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We present a method for calculation of electric forces in biological channels, which facilitates microscopic
modeling of ion transport in channels using computer simulation. The method is based on solving Poisson’s
equation on a grid and storing the electric potential and field for various configurations in a table. During
simulations, the potential and field at any point are calculated by interpolating between table entries rather than
solving Poisson’s equation. This speeds up computer simulations by orders of magnitude with minimal loss in
accuracy. With this method, one can run simulations long enough to determine the channel conductance, which
can be compared directly with experimental data. Since conductance is the most important observable quantity
in description of membrane channels, this method will be very useful in future simulation studies of channels.
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I. INTRODUCTION

Study of ion transport in biological membrane channels is
one of the most challenging problems in theoretical biophys-
ics [1]. The dimensions of channels (a few angstroms in the
narrow region) and the number of ions involved (a few at
most at a given time) are such that macroscopic methods are
not expected to provide a physical basis for understanding of
ion transport in channels. On the other hand, a completely
microscopic model based on molecular dynamics (MD)
simulation of all the ions and water molecules in and in the
vicinity of the channel is not feasible either. Even on the
fastest supercomputer currently available, such a simulation
would take years of computer time. Brownian dynamics
(BD), where ionic motion is treated microscopically but wa-
ter as bulk, offers a workable compromise between the two
extremes and could provide useful insights into the ion trans-
port problem in membrane channels [2].

Past theoretical studies of ion channels have focused
mostly on artificial membrane channels such as gramicidin
A, which can be modeled as a narrow cylindirical tube with
radius 2 A, Due to their simplicity and small volume, these
channels have been studied in great detail using a variety of
macroscopic [1] and microscopic theories [2,3]. In contrast,
actual biological channels have more complicated shapes and
much larger volumes and therefore their modeling is more
involved. Typically, biological channels have wide vestibu-
lar openings and follow a catenary shape down to a narrow
neck region [4]. This geometry poses a serious problem for
calculation of electric forces acting on an ion in the channel.
Because proteins forming the channels have a low dielectric
constant (2) compared to water (80) in which ions move, the
channel boundary plays a significant role in determining the
electric forces. While numerical solution of Poisson’s equa-
tion for arbitrary channel boundaries can be readily achieved
using iterative techniques [35,6], this is too time consuming to
be of any practical use in computer simulations. The alterna-
tive, analytical solutions of Poisson’s equation can be
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achieved only in a limited number of coordinate systems. Of
these, the toroidal coordinates come closest to forming a re-
alistic channel, that is, a constant surface generates a torus
shape [7]. Though the curvature of an actual channel bound-
ary is opposite to that of a torus, the potential profiles ob-
tained for the two boundaries are quite similar and thus the
torus could serve as a useful model for ion channels. With
the speed gained from analytical solutions, it is possible to
carry out BD simulations of ions in vestibular channels long
enough to learn about their dynamical behavior [8]. Unfor-
tunately, the analytical solutions of Poisson’s equation in to-
roidal coordinates are rather complicated, requiring still a
substantial numerical effort for calculation of electric forces.
Thus the gain in speed is not sufficient to obtain the conduc-
tance of a model channel. As the conductance provides a
direct link between simulations and experiments, its compu-
tation is essential for purposes of model building.

Rather than waiting for even faster computers, we pro-
pose a different strategy for calculation of electric forces that
exploits the huge storage capacity of supercomputers.
Namely, for a given channel boundary, we solve Poisson’s
equation on a grid of points for all required configurations
and store the resulting electric potentials and fields in tables.
During simulations, the potential and field at any point are
calculated by interpolating between the table entries. We
show that, using a reasonable number of grid points, it is
possible to obtain very accurate estimates of the electric
forces. Most importantly, with the speed gained with this
method, one can run the computer simulations long enough
to determine the conductance of a model channel. Here we
present the results of BD simulations of ions in a vestibular
channel and discuss the insights these simulations introduce
into the ion transport problem.

II. FORMALISM
A. Model of ion channels
Ion channels in biological membranes are formed by a

group of four to five proteins, but their precise structure is
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FIG. 1. The model ion channel with two catenary vestibules is
generated by rotating the closed curves in the figure along the sym-
metric z axis by 180°. The vestibules at each side of the membrane
are constructed using z=a cosh (x/a) with a=4.87 A. The radius
of the entrance of the vestibule is 13 A and the cylindrical trans-
membrane segment has a radius of 4 A. The dimensions of the
cylindrical reservoirs are 30 A in radius and 22 A in height.

not well known yet. Electron microscope pictures of the ace-
tylcholine channel reveal a catenary shape narrowing down
to a 4-5 A radius in the neck region [4]. In modeling the
chanrel boundary, we follow this shape closely (see Fig. 1).
For purposes of simulation of fon transport, we place on each
side of the vestibules a cylindrical reservoir with a radius of
30 A and a variable height. The number of ions in each
reservoir is fixed for convenience (13 of each species) and
the height of the reservoir is adjusted to obtain a desired
ionic concentration. The ionic concentration in the volume
composed of the channel vestibules and the reservoirs is
300 mM, corresponding to a height of 22 A. This concen-
tration is about twice that of the physiological concentration
and is preferred in the simulations to obtain a better statistics.
The cylindrical reservoir has a glass boundary in that an ion
moving out of the boundary is reflected back into the reser-
Voir.

An important question in the calculation of the electro-
magnetic forces is what dielectric constant to use for water
inside the channel. Molecular dynamics studies of water in
cavities [9] and narrow pores [10] suggest that the dielectric
constant is substantially reduced compared to the bulk value.
This reduction in €, clearly depends on the geometry, and in
the absence of such a microscopic input for the catenary
channel, we prefer to use the bulk value in the present simu-
lations. We note that a smaller value of €, will lead to a
larger image force on an ion and therefore will require a
larger dipole strength in the channel neck to cancel this re-
pulsive force and allow permeation of ions {see below).

In earlier studies, charge groups in the protein walls are
found to play an important role in ion permeation. To inves-
tigate such effects, we place a set of four dipoles inside the
protein boundary at z=5 A and another set of four dipoles
at z=—5 A. Their orientations are perpendicular to the z
axis. For each dipole, the negative pole, placed at 1 A inside
the water-protein boundary, is separated from the positive
pole by 5 A, Thuas, if 5/16 of an elementary charge is placed
on each pole, then the total moments of four such dipoles
would be 100x107* Cm. The same configuration of di-
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poles is used in all the simulations, giving rise to an attrac-
tive potential for cations and a repulsive potential for anions
in the channel. These fixed charges represent the charged
side chains thought to form a ring around the entrance of the
constricted region [11] and their nearby counter charges. For
convenience, we adjust the amount of charge rather than the
number or positions of the charges, but in reality the side
chains would have one electron charge each. The membrane
potential of 100 mV is represented by an applied electric
field of strength 10° V m™", This is a simplification we use
for convenience. The actual potential and field across the
channel are severely distorted by the dielectric boundary [7].

The treatment of water as a contipuum is presumably a
reasonable approximation in the vestibule of the channel, but
it is not expected to work in the narrow neck region. From
the point of view of ion transport, the most important effect
that cannot be handled by the BD simulations is the dehy-
dration process necessary for an ion to squeeze into the neck
region. The loss of water molecules from the first or second
hydration shell of an ion will lead to an effective potential
barrier that the ion needs to surmount. This intuitive argu-
ment is supported by detailed MD studies of the gramicidin
pore, which reveal the presence of such an energy barrier at
the pore mouth [3]. The temperature dependence of condue-
tance measured in biological ion channels provides addi-
tional evidence for an ewergy barrier: The conductivity-
temperature curves in channels are always steeper than those
in the bulk electrolyte solutions, which can be explained if
one invokes a dynamic energy barrier in the neck region
[12]. We model this effect in the BD simulations by erecting
potential barriers of height V; on either side of the channel at
z=%10 A. Only those ions that have thermal energies FE
>Vpy are allowed in, otherwise they are elastically scattered
from the barrier. The probability of transmission follows
from the Boltzmann distribution as

2 -
P(E>VB):T(1¢T)“WJV BB dE, (1)
m B

which is given by the incomplete I" function

2 3 2
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where a=Vp/kT. Ideally, this potential barrier should be
calculated from the MD simulations and incorporated into
the BD algorithm. However, MD studies for general channel
shapes are still in their infancy and it is not clear whether one
can represent the complex interactions in the neck region
with an effective potential acting on the ions only. In the
absence of such information, we have used a step barrier for
simplicity, but caution that a description of properties such
as selectivity may ultimately require switching from BD to
MD in the vicinity of the neck region.
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B. Brownian dynamics

The trajectories of ions drifting across the channel under
the influence of a driving force are followed using BD simu-
lations. The metion of the ith ion with mass m,; and charge ¢;
is governed by the Langevin equation

a'Vi-
[ Thren

i =—m;y,¥; - Fp()+F,. (3)

The first term on the right-hand side of Eq. (3} corresponds
to anr average frictional force with the friction coefficient
given by m;y;, where 1/vy; is the relaxation time constant of
the system. The second term Fp(#) represents the random
part of the collisions and rapidly fluctuates around a zero
mean, The frictional and random forces in Eq. (3), together
describing the effects of collisions with the surrounding wa-
ter molecules, are comnected through the fluctuation-
dissipation theorem [13], which relates the friction coeffi-
cient to the autocorrelation function of the random force

1 %
mfyiﬂmfwx(}:‘ﬁﬂ(o)FRM(I)>dI> H=X,¥,Z, (4)

where k and T are the Boltzmann constant and temperature
in degrees Kelvin, respectively. Here the angular brackets
denote ensemble averages. Finally, F;=g/E; in Eq, (3} de-
notes the total electric force acting on the ion. The electric
field E; arises from (i) other ions, (ii) fixed charges in the
protein, {iii) membrane potential, and (iv) induced surface
charges on the water-protein boundary. It is computed by
solving Poisson’s equation and will be further discussed in
Sec. II C.

The solution of the Langevin equation is implemented
using the third-order BD algorithm proposed by van Gun-
steren and Berendsen [14,15]. The main steps of the solution
needed in this implementation are given in the Appendix.
Unlike many other BD algorithms, the time steps At in this
algorithm are not restricted by the condition Ar<¢y~!. For
typical ions {Na or K}, this condition would have required
Ar~1 fs, thus making the long-time simulations needed to
obtain the macroscopic current virtually impossible. The
physical constraints of the ion channel, on the other hand,
impose a much more relaxed time step. For example, keep-
ing the rate of change of the electric field in the channel to a
few percent requires At= 100 fs, which is used in the fol-
lowing BD simulations. The basic computational steps of the
algorithm are as follows.

(i) Compute the electric force F(z,)= g,F; acting on the
ion { at time ¢, from the lookup table and calculate its de-
rivative [F(¢,)~ F(s,.. .01/ AL

{ii) Compute a net stochastic force impinging on an ion
over the time period of Ar from a sampled value of Fp(7).

(iii) Determine the position of each jon at time £, + Ar and
its velocity at time ¢, by substituting ¥(z,}, its derivative
F(1,), and Fg(r) into the solutions of the Langevin equation,
Egs. (A6} and (A7).

(iv) Repeat the above steps for all tons in the system for a
desired number of simulation steps.
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The BD program used in the simulations is written in
FORTRAN, vectorized, and executed on a supercomputer
(Fujitsu VPP-300). A eypical simulation is run for 2 000000
steps, which is repeated 5 times. With 52 ions in the reser-
voirs, the CPU time of a supercomputer needed to complete
one simulation period of 0.1 us (10° time steps in 100 fs)
is about 2 h. The current is determined from the total number
of ions crossing the transmembrane segment. To ensure that
the desired miracellular and extracellular ion concentrations
are maintained throughout the simulation, a stochastic
boundary is applied. When an ion crosses the transmembrane
segment, an ion of the same species from the same side is
transplanted on the opposite side.

The following physical constants are employed in the BD
simulations: dielectric constants  €y,,,=80 and €y =2;
masses my,=3.8X107% kg and me=5.9%10"% kg; dif-
fusion coefficients Dy,=1.33%107° m*s™! and Dg
=2,03x10"7 m® §7'; relaxation time constants ¥ ', 7y,
=8.1X 10" 7 and yo=34%x10"% 57! don radii ry,
=095 A and re=181 A; and room temperature T,
=798 K.

C. Looekup tables for electric forces

The BD algorithin requires calculation of electric forces
acting on ions at each time step. Given the positions of ions,
this can be achieved by solving Poisson’s equation in an
appropriate boundary. However, as emphasized in the Intro-
duction, this direct approach is computationally too expen-
sive to be useful in long-time simulations necessary for the
calculation of conductance. Here we adapt an alternative
method where the electric field and potential are precalcu-
lated on a grid of points for various configurations and the
results are stored in a number of lookup tables, During simu-
lations, the field and potential at desired points are recon-
structed by interpolating between the table entries. Com-
pared to the analytical solution of Poisson’s equation in
toroidal coordinates, the lookup method is two orders of
magnitude faster. The lookup method has the additional ad-
vantage that one is not restricted to a toroidal channel. Nu-
merical solutions of Poisson’s equation for more realistic
channel shapes {e.g., catenary) can be as easily stored in
tables as is done in the present work.

For calculational purposes, it is convenient to break the
total electric potential V, experienced by an ion { into four
pieces

VimVS,z‘—;—VX.i-E—;A Vl,fj+z Ve (5)
j#Ei JFi

where Vg ; is the self-potential due to the surface charges
induced by the ion i on the channel boundary and Vy ; is the
external potential due to the applied field, fixed charges in
the protein wall, and charges induced by these. The next two
terms in Eq. (5) take the influence of other ions into account,
namely, V,;; is the image potential due to the charges in-
duced by the ion j and V. ;; is the Coulomb potential due to
the ion j, which is computed directly from
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where 1; and r; are the positions of the ions. The electric

field experienced by the ion is decomposed in the same way
EFE&;,;"}‘EXJJV;_ El,ij“;";. Ecy. N
J#i J#i

each field component being defined as in the potential (5).

The first three components in Egs. (5) and (7} depend on
the boundary and, in general, they are determined from nu-
merical solutions of Poisson’s equation (see Refs. {5.6] for
iterative techniques of solution). Each of these components is
calculated for a grid of positions and stored in separate
tables. To allow rapid look up, the precalculated values must
be on an evenly spaced grid. Because the use of a rectilinear
grid would result in many wasted peints and a jagged edge
near the pore boundary, we use a system of generalized cy-
lindrical coordinates in constructing the look up tables, In
terms of the cylindrical coordinates (r,#,z)

r= \/xz—i-yz,

the generalized coordinates (p,#,{) are defined as

f=tan" ‘(v/x}, z=2z, (8)

6=6, L(2)= (2= Zmia) (Comas— Zunin)s

(9)

p(r.z}=rlrmuz),

where r,,(z) is the limiting radius of the pore and 7., and
Zmi are the maximum and minimum z coordinates for the
system. The coordinates { and p are normalized and cover
the range [0,1]. For #, we use the range [ — ] for con-
venience (see below). The limiting radius r.(z) is offset
from the pore wall by the radius of the smallest ion in the
simulation, which defines the closest possible approach for
an ion to the pore wall, Besides providing a smooth edge
near the boundary, the generalized coordinates also allow the
cylindrical symmetry of the channel te be exploited. For ex-
ample, the @ coordinate is redundant in the calculation of the
self-potential V ;, therefore it is stored in a two-dimensional
table Vop(p,:.4,). Similarly, the image potential V;;; de-
pends on the relative angle between the ions i and j and it is
stored in a five-dimensional table Vip(py .80 0mt 2 §nr - 8-
Due to reflection symmetry, 8, and — 4, lead to the same
image potential. Hence 6; in Vsp covers only the range
[0,7r]. The fixed charges do not possess any particular sym-
metry, so the external potential Vy ; is stored in a full three-
dimensional table Van(p,, .<,,8:). Here 0, covers the whole
range [ — o, 7]

The electric field is stored in the same way as the poten-
tial, except that three values are required for each point in a
table, one for each Cartesian component of the field. So
while the field tables are indexed by the generalized coordi-
nates, their contents are stored as Cartesian coordinates in the

tables EZD( Pm 1€n)1 EBD(pm ’gn » gk)! and ESD(pm ’grz ’
Pt +Lnr »0). Note that, in principle, these results could be
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combined and stored in the same table. However, separate
tables are more flexible and assist in minimizing the interpo-
lation error, and therefore preferred.

During the simulations, first the positions of ions at a
given time step are converted to the generalized coordinates.
The values of the electric potential and field at the position of
the ion are then extracted from the tables by multidimen-
sional linear interpolation, making use of a simple algorithm
that generalizes easily to dimensions greater than 2 [16]. Be-
cause the grid points are evenly spaced in the generalized
coordinates, the appropriate indices can be found by division
rather than by a time conseming binary search. For an ion §
with charge g, at the position r;=(p;,{;,4,) and another ion
with charge ¢; at r;={p;,{;.0;), the potentials are given by

q;
Vs,ix“e"”vzn(Pf,gi),

Vy:=Viplp;:. ;. 0,), (10}

qv
VI,;j:“jVSD(Pieé'ispj"fi’IB"“ oD

where  Vop(p;.{). Van(pi.4i 0, end  Vsplpi.finpjs
£;,16;,— 6]y are obtained by applying the interpolation algo-
rithm to the two-dimensional self-potential table, the three-
dimensional external potential table, and the five-
dimensional image potential table, respectively. The self-
potential and image potential tables are constructed assuming
a positive unit charge as the source, so the results are res-
caled to the actual source charge after lookup.

The symmetries used to reduce the size of the tables re-
quire that the recovered electric field be rotated and refiected
appropriately so that it corresponds to the simulation’s Car-
tesian axes. The fields are extracted from the interpolated
table values as

qi
Es,im“ng( 8 YEap(pi. i),
Ey =Ep(p;,{i, 6, (11)

q’.
Ef,ijzijy( & ﬁj)Rz(Qi)Eso(Pf e 1P a§j ! :— Bji)a

where R,(6;) denotes the rotation matrix around the z axis
by an angle 0, and R (#;,6)) is a reflection operator on the
x-z plane defined by

D(LLY)  if 7>8-6>0
RAGO0= p1-11) it 0>8,— ;> —. 12

Here D denotes a diagonal matrix with entries as indicated in
the arguments.

Once the field and potential are known, the force and
potential energy on ion i can be calculated from

Fiiq!'E", (13)

Up=q(V;—5Vs,). (14)
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Note that only half the self-potential is used when calculating
the potential energy. The reason for this can be seen by
imagining the charge on the ion being built up with infini-
tesimal pieces being brought in from infinity. While the ex-
ternal potential remains the same during this process, the
self-potential increases from zero to its full value as the
charge is built up. This involves the integral g‘g dg
:q?f’Z, which explains the factor of one-half.

To test the accuracy of the lookup method, we compare
the interpolation results for potential energy and force with
those obtained from the analytical solution of Poeisson’s
equation for a toroidal channel in a variety of situations. The
channel boundary is generated by rotating a circle in the x-z
plane around the z axis. The radius of the circle is 40 A and
its center is focated at x=44 A, z=0. We refer to Ref. [7]
for details of the analytical sclution, The results of electric
potential and each Cartesian component of the field for the
self-, external, and image parts are stored in tables with di-
mensions 37X97, 10X 171X40, and 7X119X7X119
X 14, respectively. These dimensions are found after an op-
timization of the lookup program for the toroidal channel.
The catenary channel described in Fig. 1 has a similar shape
and lookup tables with the same dimensions are used in the
BD simulations in Sec. H1.

Among the three potential (or field) parts, the self-
potential displays larger errors compared to the image and
external potentials. Therefore, in the following tests, we fo-
cus on the potential energy and the force on a single ion m a
toroidal channel that has no other fixed charges or external
fields. In Fig. 2 we show the potential energy and the z
component of the force for a single ion moving parallel to
the central axis but offset from it by 3 A. Since the z com-
ponent of the force provides the driving force in the BD
simulations, only that one is shown in this figure. The solid
lines are calculated from the analytical method and the
circles by interpolating from the precalculated values stored
in the lookup tables. The spacing between points in the
lookup table is 1.77 A in the z direction and the circles are
at the midpeints of these intervals, where the maximum in-
terpolation error is expected to occur. The radius of the chan-
nel varies with z and hence the spacing between points in the
r direction changes. Therefore, the circles are not necessarily
located at the midpoints of the interpolation intervals in the
radial direction. The relative error for the potential and force
are not shown in a separate graph because they are less than
1% for all the points in Fig. 2. Almost identical results are
obtained for other ion trajectories parallel to the central axis,
but with different radial offsets. In Fig. 3 we show a similar
plot of the potential energy and the radial component of the
force in the z={ plane as the ion is moved radially from the
central axis towards the boundary. Note that the closest ap-
proach is limited by the size of the ion. Here the circles
correspond to the midpoints of the interpolation intervals in
both the z and the radial directions. The relative error is
again less than 1% for all the points in Fig. 3. In Fig. 4 we
show another comparison for the potential energy and the
radial component of the force on a radial trajectory in the z
=30 A plane. Again the circles are chosen at the midpoints
of the interpolation intervals. The relative error remains less
than 19 for the potential, but rises to a few percent for the
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FIG. 2. Comparison of the potential energy and the z component
of force, obtained from the lookap tables by interpelation (circles),
with the analytical solutions (lines} for a toroidal channel. An fon is
moved afong the trajectory that is parailel to the central axis but is
offset from it by 3 A, as indicated by the arrow in the inset. The
position of each circle in the z direction is located at the midpoint
between two adjacent points stored in the lookup table.

force for points near the boundary in Fig. 4. The agreement
between the analytic and lookup methods evident in Figs.
2-4 indicates that the interpolation error is negligible for the
potential energy and the force in the most important parts of
the channel.

Tests carried out on a catenary channel yield a similar
agreement between the lookup method and the numerical
solution results. The relative error is shightly larger when an
ion approaches the vestibular wall in the catenary channel,
but this is not of great concern in simulations since ions tend
to stay away from the water-protein boundary.

The system of generalized coordinates we use has a weak-
ness at the entrance to the pore, where the boundary runs
horizontally, perpendicular to the z axis. The radius suddenly
jumps from that of the reservoir to that of the pore entrance.
This results in spurious interpolation between points near the
channel’s top surface and points in the pore entrance. Errors
in the potential near the channel’s top surface are unlikely to
affect the results of simulations. Errors in the potential in the
pore entrance are of greater concern. However, the magni-
tude of the force is rather small in this region and we have
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FIG. 3. Same as Fig. 2, but for a radial trajectory in the z=0
plane and the radial component of the force. The lookup results
(circles} are calculated at the midpoints of the interpolation inter-
vals in both the z and the radial directions.

checked in control runs that it has no effect on the simula-
tions. An improved system of generalized coordinates that
avoids this problem may be desirable in other applications of
this method.

The use of lookup tables is practical despite the large
number of points at which the field needs to be calculated
because the time used by the algorithms depends much more
on the number of solutions needed rather than the number of
points per solution. Both the iterarive and analytical algo-
rithms can easily generate the field at multiple points arising
from many charges at given positions {which we call one
solution). On the VPP, a solution for 50 ions and 16 fixed
charges takes 0.3 s (of CPU time) by the analytical algo-
rithm, 6 s by the iterative algorithm, but only 0.005 s by the
lookup table methed. A BD simulation of 2X10° steps
would thus take (including overheads) 170 h by the analyti-
cal algorithm, 140 d by the iterative method. and 4 h by the
lookup table method. The filling of the tables takes only 1 h
psing the analytical solution and 10 h using the iterative
solution. To give an example. generating a tive-dimensional
lookup table using the iterative methad (which is the most
time consuming) requires only 833 solutions, euch for a
single ion and at 12 000 points. Each solution takes 21 s and
the total time required is about 5 h. Another advantuage of the
method is that once the tables arc constructed for a given
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FIG. 4. Same as Fig. 3 but for a radial trajectory in the :z
=30 A plane {see the inset).

geometry, they can be used in many simulations studying
different aspects of channel conductance.

HI. BROWNIAN DYNAMICS SIMULATIONS
OF CONDUCTANCE

Previously, we used the BD simulations to study trajecto-
ries of ions in a toroidal channel [8]. The main conclusions
of that work are (i} the repulsive self-potential of an ion is
strong enough to make the channel impermeable even in the
presence of an applied electric potential of 100 mV and {ii)
dipoles of a favorable orientation are required to cancel this
repulsive force and make the channel permeable. The use of
lookup tables allows much longer simulation times, which
we exploit here to study the conductance of the model cat-
enary channel described in Sec. I A. In particular, we con-
sider the effect of the potential barrier on the channel con-
ductance. In Fig. 5 we show the current-voltage relationship
obtained in five different simulations as the barrier height
takes the values V=0, 3, 4, 5,and 6 kT,. The results for
Ve=1 and 2 kT, are not shown to avoid cluttering (1k7,
overlaps with 0 k7, and 2 kT, is slightly suppressed with
respect to O kT, but retains its linear character). The out-
standing feature of these curves is the increasing deviation
from the linear Ohm’s law as the barrier height increases.
The curvature mostly occurs in the region e V~V, and one
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FIG. 5. Evelution of the current-voltage relationships with the
barrier height for symmetrical solutions. Current flowing across the
channel is measured at different applied potentials. The data points
are fitted with a modified Ohm law, which takes the barrier into
account [see Eq. (15)].

recovers the linear /-V curves at the asymptotic regions al-
beit with different conductances. Intuitively, the relative sup-
pression of the current at low voltages follows from the fact
that the potential barrier is most effective when the driving
force is small. These observations suggest a modification of
Ohm’s law with a Poschi-Teller function [17]

I= 144
" 1+ B/cosh (eVIVyg)’

(15)

where 7 is the limiting conductance and 8 is a dimensionless
constant. When eV Vp, the denominator goes to 1 and one
recovers Ohm'’s law, For eV<€V, Eq. (15} is again linear
but with a conductance reduced to /(1+5.) The nonlin-
earities in the /-V curves become apparent only when eV
~ Vg, which corresponds to the region V~100—200 mV
for the above barriers. The lines in Fig, 5 are obtained by
fitting Eq. (15} to the 7-V data. The fit values of the param-
eters v and B are given in Table I, While Eq. (15) does a
good job of describing the data for a given barrier, variation
of the fit parameters with Vp indicates that it is too simplistic
to give a consistent picture for all the data in Fig. 5. For

TABLE 1 Values of the parameters y and 2 in Eg. (15) ob-
tained from fits to the /-V data in Fig. 5.

Va(kT,) ¥ (pS) B
6 232:+4
3 1594 0.63+£0.18
4 1517 244041
5 130+11 374+ 0.68
6 138+ 80 9.12x7.02
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example, the rapid change in S implies a faster suppression
of the current with increasing barrier than envisioned in Eq.
(15). We have not attempted a global fit of the data since it
appears unlikely that the complexities of the BD simulations
could be summarized in a simple, single formula.

For symmetrical solutions, the current-voltage relation-
ship obtained from patch-clamp recordings is usually Ohmic.
(Here we are not concerned with nonlinearities that arise
from rectification.) These measurements are typically carried
out with the applied voltage in the biological range 0100
mV. The BD simulations presented above suggest that the
current-voltage relations would deviate from straight lines if
there are potential barriers in the channel, but the deviation
would be apparent only at higher values of the applied volt-
age (100-200 mV). There are already some experimental
indications for a deviation from Chm’s law [18]. It would be
worthwhile to pursue this question further in future patch-
clamp experiments where the applied voltage is pushed be-
yond the usual range. If such deviations do occur, fitting the
data points with Bq. (15) will provide an estimate of the
barrier height present in the channel.

IV. CONCLUSIONS

Electric forces play an important role in ion transport
across membrane channels and therefore they form an essen-
tial part of any model channel. In this paper we proposed a
Tookup method for calculation of electric forces, which en-
ables computer simulation studies of ion conductance to he
carried out for biological channels with vestibular shapes, As
demonstrated in Sec. II, the method is fast, accurate, and
allows arbitrary shapes of channels. As an application of the
method, we have performed Brownian dynamics simulations
of ion conductance in a model catenary channel. The results
highlight the role played by potential barriers in channel dy-
namics and how they could explain deviations in curenti-
voltage relations from Ohm’s law. Conversely, the observa-
tion of nonlinearities in patch-clamp experiments would shed
light on the presence and nature of potential barriers in bio-
logical channels. Such effects should be actively pursued in
future patch-clamp experiments where the applied voltage is
pushed beyond the usual biological range.

APPENDIX: SOLUTION OF LANGEVIN EQUATION

Here we give the basic steps in the solution of the Lange-
vin equation that are implemented in the BD algorithm of
van Gunsteren and Berendsen [15]. Using the the integrating
factor e, the Langevin equation (3} can be integrated from
an initial time 7, to ¢ to obtain for the velocity

1 r 1
v(t) eV —uv(t,) e’'n= ;j [F(¢'Y+Fp(z')] e dt’.
ri’l
(A1)
Here and in the following the indices referring to ions and
Cartesian components are omitted for convenience. The in-
tegral over the random force in Eq. (Al) can be obtained

using the stochastic properties of Fp(r}. For the electric
force, we Taylor expand F(i) around ¢,

I:(t):}?(rn)N}“F‘(rrn)(tmuzn)m’lw T (Az)
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where F(r,) denotes the derivative F(z) at =1, . Here the
first-order expansion of F(¢) is sufficient as the positions in
the BD algorithm are exact to third order. Substituting Eq.
{A2) in Eq. (A1) and integrating the force terms gives

F(r,)

v()=v{t,) e W+ —=(1 —e T TITI)

F(1,)

+
m'yz

[Y(e=t,) =1 e ™)

-yt

e : )
' vi' gt
" LHFR(I)e dr’,

+ (A3)

To find the position after a time step Af, we need to integrate
Eqg. {A3) once more from ¢, to 7,+ Az, Integration of all the
terms in Eq. (A3) is straightforward, except the last one,
which can be done by parts using du=e~ " and v as the
integral of Fg,

fHAte Y ,
Fa(t') e ds’
1, mody

1 1t AL
=— [1—e? =080 F (1) dr=X,(AD),

myJd,,

(A4)

where we have defined the random variable X,(A¢), which
has the same stochastic properties as F(t). We refer to Ref.
{15] for details of how X,(Ar) is implemented in the BD
algorithm. Using Eq. (A4), the position at time f,.,=1,
+ At is found to be

COMPUTER SIMULATION OF ION CONDUCTANCE IN ... 3661

)_ )+U(In)(1_ — 7 +F(tn) 4T
x(tye1)=x(t, 5 e 7} e {T e ")
F(e) 7 _
+ A r+1—e T+ X,(A). {AS5)
Yy

Here 7= yAt is a dimensionless parameter that signifies a
diffusive regime when 721 or a microscopic one when 7
<1. A more convenient form for x(7, ), which does not
involve the velocity, can be obtained by adding ¢™ 7 times
x(t,_1y=x(t,~ Ar) to Eq. (AS5),

F(ti'l)

2{tper)=x(E)(1+e ™) —x{t,- e _— (l1-e™7)

F(t,)( 7 _ .
—3(?(1-3-6 N—r{1—e ") | + X, (A1)
my

~X (—Afe". (A6)

Similarly, a simple expression for the velocity follows by
subtracting x{¢,_) from Eq. (AS),

F(1,) F(1,)
v{tn): Singf{x(tn-bl)mx(znr])_i_z m72 - m‘y3)
X (sinh 7 7) = X, (Af)+X,(— A1) |. (A7)

Equations (A6) and {A7) provide the basic input for the BD
algorithm used in the simulations.
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