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A novel analytical method for characterizing singie-channel currents from recordings containing many identical, independent
channels is described. The method is based on the assumption that the opening and closing of each single channel contributing to
the summed current can be represented as a first-order, discrete-time, binary Markov chain and that the variance of the quiescent
channel noise is known. Utilizing the first 3 moments of the record, and its power spectrum, all relevant single-channel parameters
can be estimated. This includes the number of channels, the open current amplitude of a single channel, the mean open and closed
durations and the probability of a channe! being in the open state. In addition, the magnitude of the shot noise resulting from the
fux of ions across the membrane can be estimated. Using fictitious multi-channel recordings generated by summing 2-990

independent binary Markov chains together with additive white noise, we have tested the reliability of the method in estimating the
statistics of single channels. Finally, we discuss how the technique may be extended to cope with data which has been low-pass
filtered, and also suggest further experiments which the technique now mikes possible.

Introduction

It often happens that recorded transmembrane
currents are not due to the activity of a single ion
channel but arise from the collective behaviour of
many channels that open and close intermittently.
Such sifuations can occur when membrane cur-
rents are measured with intracellular electrodes,
from whole-cell configurations or excised patches
containing multiple channels. What information
about the individual channels can be gleaned

1 Computer programs of the technique detailed here for
TBM-PC may be obtained from 5.H. Chung, Protein Dy-
narnics Unit, Department of Chemistry, Australian National
University, Canberra, ACT 2601, Australia. FAX: (06) 247-
2792,

* Cortesponding author; Shin-Ho Chung, Protein Dynamics
Unit, Department of Chemistry, Australian National Uni-
versity, Canberra, ACT 2601, Australia. Tel: (06) 249-2024;
FAX: (06) 247-2792; E-mail: shc206@huxley.anu.edu.au.

from such current traces? In the casc of identical
channels that act independently, a solution to this
problem was attempted by Conti and Wanke
(1975). Modelling each channel as a binary
Markov chain and working in continuous time,
they obtained expressions for the mean, variance
and power spectrum of the current record. Un-
fortunately, the model parameters themselves
cannot be calculated from this information alone,
unless the number of free parameters is reduced
by imposing an unrealistic restriction on the tran-
sition probabilities. A method of ascertaining the
rate constant for channel closing from the power
spectrum of voltage-clamped intracellular record-
ings was devised by Anderson and Stevens (1973),
who modelled the channel current as a Poisson
process. Further work along these lines was pre-
sented by Siebenga et al. {1973).

By fitting a guadratic function to the mean-
variance curve obtained from experiments at dif-
ferent levels of mean current, it is possible to
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estimate the number of channels and the open
conductance level (Ehrenstein et al., 1970; Bege-
nesich and Stevens, 1975; Sigworth, 1980; Holton
and Hudspeth, 1986). Although this technigue
gives nto information about the individual channel
kinetics, it recognises the importance of solving
the inverse problem, rather than simply providing
expressions for the statistics of the process.

With the use of specific receptor agonists,
pharmacological blocking agents and recombi-
nant DNA techniques, it has now become possi-
ble to activate a single, homogeneous type of
channel. This substantiates the assumption of
identical channel current levels and kinetics and
paves the way for a complete solution of the
fluctuation analysis problem in the case of inde-
pendent channels. We introduce a method that
utilizes the mean, variance, third central moment
and the power spectrum which enables a com-
plete identification of the process from a whole-
cell, intracellular or multi-channel patch record-
ing containing additive white noise. Moreover,
our method requires only one current recording to
be taken at a constant membrane potential, thus
facilitating the experimental technique.

By combining the various statistics, one can
estimate the number of single channels contribut-
ing to the transmembrane currents, as well as the
state amplitude {conductance level) and transi-
tion probabilities, which hitherto could only be
revealed through single-channel recordings. We
describe the method at an intuitive level, and
refer the reader to Pulford et al. (1993) for rigor-
ous derivations of the results we apply. We in-
clude here a practical guide for implementing the
technique on a digital computer. Using simulated
channel data, we demonstrate that the analytical
scheme we propose can identify the process pa-
rameters with an acceptable degree of accuracy.

Overview of probabilistic channel models

We model a single channel’s behaviour as a
discrete-time stochastic process {x,, k=0, 1, 2,
...} in which x, denotes the channel state which
may be open or closed. We presuppose that the
probability of the channel macromolecule assum-

ing the open or closed conformation depends
only on its previous state, and that this probabil-
ity is independent of the time. The single-channel
process can therefore be represented by a first-
order Markov chain with 2 states. We briefly
compare and contrast 3 specific classes of dis-
crete-time Markov processes which have been
used in the past to model channel currents.

Bernoulli process

A simple way to envisage the Bernoulli process
is a sequence of heads (H) and tails {T) obtained
from tossing a coin, which may be either fair or
biased. The process generated by a sequence of
Bernoulli trials can be described by a single pa-
rameter p, the probability of observing a head
given that a head was fast thrown. Given that H
was observed at trial 1, the probability of obtain-
ing H again at trial 2 is p; the transition probabil-
ity from H to T from trials 1 to 2 is 1 —p.
Conversely, given that T was observed at trial 1,
the probability of obtaining another T at trial 2 is
1 —p, and the transition probability from T to H
is p. Compactly, we can represent this stochastic
process by a 2 X 2 transition probability matrix
which reads:

p 1-p _
4 (p 1 —p) )
where the 2 entries in the first row represent the
transition probabilities from H to H and H to T,
whereas those of the second row are the transi-
tion probabilities from T to I and from T to T.

The Bernoulli process cannot adequately rep-
resent the kinetics of a single channel. This is
because the power spectrum S${e) obtained from
such a process is always flat. Conversely, if the
true process S(w) has low-pass spectral charac-
teristics, then it could not have been generated by
Bernoulli trials. This assertion rests on the fact
that the eigenvalues A of the transition matrix
given in Eqn. I are 0 and 1.

Discrete-time random telegraph signal

The so-called random telegraph signal, an-
other 1-parameter stochastic process, exhibits dif-
ferent characteristics from the Bernoulli process.



Imagine that the telegraph key is in the open
position at time ¢, The probability that the key
will drop to the closed position at time £+ 1 is p.
Conversely, once the key is in the closed position,
it will spring up to the open position with the
same probability. The transition matrix of this
process can be written as:

Am( p 1—p) )

l—p p

One of the features of this process is that the
mean closed and open durations are identical,
and the proportion of time the process spends in
one or the other state is precisely 0.5. In mathe-
matical parlance, the eigenvector of the above
matrix corresponding to the eigenvalue 1 is (0.5,
0.5). The power spectrum S{w} of such a process
has a low-pass characteristic, with a corner fre-
guency which is related to p. To apply an analyti-
cal scheme based on this signal model, the experi-
mental conditions, obtained for instance by ad-
justing the agonist concentration or temperature,
would need to be contrived in such a way that
channels remain open about 50% of the time
during the experiment. The mean open time or
rate constant for this model can only be derived
from the power spectrum if this condition is satis-
fied.

General binary Markouv chain

By introducing an additional parameter in the
transition probability matrix, it is possible to gen-
erate a much greater variety of signal behaviours.
The random process so generated is known as a
Markov chain, which can be illustrated with a
ball-tossing game. In this imaginary game, a ball
is tossed back and forth between two players,
called C and O. Player C tosses the ball to Player
O with probability 1 — £, whereas Player O tosses
the ball to Player C with the probability 1 —p.
The probability that Player C, being in possession
of the ball, does not toss it to Player O is £,
Similarly, the probability that G does not throw
the ball to C is p. The transition probability
matrix, for this example, is given by

Am( ¢ l—g) &

l=p p
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We note here that the random telegraph signal
can be viewed as a special, restricted case of this
Markov process corresponding to ¢ = p. The pro-
cess generated by Eagn. 3 is known as a 2-state,
first-order, homogeneous Markov chain.

Transition probability matrix and channel kinetics

Once ¢ and p in Eqn. 3 are estimated, many of
the statistics of of the stochastic process can be
deduced. The mean closed and open durations
may be calculated as

(:i-(.=1/1*§ (4)
dy=1/1-p (5)

while the closed interval distribution, which has
an exponential form, is given by
Pdy=¢Y"P(1-¢). (6)
where d is the interval in number of samples.
The open interval distribution is obtained by re-
placing ¢ by p. (For example, if p is estimated to
be (.96 and the sampling interval is 200 us, then
the mean open duration is 25 points or 5 ms.)
The proportion of time the process is in the
closed and open states, known otherwise as the
eigenvector (., 7,} belonging to the unity eigen-
value, is related to ¢ and p by

1-¢

D (7)
l—-p

#sz‘ (8)

Finally, the eigenvalues A of the transition
matrix have a special significance in that, for a
given set of state amplitudes, all the statistical
properties of the Markov chain can be expressed
using these guantities alone. For a 2 X 2 transi-
tion matrix, 1 of the 2 eigenvalues is always 1.
The other can be computed as

A={+p— 1. (9
The superposition of L identical channels will
have (L + 1) conductance levels with an (L + 1)
% (L + 1) transition probability matrix. It can be

shown that the (L + 1) ecigenvalues of such a
matrix are

A, A%, .., AL (10)
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it is important to note that a given matrix
uniguely determines its eigenvalues, but the ma-
trix cannot be deduced from a set of eigenvalues
alone.

Continuous-time vs. discrete-time representation

We can treat Markov processes in discrefe or
continuous time, If time is considered discrete, as
arises in practice when we sample a continuous-
time process, then the preceding discussions are
applicable. When time Is continuous, we¢ can
specity the Markov process in terms of its inten-
sity matrix Q. We can move between the two
process descriptions by observing that the dis-
crete-time transition matrix A is the matrix ¢xpo-
nential of Q times the sampling period, namely,
A = exp(QT). In formulating the signal model, it
makes little difference whether the process is
envisaged as a continuous-time or discrete-time
chain. However, the inverse probiem of obtaining
a model from the data is what we are faced with
in practice. For any proposed model of channel
dynamics, we need to obtain optimal estimates of
the parameters featuring in it, and cvaluate how
well it describes the observation sequence.

The real world process or the measurement
obtained in the laboratory invariably contains
random noise in addition to the signal of interest.
It is when dealing with these noisy observations
that a continuous-time formulation of a Markov
chain poses added technical difficulties. The
mathematical tools for handling continuous-time
processes, the realization of which is hidden in
noise, are still being developed, and involve ad-
vanced mathematics such as Ito calculus and
Wiener processes, The discrete-time formulation,
on the other hand, avoids these theoretical prob-
lems. Moreover, a wide range of digital signal
processing algorithms are already at our disposal.

Many identical channels

Once the transition probability matrix of the
Markov process (and, for channel currents, the
amplitude of the open state) is specified, the
steady-state properties of such a chain are com-
nletely specified. These include: the mean open
and closed durations, the distribution of open
and closed times, the probability of being in the

open state, the power spectrum, and all statistical
moments. No two realizations of a chain can be
expected to be identical in the time domain but
different realisations of the same stochastic pro-
cess should be statistically indistinguishable from
one another, given a sufficiently long segment of
data. A corollary to this assertion is that informa-
tion about the elements of the matrix, the ampli-
tude of single-channel currents and the number
of single channels contributing to the measured
currents is able to be extracted from the statisti-
cal properties of the observation sequence.

Statement of the problem

Signal model

We make the following assumptions about the
underlying signal sequence contained in multi-
channel recordings. Firstly, the behaviour of a
single channel can be approximated by a
discrete-time, 2-state, homogeneous Markov
chain. Secondly, each channel opens and closes
independently of the others. Thirdly, all channels
contributing to the record have nearly the same
conductance levels and transition probability ma-
trices.

The first assumption can be readily justified.
Although 1t s of theoretical importance to ascer-
tain whether channel kinetics are best repre-
sented by a Markov process or by some other
stochastic process, the parameter estimation
scheme is relatively robust to deviation from the
first-order Markov assumption (Chung et al.,
1990, 1991). The second assumption is likely to be
valid, This is because a large number of ion
channels distributed over a cell surface are likely
to behave independently. Whether the independ-
ence assumption holds for adjacent channels con-
tained in muscle endplates and excised patches of
less than 1 pm?® can be anzwered experimentally.
If the channels are not independent but partially
coupled, the method we describe here may per-
haps be extended to take this info account and
obtain an estimate of this coupling parameter,
but the associated mathematics would certainiy
be more complicated. Finally, the assumption of
identicalness of the constituent channels must be



met by experimental manoeuvres. By using spe-
cific agonists or antagonists, recombinant DNA
techniques or otherwise, the experimenter must
ensure that the net current response stems from
the activation of a population of homogeneous
channels.

Formulation of the problem

Given observations of a process consisting of a
sum of N identical, independent, 2-state channels,
embedded in white gaussian noise, obtain the most
likely estimates of the number N of single channels,
the conductance level, the stationary probability
distribution and the transition probability matrix.

Notation

We define the following notation and abbrevi-
ations which will be used frequently in the paper.
We indicate matrices and vectors by bold type
{see Table 1).

Estimation procedure

There are 4 unknown variables to be esti-
mated: the number of channels N; the 2 random
variables { and p featuring in Eqn. 3; and the
amplitude s of a single channel current, All other
attributes of a channel’s kinetics can be derived
from these quantities. We therefore nced 4 inde-
pendent statistical measurements derived from
the record. It is relatively easy to work with the
mean, variance, third-order central moment and
the power spectrum. These quantities are then
expressed in terms of the unknown variables and
the resulting equations solved to obtain estimates
of the parameters.

Mean

Experimental data give measurements y, that
are the sum of the channel currents contributed
by N independently and identically distributed
(iid) 2-state Markov chains with additive, zero-
mean white gaussian noise of variance o*. We
assume that the noise process s, 1s independent
of the signal process. We write the observable

process as
N N
Vo= 2 xP +n, (11)

i=1

TABLE 1
NOTATION

X,. ¥,  scalar Markov chains

; state {conductance) level

A transition probability matrix
N number of channels

K number of data points
I

k

T

{

time

discrete time index

sampling time

closed — closed transition probability
p apen — open transition probability
stationary probability of being in the closed state
Ty stationary probability of being in the open state
HMM  Hidden Markov Model

where x{ represent the id binary Markov
chains. Thus the mean value is

my(y) = Nimy(x©) = Nz, (12)

As no current flows when a channel s closed and
the additive noise has zero-mean value, the terms
w, and o? do not feature in the expression for
the signal mean.

Variance
The second-order central moment, or vari-
ance, of the observable process is

po¥) =Nuy(xP) +o?=Nmga s +o?.  (13)

In passing, we noie here that Eqns. 12 and 13
together give the following mean-variance rela-
tionship

to¥) = sm(y) —mi(y)/N+ o (14)

This relationship holds for any binary Markov
chain, including the Bernoulli process.

Third-order central moment

The third-order central moment of a process is
related to the skewness of its probability distribu-
tion. In the case of a binary Markov chain, it is
expresstble as:

—- DY 3
Iu’3(y)AN#S(A())_NWOWC(WC_WO)S : (15)
Note that the third central moment is independ-
ent of the noise variance.

Proceeding further, we can obtain the fourth-
and higher-order central moments of the record,
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but for binary Markov chains, the higher-order
moments contain no additional information other
than that which can be derived from the first 3
moments. A proof of this assertion is given in
Fredkin and Rice (1986) for reversible, N-state,
continuous-time Markov chains and Puliord et al.
{1993) for discrete-time, binary Markov chains.

Power spectrum

The power spectrum of a discrete-time Markov
chain is the Z-transform of the autocorrelation
function evaluated on the unit circle, or

S,(@) =NS (i)(w) +o?
N, s*(1—A%)
T 1+ A% =24 cos 0T

where A is the non-unity eigenvalue of the transi-
tion matrix for a single chain.

The power spectrum of a discrete-time Markov
chain or of the sum of N #id Markov chains shows
a low-pass characteristic given by Eqn. 16. The
spectram is of course periodic, but is similar to a
Lorentzian for low frequencies. By fitting the
theoretical curve to the computed spectrum, we
can estimate the eipenvalue A, the net signal
variance and the noise variance.

a’. (16}

Identification of channel kinetics

By solving the 4 equations (Eqns. 12, 13, 15,
and 16), we obtain expressions for ¥, ., and s.
Recall that, by definition, =, + , = 1. For nota-
tional convenience, we define a dimensionless
variable vy as:

& M(V)us(y)
(Mz(x))z

Noting that m,(y) = m(x) and p;(y) = pu,(x)
but uy(y)=p,(x)+0o? and S(w) =5 w) + a7,
it follows that:

y (17)

m=02-7)" (18)
Bo( ) ¢

S nm ()
-z

The diagonal entries of the transition probabil-
ity matrix of a single channel are given by:

{=, +m,A (21)
p=m,+ A, (22)

Estimation of shot noise

Shot noise results from the superposition of a
large number of disturbances, such as the passage
of charged ions across a membrane, The spectral
characteristics generally depend on the origin of
the disturbance. Rice (1944, 1945) uses the
Fourier representation to describe the expected
features of this noise, including the effects of
non-linear filtering. For our purpose, it is suffi-
cient to realize that the variance of random noise
when channels are conducting will be larger than
that obtained just before their activation. From
the computed power spectrum, we can estimate
the variance of noise o? (see Eqn. 16), in addi-
tion to the non-unity eigenvalue A of the transi-
tion matrix of a single chain. The difference be-
tween this estimated variance and the measured
variance before the activation of channels can be
viewed as the contribution due largely to shot
noise.

Practical considerations

Several practical problems need to be consid-
ered before data acquisition and analysis can be
carried out,

Zero-mean baseline

After the required transmembrane potential is
applied, but before channels are activated, we
need to obtain the noise variance from a control
segment. It is assumed that the mean of the
quiescent segment Is zero, since by definition
currents do not flow through a closed channel. If
the control trace is displaced from the zero level
owing to leakage currents or the presence of
junction potentials, it should either be adjusted to
give a zero-mean or its magnitude noted for sub-
sequent subtraction from the experimental record
to be analyzed.



Sampling frequency

To avoid aliasing when the continuous-time
current signal is sampled, the sampling rate must
be greater than or equal to the Nyquist fre-
guency. Thus, if the record is filtered at, for
example, 1 kHz, the sampling interval should be
500 ws or higher. For a discussion of the sam-
pling theorem, the reader is referred to Shannon
and Weaver (1963) or Oppenheim and Schafer
(1975).

Data quantization

The output of the amplifier is usually quan-
tized. If a 12-bit A-to-D converter is used for
digitizing, care must be taken to ensure that the
guantization levels are much smaller than the
amplitude of the single channel currents. For
example, if the record is digitized coarsely with a
5 pA resolution, the analysis method cannot be
expected to identify correctly single-channel cuir-
rent amplitudes that are less than this value. To
meet this requirement, the amplifier gain must be
increased so that the record is commensurate
with the allowed voltage range of the A-to-D
converter. When there is a large displacement
from the zero current level, owing to a large
number of channels being activated, it may be
necessary to re-zero the trace at the baseline by
injecting a fixed opposing current. The exact
amount of current injected must be taken into
account in calculating the mean, the variance and
the third central moment. AC-coupling the out-
put to bring the displaced current trace near the
baseline should not be attempted when using our
technique. As an alternative we recommend the
use of a 16-bit A-to-D converter.

Power spectrum and curve fitting

A method of power spectrum estimation that
has been widely used is that of segmental averag-
ing, also known as Bartlett’s procedure (Welch,
1967; Jenkins and Watts, 1968). Although it has
heen criticized by some (e.g., Yuen, 1979), we
find it is adequate for deriving the desired param-
ciers.

Having obtained an estimate of the power
spectrum of the data we must fit Eqn. 16 to this
spectrum estimate, This is a non-standard curve-
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fitting problem in that the fitting is in the log
domain and we have logarithmically spaced mea-
surements. A procedure suited to this task is a
method based on a stochastic gradient descent
algorithm.

Distortion of channel currents due to RC filtering

In a whole-cell recording mode, series resis-
tance in conjunction with cell capacitance limits
the bandwidth of the record to about 1 kHz. The
bandwidth, however, can be slightly increased by
making use of series-resistance and capacitance
compensation controls of patch-clamp amplifiers.
It is desirable to increase the bandwidth such that
the effective filter formed by the electrode resis-
tance and cell capacitance is greater than the
filtering frequency imposed.

Filtering blurs sharp signal edges and causes
attenuation of high frequency components pre-
sent in the signal. To account for the effects of
this form of distortion, we take the following
approach. We assume that, for whole-cell voltage
clamp measurements, the major band limiting
effect is the capacitance of the cell and resistance
of the electrode, which can be modelled as an
RC filter, and that this time constant can be
calculated a priori. We are therefore interested in
adjusting the values we obtain for the statistics
and power spectrum of the noisy signal to ac-
count for any filtering. The transfer function of a
low-pass RC filter is

G(s) = (23)

1+ sRC
where RC is the filter time constant and s is the
Laplace transform wvariable. We compute the
zero-order hold discrete-time equivalent of this
filter (Astrom and Wittenmark, 1984) as

_(=pz

Al =g

(24)

where 8 = exp| — T /RC] where T is the sampling
time. Therefore, the input x, and output y, of
the filter H(z ™'} are related by

V=BV = (1 =B)x,.,+n, (25)

where n, is the noise process. It is now a simple
matter to calculate the statistics and power spec-
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Fig. 1. Identification of individual channel kinetics from recordings containing 2 small single-channel currents. Traces of the first
1000 points are plotted for the noisy signal containing 2 single-channel currents with an amplitude of 0.05 pA and the
corresponding signal sequence in the absence of noise {a). The standard deviation of the noise was 0.1 pA. The amplitude of the
signal was reduced to (.03 pA (b} and then to 0.02 pA (c). The power spectra obtained from the data illustrated in (a), (b} and (c)
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trum of the underlying Markov signal x, from
the noisy, filtered measurements v,. We provide
in the Appendix the necessary details for these
computations, assuming that the noise is white
and uncorrelated with the signal process.

Validation of the method

Data generation

A signal sequence composed of a prespecified
number of identical Markov chains was first gen-
erated and then zero-mean gaussian noise was
added. The amplitude of each chain and the
length of the data were varied systematically. To
mimic real data, we assume that, for excised
patches, the record is filtered at 2 kHz (digitized
at 5 kHz) and the standard deviation of the noise
1s 0.1 pA. For whole-cell recordings, we assume
the cut-off filter frequency and the noise stand-
ard deviation are, respectively, 1 kHz (digitized at
2 kHz) and 1 pA. Throughout we express the
amplitude of the signal in pA (or fA) and the
time in ms. These units are arbitrary as far as the
simulations are concerned and have only been
adopted in keeping with experimental data.

Computation of the moments

The mean and variance were calculated using
standard formulae. These 2 moments can be esti-
mated with a relatively high degree of accuracy by
treating all data points as a single array. The
estimate of the third central moment sometimes
deviated considerably from its true value, espe-
cially when the number of constituent chains was
100 or more. This is due to the presence of
outliers in the simulated data which have a large
effect on the skewness of the probability distribu-
tion. In practice, the data should be scanned for

TABLE 11
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such artifacts and some criterion for their elimi-
nation should be adopted, as the information
contained in the tails of the distribution tends to
be unreliable. An alternative to a direct computa-
tion of the third-order central moment is the
fitting of a representative function to the ampli-
tude histogram (probability density estimate) of
the data from which this statistic could be com-
puted analytically.

Power spectrum

Power spectra were calculated as the segmen-
tal average of the magnitude of the fast Fourier
transform of non-overlapping blocks of data. A
block length on 512 points was used and a Han-
ning window was applied to the data block prior
to transforming. The power spectrum estimate
was then normalised so that the signal energies in
the time and frequency domain were equal. A
smooth curve was fitted to the resulting power
spectrum using a stochastic gradient descent al-
gorithm.

Effects of signal-to-noise ratio

We illustrate the procedures involved in the
parameter estimation with a segment of fictitious
channel current in which 2 pores open and close
independently. Although the entire estimation
scheme has been integrated in a single program,
we decompose the procedures into 3 separate
computational steps for illustrative purposes.

Fig. 1a shows four 1000-point segments of the
observation sequence, in which 2 single channels
were activated. The standard deviation of the
noise was set at 0.1 pA (100 fA), and the ampli-
tude of the signal was reduced progressively from
50 fA (a) to 30 fA (b) and then to 20 fA {c). The

TRUE AND COMPUTED STATISTICS FOR THE 3 DATA SETS

Data Mean (pA} Variance (pA”) Third central moment (pA3)
(a) —3.99 (—4.00) x10™* 1122 (112.03 % 10~* —11.95 (- 12.0) x107°
{b) 239 (~2.40) x10~2 104.6 (1043} % 104 —3.12(-2.56) x10°¢
{c} —1.59(—1.60) x10™2 102:2(101.9) x 10~ —1.53(-0.77 x10~°
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transition probabilities used to generate the sig-
nal sequence were £ =098 and p =0.97. These
correspond to a mean closed and open duration
of 10 ms and 6.6 ms, respectively, for each chan-
nel. The probability of each channel being in the
open state was 0.4, The analysis files consisted of
500,000 points.

The first estimation step is to calculate the
moments of the record. For the 3 segments illus-
trated, the estimated mean in pA, variance in
pA? and third central moment in pA°® are dis-
played in Table II with the true values given in
brackets, After computing the fitted power spec-
trum of the noisy data using the method de-
scribed previously, estimates of the non-unity
eigenvalue, as well as the signal and noise vari-
ances can be obtained.

The power spectra calculated from the 3
records are shown as filled circles in Fig. 1d-f,
together with the fitted curves (solid lines). The
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TABLE I

PARAMETER ESTIMATES FOR THE 3 DATA SEG-
MENTS

s § N £098) 5097
- 50 £A -51.5 2 0.977 0.969
- 30 fA —31.7 2 (.980 0.96%
—201A —21.2 2 0.983 0.967

estimated eigenvalues for (d), (e} and () were,
respectively, 0.9472, (.9492 and 0.9496, compared
to the true value of (0.95.

The final step of the estimation procedure
entails finding the 4 signal parameters N, 5, p and
£, using the relationships given previously. The
estimated variables (denoted by a circumflex} to-
gether with the actual values (in parentheses)
used in the simulation are given in Table 111

The number of single channels was correctly
identified as 2 for all data files, and the estimates

1 pA

S

50 ms

frequency (KHz)

Fig. 2. Increase in estimation errors with decreasing data length. A segment of 1000 data points shown in (a} is composed of the

summed currents contributed by 10 single channels. The amplitude of each single channel was (.1 pA, as was the standard

deviation of the noise. The power spectrum shown in (b) were estimated from & file that contained 500,000 points, whereas that
shown in (¢} were estimated from 10,000 data poiats.



of the transition probabilities were very close to
their true values. The estimated current ampli-
tude of a single channel deviated from the true
value by 6% (21.2 fA as opposed to 20.0 fA) when
the true signal amplitude was one-fifth the stand-
ard deviation of the noise.

Tiata length and estimation errors

It is desirable to ascertain how much data is
required to obtain reliable estimates of the pa-
rameters. The minimum length of data needed
for obtaining estimates with an acceptable degree
of accuracy depends on several factors, such as
the signal-to-noise ratio, the nmumber of pores and
the probability of opening. We show here that
accurate estimates of the parameters can be ob-
tained with a record containing 25,000 data points.
In Fig. 2a, a short segment of simulation data is
shown. The record contains 10 single channels,
each with an amplitude of 0.1 pA, and the stand-
ard deviation of the noise in which the signal is
embedded is 0.1 pA. The transition probabilities
are {=0.97 and p = 0.96.

The data length used in the parameter estima-
tion was systematically reduced from 500,000
points to 10,000 points. As shown in Fig. 2b,c, the
guality of the power spectrum estimate degrades
as the data length decreases. However, the esti-
mated eigenvalue, along with the other estimated
statistics, did not deviate appreciably from their
true values until the length of the data was less
than 25,000 points. The estimates obtained from
a 10,000 point segment of data contained unac-
ceptably large errors, suggesting that at least
25,000 points {or a real time record lasting 5 s)

TABLE 1V

PARAMETER ESTIMATES FOR VARIOUS DATA SEG-
MENT LENGTHS

Length N0} $(—1000 {097 5(096) #,(D.429)

300,000 10 -~ 103 fA 0970 0,962 (.438
206,000 10 —105fA 0970 0.961 0.441

SH000 10 — 103 fA  0.972 0.964 0.434
25,000 10 - 103 fA 0972 0.960 0.409
10,000 11 —-98fA 0572 0.957 0.392
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TABLE V

BEHAVIOGUR OF PARAMETER ESTIMATES WITH
VARYING ¢

. ONGD §(—1my 5098 7,

099 56 ~0.94 099 0978 0313(0.333)
098 53 ~096 0980 0979 0.494(0.500)
097 47 ~103 0967 098 0620 (0.600)
096 48 —103 0958 0981  0.682(0.667
0.95 42 ~113 0947 0982  0.749(0.714)

are needed for the analytical technique described
here. In Table 1V, the estimates of the parame-
ters obtained using various data segment lengths
are listed.

Although, in this exampie, increasing the data
fength beyond 25,000 points results in only a
marginal improvement in estimation accuracy, we
take the data length as 500,000 points in subse-
quent examples to allow for cases involving large
numbers of pores.

Frequency of channel opening

We generated a series of signal sequences con-
taining 50 single channels, each with an open
current level of 1 pA and p = 0.98. Assuming that
such records in experimental situations are ob-
tained from whole-cell configurations, we added
gaussian noise with a standard deviation of 1 pA
to the signal sequence.

While maintaining a data file length of 500,000
points and keeping p = 0.98, the transition prob-
ability { was systematically varied from 0.99 to
(.95. The results of the stmulations showed that
the parameter estimates begin to drift from the
true values when constituent single channels re-
main predominantly in the open or closed state,
as iflustrated in Table V.

Large numbers of channels

We generated several multi-pore signals con-
taining a large number of single channels, each
with an open-channel current level of 1 pA, {=
0.98 and p = 0.97. The number N of single chan-
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TABLE VI

BEHAVIOUR OF PARAMETER ESTIMATES WITH
VARYING NUMBERS OF PORES

N N (-1 [ pen  #,04
250 242 —0,943 0.977 0.906 0,403
500 479 —0.960 0.978 0.972 0.432
750 721 - 1.020 0,980 (3.970 0,407
990 037 —1.030 0.979 0.971 0.410

nels contributing to the total current was system-
atically increased, keeping all other parameters
constant. The signal sequences were contami-
nated by additive white noise with a standard
deviation of 1 pA.

In general, the estimated number of single
channels tended to be less than the correct num-
ber. The estimated transition probabilities and
the amplitude, on the other hand, were all within
5% of their true values. In Table VI, the results
of one such series of simulations are displayed.

Partially coupied Markov chains

Although the analytical method is based on
the assumption that al! channels contributing to
the summed current open and close independ-
ently, we show here that the parameter estimates
are still acceptably accurate even when the pores
are weakly coupled. When the channels are
strongly coupled, opening and closing nearly in
synchrony, our technique erroneously identifies
the underlying signal sequence as comprising a
single channel of large amplitude.

There are a number of reports claiming that
multiple channels contained in an cxcised mem-
brane patch are not totally independent but par-
tially coupled (Yeramian et al., 1986; Queyroy
and Verdetti, 1992). We have devised a mathe-
matical scheme for representing the behaviour of
such coupled channels, With no loss of generality,
we suppose that there are 2 identical channels
with transition probability matrix A. If the chan-
nels are totally independent, one will observe a
3-state signal sequence the 3 X 3 transition matrix
A, of which is given by:

A,=L(A®A)R (26)

where ® denotes the tensor product and L and R
are aggregation matrices. On the other hand, the
transition matrix A, of a pair of totally coupled
channels can be written as:

£ 0 1-¢
Ac=|1-8 0 & (27)
1—p 0 o

where ¢ and p have the same significance as in
Eqn. 3. The bias probability & determines the
transition tendency of initially open or closed
states toward the fully open or fully closed state.
When the constituent channels are neither fully
coupled nor totally independent, the matrix of
such a partially coupled Markov chain can be
defined as:

Ap2kAs+(1-x)A,0=k=1, (28)

where x is the coupling factor. Although, for
simplicity, we have illustrated the coupling scheme
for 2 binary chains, it can readily be generalized
to the case of L coupled chains.

Using the above scheme, we generated signals
composed of 4 individual channels with various
coupling strengths. In Fig. 3, the gating behaviour
of 4 partially coupled channels is illustrated.
When the coupling coefficient is small but non-
zero (i =0.025), the channels open and close
essentially independently but occasionally some
or all 4 channels transit from the partially or fully
open states to the closed state together (Fig. 3a).
When the coupling strength is increased further
{x = 0.10), the channels open and close together
more frequently, but the current still dwells at
intermediate levels (Fig. 3b). For values of «
greater than about 0.20, the summed currents
appear as a single channel, except that there are
numerous brief flickers and some longer sojourns
to submaximal current levels (Fig. 3c).

The results of our simulation, tabulated in
Table VII, indicate that the departure from the
independence assumption does not appreciably
increase the estimation error, provided that the
channels are weakly coupled. When the coupling
is so strong that all 4 channels act as 1 group, our
analysis method identifies the number of pores as
1, with the estimated amplitude being close to the
summed amplitude. For intermediate values of «,
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Fig. 3. Partially coupled single channels. Four identical single

channels were partially coupled by using 3 different values of

the coupling coefficients, «. Segments of 300-point records of

the noisy signal and pure signal shown in {(a}, (b) and (¢} were

obtained with x=0.025, x=0.10 and x =0.4, respectively.

The amplitude of each single channel and the standard devia-
tion of the noise were kept at 0.1 pA throughout,

the estimated number of channels was 2, instead
of the true value of 4. Because 2 partially depen-
dent channels appeared as 1 channel, the esti-
mated probability of being in the open state and
the mean open duration were about twice those
of uncoupled single channels. We emphasize that
the wvalue of the coupling factor x cannot be
estimated using the present scheme. A procedure
for identifying all the parameters of a coupled
Markov chain is described elsewhere (Kennedy
and Chung, 1992).

TABLE VII

ESTIMATION OF PARTIALLY COUPLED CHANNEL
PARAMETERS

% N=4 §(-01 [F098 5095 4,(0.286)
J.600 4 —0.097  0.981 (1.949 0.269

0.0y 4 -0136 0983 (1948 0.250
6100 2 —0242 0964 0.966 0.518
0.400 1 —0356 0965 (.965 0.506
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Aggregated Markov chains

The analysis of recorded single-channel cur-
rents reveals that the binary signal sequence can
best be approximated by an aggregated first-order
Markov chain in that the closed state may repre-
sent 2 (or sometimes more) kinetically distinct
states. If the underlying chain has 3 states, the
transition probability matrix A , for the discrete-
time chain can be written as:

pa Pz 0
Ay=iPn DPn DPu (29)
0 prsn pun

The observable current process is obtained by
aggregating states | and 2 in the above model as
follows. When the process is in state 1 or state 2,
the channel remains closed, but it opens if the
third state is reached. Technically, this aggre-
gated binary process is not a Markov chain, and
thus our analytical scheme cannot be applied.
The matrix given in Eqn. 29 approximates a pro-
cess in which the closed state represents an ag-
gregate of 2 kinetically distinct conformational
states (Colquhoun and Hawkes, 1982), although
discretization of a continuous-time Colquhoun-
Hawkes model will not give rise to zeros in the
transition matrix. However, the following simula-
tion results serve to illustrate that we can still
obtain useful estimates of an equivalent 2-state
Markov model, even if the true model is non-
Markovian.

The transition probabilities of A, were taken
to be: p;; =098, pyy =001, pyp =097, p,y=
0.02, and p;;=10.97. The amplitude of each
channel was 0.1 pA, as was the standard devia-
tion of the noise. We generated 2 sets of data
using this channel model: one for 2 channels and
the other for 10 identical channels. In both cases
the algorithm correctly identified the number of
channels. The estimated amplitudes of single
channels were —0.097 pA and —0.101 pA for the
2 chains, compared with the true value of —0.1
pA. The estimated mean open durations were
6.45 ms (p = 0.9690) for the chain containing 2
channeis and 6.63 ms (p = 0.9699) for the second
chain. The estimated mean closed duration for
each chain was 154 ms. The measured mean
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closed duration of the signal sequence generated
by Eqn. 29 was 15.1 ms.

Discuossion

The method presented here for the analysis of
current fluctuations is capable of yielding all the
desired information about the gating behaviour of
single channels. This includes the number of
channels, the elementary conductance level and
the transition probability mairix. Once these
quantities have been identified, all other statistics
of the single channel can be computed. There are
several advantages in studying a population of
channels activated simultaneously under the same
experimental conditions. The kinetic constants
estimated in this way represent an average value
of many channels, which can only be obtained by
averaging numerous measurements of single-
channel recordings. In addition, the way in which
the number of activated channels changes under
certain experimental manoeuvres may also pro-
vide useful information about the dynamics of
channel gating. Above all, there will be less need
to resort to single-channel recordings, which is a
technically demanding and labour-intensive task.

It is worth reiterating the assumptions we make
about the underlying random processes contribut-
ing to the record. Qur analytical method rests on
the following 2 premises: (1) the signal sequence
of each single channel can be represented by a
binary Markov chain, and (2) all N channels have
similar conduciance levels and transition matri-
ces. The processing scheme is relatively insensi-
tive 1o the deviation from first assumption {(see,
e.g., Chung et al., 1990, 1991). Guaranteeing that
the sccond assumption holds, which also applies
to single-channel recordings, rests on the skiil of
the experimenter. With specific receptor agonists
and antagonists as well as channel blockers, or by
utilizing recombinant DNA techniques, we be-
lieve this condition can be easily met.

Using simulated signal sequences, we have as-
sessed the reliability and limitations of the fluctu-
ation analysis method. We showed that multiple
independent channels can be characterized accu-
rately, even when the amplitude of the individual

channel current is very small (Fig. 1) and the
available observation sequence is short (Fig. 2).
Currents recorded with a whole-cell configuration
are likely to be due to the activity of many hun-
dreds of single channels. The results of our simu-
lation studies demonstrate that the dynamical
parameters of the individual channel currents can
be deduced with a fair degree of confidence when
the modelling assumptions are valid. The accu-
racy of the parameter estimator was relatively
insensitive to departures from these assumptions,
Thus, our analvtical method can effectively be
applied to a collection of channels that are not
totally independent (Fig. 3), or when the channels
obey a Colquhoun-Hawkes gating model. The
method, however, does not reveal it channels are
independent nor, in the latter case, can it specify
how many hidden states are aggregated into one
observable state.

Utilizing the power spectrum and other statis-
tical measures to deduce the kinetics of elemen-
tary processes is a well-known technique that has
already been fruitfully exploited (e.g., Anderson
and Stevens, 1973; Siebenga et al., 1973). It is
important to realize that the corner frequency of
the power spectrum is related to the non-unity
eigenvalue A of the transition probability matrix,
not the mean open time (see Eqn. 16). For a
binary process, A is related to the elements of the
transition matrix by Bqn. 9, namely, A = +p — L.
Thus, to infer the mean open duration from the
corner frequency of the power spectrum, it has to
be assumed that either £ =p (i.e., the process is a
random telegraph signal), or {=>»p and {=1
(i.e., the mean closed duration is far greater than
the mean open duration and channels seldom
open). Although rarcly stated explicitly, the esti-
mates of chanmel! kinetics based om fluctuation
analysis in the past rest on these assumptions. It
is also important to appreciate that 4 unknown
parameters, namely the number of channels, the
conductance level and p and ¢ of the transition
matrix, cannot be estimated from 3 independent
measurements alone, for example, the mean,
variance and the power spectrum. Either one has
to reduce the number of parameters by 1 by
making an unrealistic assumption about the un-
derlying stochastic process or utilize an additional



measurement that is independent of the 3 listed
asbove. Our method allows a general 2-state
Markov channel model to be adopted, and uti-
lizes the third central moment to estimate all 4
parameters.

The identification method we have described
here may prove to be a useful tool for investigat-
ing certain properties of ion channels in living
membranes. One potential application of the
techniquc that we envisage is the quantitative
determination of the thermodynamical properties
of channel macromolecules. The changes in the
model parameters with, for example, temperature
or agonist concentration will provide good nu-
merical estimates of the activation energy, the
potential energy barrier, the enthalpy of the sys-
tem, as well as the amount of energy donated by
an agonist molecule to the receptor-channel com-
piex, Also, the changes in the gating behaviour of
a specific receptor population before and after a
pathway is tetanized can readily be ascertained
using our method. The fluctuation analysis tech-
nique can also be applied to cell membranes for
which single-channel recordings are particularly
difficult to carry out,
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APPENDIX

Statistics of RC-filtered Markov process

Mean. Taking the expectation of (25), and noting
that E{n,} = 0, it follows that
py=(1=Fp,/(1~B) =n, (30)

where w and p , denote, respectively, the mean
of the original and RC-filtered signals, so that
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there is no correction for the signal mean due to
filtering,

Second moment. Squaring (25) then taking expec-
tations yields

(1 + JBZ)E{YI%} - 2JBE{}’M’;¢—1}
=(1-B)’ E{x}} +o? (31)

where o?is the noise variance which we assume
to be known, it now follows that

E{xz}_(1+—¢32)E{yf}mzﬁR”{1}—a2
=

(1-8)*
in which we have used R [1]=E{y,y,_,} to
denote the autocorrelation of y, at a lag of 1
sample.

Third moment. Taking the cube of {25} and com-
puting expectations gives

(] _.BS)E{}’;::} - SIBE{yEykf'i} + S,BE{ykyfq}
=(1-BYE{x}} +3(1-B)E{x,)e?  (33)

Defining C,[kl] = Ely,y,_,¥, |} results in a
formula for the third moment of x,:

B3} = [(1= 8% E(y2) +38(BC,[1,1]
= C,[0,11) = 3(1 - B)on, ]

x[(1-py]" (34)

Cerntral moments. Once the above guantities have
been estimated from the filtered data, it is
straightforward to compute the second and third
central moments of the signal x,, for instance,
we obtain for Var{x)

Var(x)
= E{x,%} - (E{xk})z
_(1+ﬁﬂuy~23R”U]—(1mﬁﬂui—az
B (1-8)

(32)

(35)

Power spectrum. Recall that the discrete-time fil-
ter transfer function is H(z "), so that the power
spectra S(-) of the input and output signals are
related by

for jwly |2 fw
S,("T) = | H(e™) S (RTy +0?  (36)
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where the squared amplitude respouse of the
filter is easily shown to be

(1-8)°

Y 2 —
(N = T g s T) = B2 (7

Once the estimated power spectrum S,(-) has
been fitted, the noise variance can be subtracted
to yield a power spectrum which, when divided
point-by-point by | H(-}|*, will yield the Markov
signal’s spectrum.
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