrations studied. Thus, once again, the choice of
stochastic boundary has little effect on channel currents,
even over alarge range of concentrations.

Transmembrane potentials

So far, we have examined techniques for maintaining ion
concentrations in the reservoirs. A separate but related issue
arises when we consider applying a transmembrane poten-
tial to drive ions through the channel, because this may rely
on setting boundary values for the potential at the edges of
the reservoir. In reality, the driving field or potential arises
from ion clouds on each side of the membrane or a distant
electrode. Thus, setting the potential at the back edges of the
reservoirs is not quite correct because it fails to alow for
variations at these positions caused by the movement of
mobile ions. Im et a. (2000) claim that their use of the
modified PB equation avoids these difficulties by taking
into account the effects of mobile ions when determining
the potentials at each end of the BD simulation. The uniform
field approach does not include the cause of the transmem-
brane potential, rather just takesit as given, abiasthat could
be created by ionic clouds or polarization external to the BD
system.
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FIGURE 7 Conductance concentration curve in a model KcsA potas-
sium channel found from BD simulations using the simple stochastic
boundary (filled circles) and GCMC boundary (triangles). An electric field
of 2 X 107 V/m is used to drive the ions across the channel. The results
represent the averages of 1.5-2.0-us simulations. The inset shows the
shape of the channel and indicates the major peptide helices.

But, rather than entering a debate as to which is the most
realistic way to create the transmembrane potential, we
simply demonstrate here that it again makes no difference
which method is used, by directly comparing the three. In
Fig. 8, we plot the average potential along the central axis of
the channel during aBD simulation using the uniform field,
fixed potential, and modified PB approaches. In all cases,
the magjority of the potential drop occursin the channel, with
the potential remaining relatively flat in the reservoirs.
When the fixed potential or modified PB methods are used,
a dlightly greater charge separation occurs in the reservoirs
due to ions being attracted to the potential generating elec-
trodes. This is especially true near the outside edge of the
reservoir, and leads to the drop in the magnitude of the
potential there. The boundary effects created in these tech-
niques are, however, quickly screened out by the mobile
ions in the system. It is worth noting that, in the modified
PB method, we solve the modified PB equation only once
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FIGURE 8 Average potential profiles along the channel axis during a
BD simulation when the transmembrane potential is set via the uniform
field (solid line), fixed potential (dashed line) and modified PB (dotted
line) methods. The cylindrical channel model is used, with a dielectric
boundary but no fixed charges. The potential is plotted between the two
ends of the reservoirs. In all cases, the potential at each point is averaged
over a 0.1-us BD simulation.

before doing the BD simulation. Thus, the electrolyte out-
side of the reservoirs does not react to the presence of the
explicit ions in the BD simulation. If the modified PB
equation was solved at each BD time step, it is possible that
the electrolyte would act, on average, to cancel some of the
charge separation seen in the BD simulation. This, of
course, would only act to bring the potential closer to the
uniform field case, and would not alter our conclusion.
Inside the channel, the potentials are almost identical in all
cases, and good agreement is maintained until ~20 A from
the channel mouth. Thus, no matter which techniqueis used
to create the transmembrane potential, the average potential
seen by ions in or near the channel is the same. Because it
is the potentials in and around the channel that drive ions
through it, the choice of technique for creating a transmem-
brane potential is, therefore, irrelevant when it comes to
calculating the current passing through the channel in a BD
simulation.

CONCLUSIONS

We have presented a number of results that demonstrate that
it does not matter whether the simple stochastic or the
GCMC stochastic boundary is used to maintain ion concen-
trations in the reservoirs during BD simulations. In both
cases, the edge of the reservoirs or the GCMC buffer zones
must be at a reasonable distance from the channel, ideally
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3-4 Debye lengths, such that any unphysical edge effects or
particle creation or destruction are screened from the chan-
nel. When these precautions are followed, the number of
ions near the channel fluctuates according to the binomial
distribution, and the current passing through the channel is
the same with either method. Similarly, it does not matter
how the transmembrane potential is set. Provided the res-
ervoirs are large enough, mobile ions redistribute them-
selves, causing the potential drop across the channel to be
the same in all cases.

The simple boundary method is conceptually simpler,
involves less calculations, and is considerably faster. For a
typical simulation presented here with a 300-mM solution,
a 1-us smulation takes ~45 h of CPU time to complete
using the ssimple boundary, and 115 h with the GCMC
boundary method. The greater time is due to the potential
energy of the system having to be recalculated for each
GCMC creation or destruction step. The simple boundary
also allows one to specify beforehand the exact concentra-
tion that will be used in a given simulation. Thus, for BD
simulations of solutions at the usual physiological concen-
trations, the added complexity of the GCMC method pro-
vides no perceptible advantages compared to the simple
boundary method.

One situation where the GCMC boundary does have an
advantage over the simple boundary method is the smula-
tion of solutions at very low concentrations. For example, to
simulate an ion species in the micromolar range using the
simple boundaries would require reservoirs thousands of
times larger than those described here to contain at least one
ion of this type. This is not only cumbersome, but also
makes including a second ion species at a higher concen-
tration (say in the millimolar range) problematic—the res-
ervoir would have to contain thousands of ions of the
second type, making it too slow to simulate. The GCMC
boundary can reach such low concentrations using a small
reservoir because there need not always be an ion of each
type in the simulation. The low concentration species is
simply created in the buffer regions at a proportionally
lower rate.

Of course, it is possible to treat the boundaries in other
ways not discussed here. For example, a periodic boundary
could be used to maintain ion concentrations and potentials,
such as that typically used in nonequilibrium molecular
dynamics simulations (Crozier et al. 2001; Tang et al.
2001). These techniques have their own advantages, such as
avoiding any explicit potential boundary, and disadvantages
such as only being able to model symmetric solutions at
each end of the channel. However, from what we have seen
here, it should be apparent that the choice of boundary does
not matter, provided some common-sense precautions are
observed.

Although the GCMC boundary opens up some new ave-
nues for simulation at low concentrations, it is not, despite
the claims of Im et a. (2000), a more accurate method than
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the simple stochastic boundary. The results presented here
support the obvious expectation that the physics taking
place near the channel is the main determinant of channel
currents, not the way the boundary conditions are imple-
mented. Thus, as long as the reservoirs are large enough so
that the edge effects are completely screened out near the
channel, one need not worry about the exact implementation
of the system boundaries. Instead, it is more important to
describe the ion dynamics in and near the channel accu-
rately, including the effects of image forces.
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