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15 Brownian Dynamics: A Powerful Computational
Tool for Ion Permeation in Bio-Nanotubes1

Shin-Ho Chung and Vikram Krishnamurthy

15.1 Introduction

All living cells are surrounded by a thin membrane, composed of two layers of
phospholipid molecules, called the lipid bilayer. This thin membrane effectively
confines some ions and molecules inside and exchanges others with outside and
acts as a hydrophobic, low dielectric barrier to hydrophilic molecules. Because of
a large difference between the dielectric constants of the membrane and electrolyte
solutions, no charged particles, such as Na+, K+, and Cl− ions, can jump across the
membrane. The amount of energy needed to transport one monovalent ion, in either
direction across the membrane, known as the Born energy, is enormously high. For
a living cell to function, however, the proper ionic gradient has to be maintained, and
ions at times must move across the membrane to maintain the potential difference
across the membrane and to generate synaptic and action potentials. The delicate
tasks of regulating the transport of ions across the membrane are carried out by
biological nanotubes called “ion channels,” water-filled conduits inserted across the
cell membrane through which ions can freely move in and out when the gates are
open. These ion channels can be viewed as biological sub-nanotubes, the typical
pore diameters of which are ∼10−9 m or 10 Å.

Ionic channels in lipid membranes play a crucial role in the existence of living
organisms. All electrical activities in the nervous system, including communication
between cells and the influence of hormones and drugs on cell function, are regulated
by the opening and closing of these membrane proteins. Because these channels are
elementary building blocks of brain function, understanding their mechanisms at a
molecular level is a fundamental problem in biophysics. Moreover, the elucidation of
how single channels work will ultimately help us find the causes of, and potentially
cures for, a number of neurological and muscular disorders.

In the past few years, there have been enormous strides in our understand-
ing of the structure–function relationships in biological ion channels. This sudden

1 This chapter is an extended version of Krishnamurthy and Chung (2005) that appeared in IEEE
Transactions Nanobioscience, March 2005.

507

u8809509
Cross-Out

u8809509
Cross-Out

u8809509
Inserted Text
Simulation for Ion Channel Permeation



SVNY290-Chung July 25, 2006 15:51

Shin-Ho Chung and Vikram Krishnamurthy

advance has been brought about by the combined efforts of experimental and com-
putational biophysicists, who together are beginning to unravel the working prin-
ciples of these exquisitely designed biological nanotubes that regulate the flow of
charged particles across living membranes. In recent breakthroughs, the crystal struc-
tures of the potassium channels, mechanosensitive channel, chloride channel, and
nicotinic acetylcholine receptor have been determined from crystallographic anal-
ysis (Doyle et al., 1998; Bass et al., 2002; Dutzler et al., 2002, 2003; Long et al.,
2004a,b; Unwin, 2005). It is expected that crystal structures of other ion channels
will follow these discoveries, ushering in a new era in ion channel studies, where
predicting function of channels from their atomic structures will become the main
quest. Parallel to these landmark experimental findings, there have also been impor-
tant advances in computational biophysics. As new analytical methods have been
developed and the available computational power increased, theoretical models of
ion permeation have become increasingly sophisticated. Now it has become pos-
sible to relate the atomic structure of an ion channel to its function through the
fundamental laws of physics operating in electrolyte solutions. Many aspects of
macroscopic observable properties of ion channels are being addressed by molecu-
lar and stochastic dynamics simulations. Quantitative statements based on rigorous
physical laws are replacing qualitative explanations of how ions permeate across
narrow pores formed by the protein wall and how ion channels allow one ionic
species to pass while blocking others. The computational methods of solving com-
plex biological problems, such as permeation, selectivity and gating mechanisms
of ion channels, will increasingly play prominent roles as the speed of computers
increases and theoretical approaches that are currently underdevelopment become
further refined.

Here we give a brief account of Brownian dynamics (BD), one of the several
theoretical computational methods that are being used for treating time-dependent,
nonequilibrium processes that underlie the flow of currents across biological ion
channels. We first give a simple, intuitive explanation of how one traces the tra-
jectories of ions in electrolyte solutions interacting with a low dielectric boundary.
We briefly illustrate how the BD simulation algorithm has been employed in elu-
cidating the mechanisms of ion permeation in the KcsA potassium channel and
ClC chloride channels. We then outline the principles underlying BD, its statisti-
cal consistency and algorithms for practical implementation. We also describe one
novel extension of BD, called adaptive controlled BD simulations, that circumvents
some of the caveats to computing current flow across ion channels using the conven-
tional method. Three other computational approaches—the Poisson–Nernst–Planck
theory, semi-microscopic Monte Carlo method, and molecular dynamics—are sum-
marized in the preceding and following chapters (Coalson and Kurnikova, 2006;
Grottesi et al., 2006; Jordan, 2006). The reader is also referred to recent review
articles (Eisenberg, 1999; Partenskii and Jordan, 1992; Roux et al., 2000; Tieleman
et al., 2001; Chung and Kuyucak, 2002) for further details of recent advances in ion
channel research.
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15.2 Stochastic Dynamics Simulations

15.2.1 Overview

One of the ultimate aims of theoretical biophysicists is to provide a comprehen-
sive physical description of biological ion channels. Such a theoretical model, once
successfully formulated, will link channel structure to channel function through
the fundamental processes operating in electrolyte solutions. It will also concisely
summarize the data, by interlacing all those seemingly unrelated and disparate obser-
vations into a connected whole. The theory will elucidate the detailed mechanisms
of ion permeation—where the binding sites are in the channel, how fast an ion moves
from one biding site to another, and where the rate-limiting steps are in conduction.
Finally, it will make predictions that can be confirmed or refuted experimentally.

The tools of physics employed in this endeavor, from fundamental to phe-
nomenological, are ab initio and classical molecular dynamics, BD, and continuum
theories. These approaches make various levels of abstractions in replacing the
complex reality with a model, the system composed of channel macromolecules,
lipid bilayer, ions, and water molecules. One of the important criteria of successful
modeling is that macroscopic observables remain invariant when the real system is
replaced by the model. Each of these approaches has its strengths and limitations,
and involves a degree of approximation.

At the lowest level of abstraction we have the ab initio quantum mechanical
approach, in which the interactions between the atoms are determined from first-
principle electronic structure calculations. As there are no free parameters in this ap-
proach, it represents the ultimate approach to the modeling of biomolecular systems.
But because of the extremely demanding nature of computations, its applications are
limited to very small systems at present. A higher level of modeling abstraction is
to use classical molecular dynamics (Grottesi et al., 2005, 2006). Here, simulations
are carried out using empirically-determined pairwise interaction potentials between
the atoms, and their trajectories are followed using Newton’s equation of motion.
Although it is possible to model an entire ion channel in this way, it is not feasible to
simulate the system long enough to see permeation of ions across a model channel
and to determine its conductance, which is the most important channel property.

For that purpose, one has to go up one further step in abstraction to stochastic
dynamics, of which BD is the simplest form, where water molecules that form the
bulk of the system in ion channels are integrated out and only the ions themselves
are explicitly simulated. Thus, instead of considering the dynamics of individual
water molecules, one considers their average effect as a random force or Brownian
motion on the ions. This treatment of water molecules can be viewed as a functional
central limit theorem approximation. In BD, it is further assumed that the protein
is rigid and its dynamics are not considered. Thus, in this approach, the motion of
each individual ion is modeled as the evolution of a stochastic differential equation,
known as the Langevin equation.
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A still higher level of abstraction is the Poisson–Nernst–Planck theory (Coalson
and Kurnikova, 2005, 2006), which is based on the continuum hypothesis of electro-
statics. In this and other electrodiffusion theories, one makes a further simplification,
known as the mean-field approximation. Here, ions are treated not as discrete en-
tities but as continuous charge densities that represent the space–time average of
the microscopic motion of ions. In the Poisson–Nernst–Planck theory, the flux of
an ionic species is described by the Nernst–Planck equation that combines Ohm’s
law with Fick’s law of diffusion, and the potential at each position is determined
from the solution of Poisson’s equation using the total charge density (ions plus
fixed charges). The Poisson–Nernst–Planck theory thus incorporates the channel
structure, and its solution yields the potential, concentration, and flux of ions in the
system in a self-consistent manner.

There is one other approach that has been fruitfully employed to model bi-
ological ion channels, namely, the reaction rate theory (Jordan, 1999; McCleskey,
1999; Hille, 2001). In this approach, an ion channel is represented by a series of ion
binding sites separated by barriers, and ions are assumed to hop from one biding
site to another, with the probability of each hop determined by the height of the
energy barrier. Although the model parameters have no direct physical relation to
the channel structure, many useful insights have been gleaned in the past about the
mechanisms of ion permeation using this approach.

15.2.2 General Description of Brownian Dynamics

Brownian dynamics offers one of the simplest methods for following the trajectories
of interacting ions in a fluid. Figure 15.1 shows a schematic illustration of a BD
simulation assembly. An ion channel representing the potassium channel is placed
at the center of the assembly. The positions in three-dimensional space of all the
atoms forming the channel are given by its X-ray structure, and the charge on each
atom is assigned. Then, a large cylindrical reservoir with a fixed number of K+ (or
Na+) and Cl− ions is attached at each end of the channel (Fig. 15.1A) to mimic the
extracellular or intracellular space. The membrane potential is imposed by applying
a uniform electric field across the channel (Fig. 15.1B). This is equivalent to placing
a pair of large plates far away from the channel and applying a potential difference
between them. Since the space between the voltage plates is filled with electrolyte
solution, each reservoir is in iso-potential. That is, the average potential anywhere
in the reservoir is identical to the applied potential at the voltage plate on that side,
and the potential drop occurs almost entirely across the channel.

The algorithm for performing BD simulations is conceptually simple. The
velocity of the ion with mass m and charge q located at a given position is determined
by the force acting on it at time t . This velocity is computed by integrating the
equation of motion, known as the Langevin equation. Once its velocity is determined
at time t , the position this ion will occupy in three-dimensional space at time t + �t
can be specified. The calculation is repeated for each ion in the assembly, and the
new distribution of the positions of all ions at time t + �t are assigned. At each
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Fig. 15.1 Brownian dynamics setup. (A) The KcsA K+ channel is placed at the center of the
simulation and a large reservoir containing K+ and Cl− ions is attached at each end of the protein.
The intracellular aspect of the channel is on the left. (B) A uniform electric field is applied across
the channel to mimic the membrane potential. This arrangement is equivalent to having two voltage
plates far away from the channel.

time-step, usually 2 fs, the forces acting on each ion are calculated and the Langevin
equation is used to determine where it will move in the next time-step. By repeating
this process many billions of times, usually for a simulation period lasting between
10 and 100 �s, we can trace the movement of each ion in space during a simulation
period, and count how many ions have crossed from one side of the channel to the
other.

What ultimately determines the motion of ions, and hence the current flowing
across the channel, is the total force acting on charged particles. It is important,
therefore, to specify all the components of the forces accurately. Two main sources
of the forces influencing the motion of ions in or in the vicinity of an ion channel
are the “stochastic” force and electric force. The former arises from the effects of
collisions between ions and water molecules. Ions in electrolyte solutions are tightly
bound by shells of water molecules and these hydrated ions collide incessantly with
surrounding water molecules. As a result of such bombardments, the motion of an
ion is retarded, and it undergoes random fluctuations from an equilibrium position.

The electric field inside or outside of the channel originates from four differ-
ent sources. First, there is a field resulting from the membrane potential, which is
generated by diffuse, unpaired, ionic clouds on each side of the membrane. Second,
there are fixed charges in the channel protein and the electric field emanating from
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them adds to the field generated by the membrane potential. Third, charges carried
by all the ions in electrolyte solutions contribute to the total electric field. Whenever
any of these ions come near the protein wall, it induces surface charges of the same
polarity at the water–protein interface. These induced surface charges, the fourth
source contributing to the electric field, stem from the fact that polar or carbonyl
groups on the protein wall cannot rotate as freely as water molecules. Each of these
four components has to be computed and added together to obtain the total electric
force experienced by an ion at any given position at any given time. The stochastic
force and electrical force acting on a charged particle together determine to which
position it will have moved to in a short time interval.

To carry out BD simulations of ion channels, one needs to specify the bound-
aries of the system. This is a relatively simple problem for one-dimensional BD
simulations (Cooper et al., 1985; Jakobsson and Chiu, 1987; Bek and Jakobsson,
1994), but requires the addition of reservoirs to the channel system in the more re-
alistic case of three-dimensional BD simulations. In several recent studies, a simple
stochastic boundary has been used successfully in applications of BD simulations to
a number of ion channels (Chung et al., 1998, 1999; Corry et al., 2001). When an ion
strikes the reservoir boundary during simulations, it is elastically scattered back into
the reservoir, equivalent to letting an ion enter the reservoir whenever one leaves the
simulation system. Thus the concentrations of ions in the reservoirs are maintained
at the desired values at all times. During simulations of current measurements, the
chosen concentration values in the reservoirs are maintained by recycling ions from
one side to the other whenever there is an imbalance due to a conduction event,
mimicking the current flow through a closed circuit.

15.2.3 Two Simplifying Assumption of Brownian Dynamics

The ability to compute current flow across ion channels confers a distinct advan-
tage to BD compared to other simulation techniques. To trace the trajectories of
about 100 ions interacting with a dielectric boundary for many microseconds, a
period long enough to deduce the conductance of an ion channel, BD makes two
simplifying assumptions. First, water is not treated explicitly but as a continuum.
In reality, ions collide with neighboring water molecules incessantly and the net ef-
fects of these collisions are lumped together and treated as the frictional and random
forces. Second, the atoms forming the channel are considered to be rigid whereas
in reality they will undergo rapid thermal fluctuations. Several independent lines of
evidence suggest that root-mean-square fluctuations of typical proteins are of the
order of 0.75 Å, suggesting that the transmembrane passage through which ions
traverse may be quite flexible (Allen et al., 2004; Noskov et al., 2004). By making
these simplifications it is possible to measure channel conductances under various
conditions and compare these measurements with experimental findings with only
a modest amount of computational power.

Since the water and protein in BD are already represented as continuous media,
the forces acting on charged particles are most often calculated by solving Poisson’s
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equation. A crucial issue is whether such a continuum approximation can be justified
in a narrow, biological nanotube. In bulk water, molecules polarize so as to shield
electrostatic interactions by a factor of approximately 1/80. However, given the
likely preferential alignment of water in narrow pores and regions of high charge,
this shielding is likely to be far less effective in an ion channel. Thus, one should
use a lower value of the dielectric constant for the water in the channel when solving
Poisson’s equation. But exactly what value of the dielectric constant should be used is
unknown. Determining the appropriate values using molecular dynamics simulations
or otherwise would be a useful project.

Assigning the appropriate value of the dielectric constant of protein is also non-
trivial. Unlike water and lipids, which form homogeneous media, proteins are quite
heterogeneous, exhibiting large variations in polarizability depending on whether
we are dealing with the interior or exterior of a protein (Schutz and Warshel, 2001).
There are several molecular dynamics studies of the dielectric constant of protein
(Smith et al., 1993; Simonson and Brooks, 1996; Pitera et al., 2001). The dielec-
tric constant for the whole protein varies between 10 and 40, but when only the
interior region of the protein consisting of the backbone and uncharged residues is
considered, the value drops to 2 or 4. The effects of changing the dielectric constant
of protein from 3.5 to 5 were examined by Chung et al. (2002a), using the KcsA
potassium channel. They showed that the precise value adopted in solving Pois-
son’s equation has negligible effects on the macroscopic properties derived from BD
simulations.

The validity of treating the channel protein as a static structure in BD also
deserves further investigation. It should be noted that thermal fluctuations of proteins
occur in the time-scale of femtoseconds, whereas a conduction event across a typical
ionic channel takes place once in 100 ns—approximately 6 to 7 orders of magnitude
slower time-scale. Thus, it is likely that rapid thermal fluctuations of the atoms
forming the channel are not important for channel selectivity and conduction. This
can be formally proved using stochastic averaging methods in nonlinear dynamical
systems (e.g., Sanders and Verhulst, 1985). Alterations in the average positions of the
protein atoms caused by the presence of permeating ions may play a role, and their
effects should be examined both experimentally and by using molecular dynamics
simulations. If found to be important, some of the motions of the protein, such as
the bending of carbonyl groups, can readily be incorporated in BD modeling of
ion channels. Finally, size-dependent selectivity among ions with the same valence
cannot be easily understood within the BD framework, and one has to appeal to
molecular dynamics or semi-microscopic Monte Carlo simulations (Garofoli and
Jordan, 2003; Jordan, 2005) for that purpose.

15.3 Application of Brownian Dynamics in Ion Channels

Despite the caveats to the use of BD, as outlined in the previous section, the tech-
nique has been fruitfully utilized in studying the dynamics of ion permeation in
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a number of ion channels. An obvious application of BD is the calculation of
current–voltage and conductance–concentration curves, which can be directly com-
pared to the physiological measurements to assess the reliability and predictive power
of the method. In addition to simple counting of ions crossing the channel, one can
carry out a trajectory analysis of ions in the system to determine the steps involved
in conduction. It is useful to find out the binding sites and the average number of
ions in the channel, both of which are experimentally observable quantities. It is also
possible to study the mechanisms of blocking of channels by larger molecules or
other ion species. We summarize here some of the computational studies carried out
on two important classes of biological ion channels—the KcsA potassium channel
and ClC Cl− channel.

15.3.1 Potassium Channels

KcsA K+ Channel: To determine currents flowing across the channel, Chung et al.
(1999, 2002a) and others (Mashl et al., 2001; Burykin et al., 2002) have performed
BD simulations on the KcsA channel using the experimentally-determined channel
structure. The shape of the ion-conducting pathway across the KcsA protein is illus-
trated in Fig. 15.1. The KcsA structure determined from X-ray diffraction consists
of 396 amino acid residues, or 3504 atoms excluding polar hydrogens. The chan-
nel is constructed from four subunits of a tetramer of peptide chains, each subunit
consisting of an outer helix, inner helix, pore helix, and a TVGYG (threonine–valine–
glycine–tyrosine–glycine) amino acid sequence that forms the selectivity filter. The
protein atoms form a central pore between these subunits. An outline of the pore
reveals that the channel is composed of three segments—a long intracellular region
of length 20 Å lined with hydrophobic amino acids extending toward the intracel-
lular space (left-hand side in the Inset), a wide water-filled chamber of length 10 Å,
and a narrow selectivity filter of length 12 Å, extending toward the extracellular
space. The selectivity filter is the most important element in this structure as it can
distinguish K+ ions from those of Na+ on the basis of their sizes (the crystal radius
of K+ is 1.33 Å and that of Na+ is 0.95 Å). BD simulations show that there are
three regions in the selectivity filter and cavity where K+ ions dwell preferentially
(see Fig. 15.1). There is also another prominent binding site near the intracellular
entrance of the channel. The preferred positions where ions dwell preferentially are
in close agreement with the positions observed in Rb+ X-ray diffraction maps (Doyle
et al., 1998).

To illustrate the permeation mechanism across the potassium channel, the chan-
nel is bisected such that ions in the chamber and filter are consigned to the right side,
and the rest to the left side. The most common situation in the conducting state of
the channel has one ion in the left half, and two ions in the right half. This con-
figuration is referred to as the [1, 2] state. A typical conduction event consists of
the following transitions: [1, 2]→[0, 3]→[0, 2]→[1, 2]. In other words, the ion
waiting near the intracellular mouth overcomes a small energy barrier in the in-
tracellular pore to enter the chamber region. Because this system is unstable in
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the presence of an applied potential, the right-most ion is ejected from the chan-
nel. Another ion enters the intracellular mouth, leaving the system in its original
configuration. The precise sequence of events taking place for conduction of ions
depends on their concentration, applied potential and the ionization state of charged
residues at the intracellular gate, and many other states can be involved in the con-
duction process depending on the values of these variables. Simulations also reveal
that permeation across the filter is much faster than in other parts of the channel.
That is, once a third ion reaches the oval cavity, the outermost ion in the selectivity
filter is expelled almost instantaneously. Thus, although the filter plays a crucial
role in selecting the K+ ions, its role in influencing their conductance properties is
minimal.

In Fig. 15.2A and B, we show the current–voltage and current–concentration
curves obtained from BD simulations (Chung et al., 2002a). The results of BD
simulations are in broad agreement with those determined experimentally (Coronado
et al., 1980; Schrempf et al., 1995; Cuello et al., 1998; Heginbotham et al., 1999;
Meuser et al., 1999; LeMasurier et al., 2001). When the radius of the intracellular
gate of the crystal structure is expanded to 4 Å, the conductances at +150 mV and
−150 mV are, respectively, 147 ± 7 and 96 ± 4 pS. The relationship is linear when
the applied potential is in the physiological range but deviates from Ohm’s law at a
higher applied potential, especially at high positive potentials. The current saturates
with increasing ionic concentrations, as shown in Fig. 15.2B. This arises because
ion permeation across the channel is governed by two independent processes: the
time it takes for an ion to enter the channel mouth depends on the concentration,
while the time it takes for the ion to reach the oval chamber is independent of the
concentration but depends solely on the applied potential.

Modeling other potassium channels: There are many different types of potas-
sium channels, which differ widely in their conductances and gating characteristics
while having a similar primary structure. Conductance levels of various types of
potassium channels range from 4 to 270 pS (1 pS equals 0.1 pA of current across
the channel with the driving force of 100 mV). Despite this diversity, they all share
the common feature of being highly selective to potassium ions and display broadly
similar selectivity sequences for monovalent cations.

To understand this feature, Chung et al. (2002b) investigated the possible struc-
tural differences that could give rise to different potassium channels. Using the ex-
perimentally determined potassium channel structure as a template, as shown in
Fig. 15.3A, they systematically changed the radius of the intracellular pore entrance,
leaving the dimensions of the selectivity filter and cavity unaltered. As the intrapore
radius is increased from 2 to 5 Å, the channel conductance changes from 0.7 to
197 pS (0.17 to 48 pA). In Fig. 15.3B, the simulated current across the model ion
channel determined from BD is plotted against the radius of the intrapore gate. By
examining the energy profiles and the probabilities of ion occupancies in various
segments of the channel, they deduce the rate-limiting step for conduction in the
potassium channels. Ion distributions revealed that the selectivity filter is occupied
by two K+ ions most of the time. Potential energy profiles encountered by a third
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Fig. 15.2 The current–voltage–concentration profile of the K+ channel with the intrapore radius
of 4 Å. (A) The magnitude of current passing through the channel with symmetrical solution of
300 mM KCl in both reservoirs is plotted against the applied potential. (B) The outward currents
are obtained with symmetrical solutions of varying concentrations of KCl in the reservoirs.

ion traversing along the central axis of the channel when there are two ions in or
near the selectivity filter are shown for the channels with radii 2 Å (solid line in
Fig. 15.3C), 3 Å (long-dashed line) and 4 Å (dashed line). Ions need to climb over
the energy barrier, whose height is denoted as �U , to move across the channel. This
barrier is the rate-limiting step in the permeation process: as its height increases with
a decreasing intrapore radius, the channel conductance drops exponentially. Thus,
the diversity of potassium channels seen in nature is achieved by slightly altering
the geometry of the intracellular aspect of the channel macromolecule.
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Fig. 15.3 Diversity of the potassium channels. (A) The shape of the KscA potassium is modified
such that the minimal radius of the intracellular gate is 3 Å. The solid line shows the outline of a
simplified model channel. The positions of dipoles on the channel wall are indicated. Filled circles
are 10 of the 20 carbonyl oxygen atoms, open diamonds are N-termini of the helix dipole, and filled
diamonds are mouth dipoles. (B) The dependence of outward channel currents on the intrapore
radius of the channel is illustrated. The applied field to obtain the current is 2 × 107 V/m. (C)
Potential energy profiles encountered by an ion traversing along the central axis of the channel
when there are two other ions in or near the selectivity filter are shown for the channels with radii
of 2 Å (solid line), 3 Å (long-dashed line) and 4 Å (dashed line). Ions need to climb over the
energy barrier, whose height is denoted as �U , to move across the channel.
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15.3.2 ClC Chloride Channels

BD simulations were similarly applied to elucidate the dynamics of ion permeation
across ClC-type channels (Corry et al., 2004a,b). The prototype channel, known
as ClC-0, first discovered and characterized by Miller (1982), is found in Torpedo
electroplax. Since then, nine different human ClC genes and four plant and bacterial
ClC genes have been identified. The ClC family of Cl− channels is present in virtually
all tissues—in muscle, heart, brain, kidney, and liver—and is widely expressed in
most mammalian cells. By allowing Cl− ions to cross the membrane, ClC channels
perform diverse physiological roles, such as control of cellular excitability, cell
volume regulation, and regulation of intracellular pH (Jenstsch et al., 1999; Maduke
et al., 2000; Fahlke, 2001). Dutzler et al. (2002, 2003) determined the X-ray structure
of a transmembrane ClC protein in bacteria, that has subsequently been shown to
be a transporter, not an ion channel (Accardi and Miller, 2004). Nevertheless, many
amino acid sequences of the bacterial ClC protein are conserved in their eukaryotic
ClC relatives, which are selectively permeable to Cl− ions.

Because the bacterial ClC protein shares many signature sequence identities
with the eukaryotic ClC channels, it is possible to build homology models of these
channels based on the structural information provided by Dutzler et al. (2002, 2003).
With this aim in mind, Corry et al. (2004b) first altered the X-ray structure of the
bacterial ClC protein using molecular dynamics to create an open-state configura-
tion. They then converted to an open-state homology model of a eukaryotic ClC
channel, ClC-0, using the crystal structure of the prokaryotic protein as a basis.
As illustrated in Fig. 15.4A, the ionic pathway of ClC-0 takes a tortuous course
through the protein, unlike that of the potassium channel, which is straight and
perpendicular to the membrane surface. The channel is quite narrow, having a min-
imum radius of 2.5 Å near the center, but opens up quite rapidly at each end.
The distance from one end of the pore to the other is 55 Å and it is lined with
many charged and polar amino acid residues. Incorporating this homology model
into BD, they determined the current–voltage–concentration profile of ClC-0. A
current–voltage relationship obtained with symmetrical solutions of 150 mM in
both reservoirs is shown in Fig. 15.4B. The relationship is linear, with a conduc-
tance of 11.3 ± 0.5 pS that agrees well with experimental measurements reported
by Miller (1982) (superimposed open circles). The slope conductance determined
from the experimental data is 9.4 ± 0.1 pS. The current–concentration relation-
ship obtained from the homology model using BD (filled circles) is also accord
with the experimental observations (obtained by Tsung-Yu Chen, personal com-
munication) as shown in open circles in Fig. 15.4C. The lines fitted through the
data points are calculated from the Michaelis–Menten equation. There is a rea-
sonable agreement between the simulated data and experimental measurements for
ClC-0.

BD simulations also reveal the steps involved in permeation of Cl− ions across
the ClC channel. The pore is normally occupied by two Cl− ions. When a third ion
enters the pore from the intracellular space (left-hand side in the Inset of Fig. 15.4A),
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Fig. 15.4 Brownian dynamics simulations of an open-state ClC0 channel. (A) The water-filled
pore of the channel through which Cl− ions move is lined with both acidic and basic residues.
The channel is normally occupied by two Cl− ions, shown here in green. (B) The current–voltage
relationship obtained from Brownian dynamics simulations (filled circles) is compared with the
experimental data (open circles). (C) The current–concentration curve obtained with symmetri-
cal solutions of varying concentrations of NaCl in the reservoirs under an applied potential of
−80 mV (filled circles) is fitted with the Michaelis–Menten equation. The experimental measure-
ments are shown in open circles. The half-saturation points determined from the fitted curves are
163 ± 51 mM for the simulated data and 136 ± 8 mM for the experimental data.
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the stable equilibrium is disrupted, and the outermost Cl− ion is expelled to the
extracellular space.

15.4 Mathematical Formulation of Brownian
Dynamics Algorithm

15.4.1 Overview

Here we provide a rigorous and mathematically complete formulation of the BD
system for determining currents across a membrane ion channel. We prove that
the continuous-time stochastic dynamical system, in which ions propagate via the
Langevin equation, has a well-defined unique stationary distribution. We then show
that the current across an ionic channel can be formulated in terms of mean passage
rates of the ionic diffusion process, satisfying a boundary-valued partial differential
equation, similar to the Fokker–Planck equation. We show that BD simulations can
be viewed as a randomized algorithm for solving this partial differential equation
to yield statistically consistent estimates of the currents flowing across an ionic
channel.

Figure 15.5 shows the block diagram of BD simulation for permeation of ions
through an ion channel. An iterative approach is used as follows: First, an initial
estimate of the structural information of the channel, namely, the channel geometry
and charges on the ionizable and polar residues in the protein are used to determine
the parameters of Poisson’s equation. Numerically solving Poisson’s equation yields
the potential of mean force (PMF) or energy landscape an ion traveling through
the ion channel will experience. This in turn feeds into the BD simulation that

Poisson’s
PMF

Channel
Geometry

Charges

Brownian
Dynamics

~

Predictions

Observations

Modify

Poisson’s
PMF

Channel
geometry

Charges

Brownian
dynamics

~

Predictions

Observations

Modify

equations

Fig. 15.5 A block diagram of the Brownian dynamics simulations. Using the channel shape
of the channel and the charges on the atoms forming the protein, the profile of the potential of
mean force along the central axis of the ion-conducting pathway is constructed by solving Pois-
son’s equation. The currents derived from Brownian dynamics simulations are compared with
those obtained experimentally. If there is a discrepancy between the simulated and experimen-
tal results, the channel geometry or the charges on atoms are modified and the procedure is
repeated.
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governs the stochastic evolution of all the ions. As a result of ions modeled by BD
permeating through the ion channel, a simulated ion channel current is obtained.
This simulated ion channel current is compared with the experimentally observed
ion channel current. The difference between the two currents is used to refine our
model of the channel geometry and charges and the process is repeated until the
error between the simulated (predicted) ion channel current and experimentally
determined ion channel current is minimized.

15.4.2 Mesoscopic Brownian Dynamics Formulation

The permeation model for the ion channel comprises two cylindrical reservoirs R1

and R2 connected by the ion channel C as depicted in Fig. 15.6, in which 2N ions are
inserted (N denotes a positive integer). As an example we have chosen the gramicidin
pore, although the results below hold for any ion channel. Throughout, we index the
2N ions by i = 1, 2, . . . , 2N . These 2N ions comprise

� N positively charged ions indexed by i = 1, 2, . . . , N . Of these, N/2 ions indexed
by i = 1, 2, . . . N/2 are in R1 and N/2 ions indexed by i = N/2 + 1, . . . , 2N
are in R2. Each Na+ ion has charge q+, mass m(i) = m+ = 3.8 × 10−26 kg and
frictional coefficient m+�+, and radius r+.

� N negatively charged ions. We index these by i = N + 1, N + 2, . . . , 2N . Of
these, N/2 ions indexed by i = N + 1, . . . , 3N/2 are placed in R1 and the re-
maining N/2 ions indexed by i = (3N/2) + 1, . . . , 2N are placed in R2. Each
negative ion has charge q (i) = q−, mass m(i) = m−, frictional coefficient m−�−,
and radius r−.

Specifying the height of each reservoir to be N Å guarantees that the concen-
tration of ions in them is at the physiological concentration of 150 mM.

Let t ≥ 0 denote continuous time. Each ion i moves in three-dimenensional
space over time. Let x(i)

t = (x (i)
t , y(i)

t , z(i)
t )′ ∈ R and v(i)

t ∈ R
3 denote the position and

velocity of ion i at time t . Here and throughout this chapter all vectors are column
vectors and denoted by the boldface font. Also we use ′ to denote the transpose of
a vector or matrix. The three components x (i)

t , y(i)
t , z(i)

t of x(i)
t ∈ R are, respectively,

the x , y, and z position coordinates. Similarly, the three components of v(i)
t ∈ R

3 are
the x , y, z velocity components.

At time t = 0, the position x(i)
0 and velocity v(i)

0 of each of the 2N ions in the two
reservoirs are randomly initialized as follows: The upper reservoir is divided into
N cells of equal volume. In each cell is placed either one K+ (or Na+) or one Cl−

ion, each with probability half. The initial position x(i)
0 of ion i is chosen according

to the uniform distribution within its cell. Similarly, the remaining N/2 K+ ions
{(N/2) + 1, . . . , N } and remaining N/2 Cl− ions {(3N/2) + 1, . . . , 2N } are placed
uniformly in the lower reservoir. This initialization of x(i)

0 emulates ensures that

two particles are not placed too close to each other. The initial velocity vectors v(i)
0
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30 Å

30 Å

5 Å
25 Å

N Å

N Å

R1

R2

C

z = g = + 12.5 Å

z = β = −12.5 Å

z = 0

z axis

Fig. 15.6 A schematic illustration of a simulation assembly. The protein forming an ion channel,
indicated with vertical dotted lines, is placed at the center of the assembly. For illustration, we use
the gramicidin pore, whose length is approximately 25 Å. A reservoir, R1R and R2, containing
ions is attached at each end of the channel. The dimensions of each reservoir are indicated. The
two reservoirs are connected via a conduit formed by the channel protein C.

of the 2N ions are typically initialized according to a three-dimensional Gaussian
distribution with zero mean, and 3 × 3 diagonal positive definite covariance matrix.
Thus the distribution of the magnitude of the initial velocity |v(i)

0 | has a Maxwell
density.
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An external potential �(x) is applied along the z axis of Fig. 15.6, i.e., with
x = (x, y, z),

�ext
� (x) = −Eextz (15.1)

where −Eext is the external field in V/m in z direction. Applied potential
� is related to Eext by Eext = −�/ l, where l is the length of the channel,
and � ∈ �. Here, � denotes a finite set of applied potentials. Typically, � =
{−200, −180, . . . , 0, . . . , 180, 200} mV/m. Due to this applied external potential,
K+ ions drift from reservoir R1 to R2 via the ion channel C in Fig. 15.6.

Let Xt = (
x(1)′

t , x(2)′
t , x(3)′

t , . . . , x(2N )′
t

)′ ∈ R2N denote the positions and Vt =(
v(1)′

t , v(2)′
t , v(3)′

t , . . . , v(2N )′
t

)′ ∈ R
6N , denote the velocities of all the 2N ions at time

t ≥ 0. The position and velocity of each individual ion evolves according to the fol-
lowing continuous time stochastic dynamical system (recall i = 1, 2, . . . , N denote
positive ions and i = N + 1, . . . , 2N denote negative ions):

x(i)
t = x(i)

0 +
∫ t

0
v(i)

s ds, (15.2)

m+v(i)
t = m+v(i)

0 −
∫ t

0
m+�+(x(i)

s )v(i)
s ds +

∫ t

0
F (i)

�,�(Xs) ds + b+(x(i)
s )w(i)

t , (15.3)

m−v(i)
t = m−v(i)

0 −
∫ t

0
m−�+(x(i)

s )v(i)
s ds +

∫ t

0
F (i)

�,�(Xs) ds + b−(x(i)
s )w(i)

t , (15.4)

where �±(x(i)
s ) = �± (defined in the beginning of this section) if the ion is in the

reservoir, and � (x(i)
s ) is determined by molecular dynamics simulation when the ion

is in the ion channel (Allen et al., 2000). Eq. 15.2 says that velocity is the time
derivative of the position. Eqs. 15.3 and 15.4 constitute the well-known Langevin
equations. We now describe the various quantities in the above equations.

In Eqs. 15.3 and 15.4, the process {w(i)
t } denotes a three-dimensional zero mean

Brownian motion, which is component-wise independent. The constants b+ and b−

are, respectively,

b+2
(x(i)

s ) = 2m+�+(x(i)
s )kT, b−2

(x(i)
s ) = 2m−�−(x(i)

s )kT . (15.5)

The noise processes {w(i)
t } and {w( j)

t }, that drive any two different ions, j �= i , are
assumed to be statistically independent.

In Eqs. 15.3 and 15.4, F (i)
�,�)(Xt ) = −q (i)∇x(i)

t
�

(i)
�,�(Xt ) represents the systematic

force acting on ion i , where the scalar-valued process �
(i)
�,�(Xt ) is the total electric

potential experienced by ion i given the position Xt of the 2N ions. The subscript � is
the applied external potential in Eq. 15.1. The subscript � is a parameter vector that
characterizes the PMF, which is an important component of �

(i)
�,�(Xt ). As described
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below, F (i)
�,�(Xt ) includes an ion–wall interaction force that ensures that position x)(i)

t

of each ion lies in R—see Eq. 15.9 below.
It is notationally convenient to represent the above system, Eqs. 15.2, 15.3 and

15.4 as a vector stochastic differential equation. Define the following vector-valued
variables:

Vt =
[

V+
t

V−
t

]
, where V+

t =

⎡⎢⎣ v(1)
t
...

v(N )
t

⎤⎥⎦ , V−
t =

⎡⎢⎣v(N+1)
t

...
v(2N )

t

⎤⎥⎦ , wt =

⎡⎢⎢⎢⎣
02N×1

w(1)
t
...

w(2N )
t

⎤⎥⎥⎥⎦ ,

�t =
⎡⎣ Xt

V+
t

V−
t

⎤⎦ , F+
�,�(Xt ) =

⎡⎢⎣ F (1)
�,�(Xt )

...
F (N )

�,� (Xt )

⎤⎥⎦ , F−
�,�(Xt ) =

⎡⎢⎣ F (N+1)
�,� (Xt )

...
F (2N )

�,� (Xt )

⎤⎥⎦ . (15.6)

The above system, namely, Eqs. 15.2, 15.3, 15.4 can be written as

�t = �0 +
∫ t

0
A(X� )�� d� +

∫ t

0
f(�� ) d� + �1/2(X� )wt (15.7)

where �1/2(X� ) = diag(06N×6N , b+(X� )/m+, b−(X� )/m−), I6N denotes the 6N ×
6N identity matrix,

A =
⎡⎣06N×6N I6N

06N×6N
−�+(X� ) 03N×3N

03N×3N −�+(X� )

⎤⎦ , f(�t ) =
⎡⎣ 06N×1

1
m+ F+

�,�(Xt )
1

m− F−
�,�(Xt )

⎤⎦ . (15.8)

We will subsequently refer to Eqs. 15.7 and 15.8 as the BD equations for a biological
ion channel.

Remark: Another way of ensuring that the positions x(i)
t of all ions are in Ro is to

introduce a reflection term Zt that models elastic collisions at the boundary of R.
However, as described below, the ion wall systematic interaction force ensures that
all ions remain in Ro. Hence we do not consider a reflected diffusion formulation in
this chapters.

15.4.3 Systematic Force Acting on Ions

As mentioned after Eq. 15.4, the systematic force experienced by each ion i is

F(i)
�,�(Xt ) = −q (i)∇x(i)

t
�

(i)
�,�(Xt ),

524

u8809509
Inserted Text
\int_0^t 

u8809509
Cross-Out

u8809509
Inserted Text
 s

u8809509
Inserted Text
 

u8809509
Inserted Text
_\tau d\tau

u8809509
Note
Put an integral sign from 0 to t just before \Gamma. Subscript of w should be \tau and insert d\tau

u8809509
Cross-Out

u8809509
Inserted Text
-

u8809509
Note
superscript of \gamma here should be -, instead of +



SVNY290-Chung July 25, 2006 15:51

15. Brownian Dynamics

where the scalar-valued process �
(i)
�,�(Xt ) denotes the total electric potential expe-

rienced by ion i given the position Xt of all the 2N ions. We now give a detailed
formulation of these systematic forces.

The potential �
(i)
�,�(Xt ) experienced by each ion i comprises the following five

components:

�
(i)
�,�(Xt ) = U�(x(i)

t ) + �ext
� (x(i)

t ) + �I W (x(i)
t ) + �C,i (Xt ) + �S R,i (Xt ). (15.9)

Just as �
(i)
�,�(Xt ) is decomposed into five terms, we can similarly decompose the force

F (i)
�,�(Xt ) = −q∇x(i)

t
�

(i)
�,�(Xt ) experienced by ion i as the superposition (vector sum)

of five force terms, where each force term is due to the corresponding potential in
Eq. 15.9—however, for notational simplicity we describe the scalar-valued potentials
rather than the vector-valued forces.

Note that the first three terms in Eq. 15.9, namely Uz�(x(i)
t ), �ext

� (x(i)
t ),�I W (x(i)

t )

depend only on the position x(i)
t of ion i , whereas the last two terms in Eq. 15.9

�C,i (Xt ), �S R,i (Xt ) depend on the distance of ion i to all the other ions, namely, the
position Xt of all the ions. The five components in Eq. 15.9 are now defined.

(i) Potential of mean force (PMF), denoted U�(x(i)
t ) in Eq. 15.9, comprises electric

forces acting on ion i when it is in or near the ion channel (nanotube) C in
Fig. 15.6. The PMF U� is a smooth function of the ion position x(i)

t and depends
on the structure of the ion channel. Therefore, estimating U�(·) yields structural
information about the ion channel. The PMF U� originates from fixed charges
in the channel protein and surface charges induced by mobile ions.

(ii) External applied potential: In the vicinity of living cells, there is a strong electric
field resulting from the membrane potential, which is generated by diffuse,
unpaired, ionic clouds on each side of the membrane. Typically, this resting
potential across a cell membrane, whose thickness is about 50 Å, is 70 mV, the
cell interior being negative with respect to the extracellular space.

For ion i at position x(i)
t = (x, y, z), �ext

� (x) = �z (see Eq. 15.1) denotes
the potential on ion i due to the applied external field. The electrical field acting
on each ion due to the applied potential is therefore −∇x(i)

t
�ext

� = (0, 0, �) V/m
at all x ∈ R. It is this applied external field that causes a drift of ions from
the reservoir R1 to R2 via the ion channel C. As a result of this drift of ions
within the electrolyte in the two reservoirs, eventually the measured potential
drop across the reservoirs is zero and all the potential drop occurs across the
ion channel.

(iii) Inter–ion Coulomb potential: In Eq. 15.9, �C,i (Xt ) denotes the Coulomb inter-
action between ion i and all the other ions.

�C,i (Xt ) = 1

4�	0

2N∑
j=1, j �=i

q ( j)

	w‖x(i)
t − x( j)

t ‖
(15.10)
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(iv) Ion–wall interaction potential: The ion–wall potential �I W , also called the
(
/r )9 potential, ensures that the position of all ions i = 1, . . . , 2N lie in Ro.
With x(i)

t = (x (i)
t , y(i)

t , z(i)
t )′, it is modeled as

�I W (x(i)
t ) = F0

9

(r (i) + rw)9[
rc + rw −

(√
(x (i)

t
2 + y(i)

t
2
)]9 , (15.11)

where for positive ions r (i) = r+ (radius of K+ atom) and for negative ions
r (i) = r− (radius of Cl− atom), rw = 1.4 Å is the radius of atoms making up
the wall, rc denotes the radius of the ion channel, and F0 = 2 × 10−10 N which
is estimated from the ST2 water model used in molecular dynamics (Stillinger
and Rahman, 1974). This ion–wall potential results in short-range forces that
are only significant when the ion is close to the wall of the reservoirs R1 and R2

or anywhere in the ion channel C (since the narrow segment of an ion channel
can be comparable in radius to the ions).

(v) Short-range potential: Finally, at short ranges, the Coulomb interaction between
two ions is modified by adding a potential �S R,i (Xt ), which replicates the effects
of the overlap of electron clouds. Thus,

�S R,i (Xt ) = F0

9

2N∑
j=1, j �=i

(r (i) + r ( j))

‖x(i)
t − x( j)

t ‖9
. (15.12)

Similar to the ion–wall potential, �S R,i is significant only when ion i gets
very close to another ion. It ensures that two opposite charge ions attracted by
inter-ion Coulomb forces (Eq. 15.10) cannot collide and annihilate each other.
Molecular dynamics simulations show that the hydration forces between two
ions add further structure to the 1/|x(i)

t − x( j)
t ‖9 repulsive potential due to the

overlap of electron clouds in the form of damped oscillations (Guàrdia et al.,
1991a, b). Corry et al. (2001) incorporated the effect of the hydration forces in
Eq. 15.12 in such a way that the maxima of the radial distribution functions for
Na+–Na+, Na+−Cl−, and Cl−−Cl− would correspond to the values obtained
experimentally.

15.5 Probabilistic Characterization
of Channel Conductance

Thus far, Eqs. 15.7–15.9 give a complete description of the stochastic dynamics
of the ions. We now demonstrate here that the mean ion channel current satisfies a
boundary-valued partial differential equation related to the Fokker–Planck equation.
There are two main results in this section that logically progress toward deriving this
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partial differential equation. Theorem 1 shows that the BD system, given in Eq. 15.7,
converges exponentially fast to a unique stationary distribution. Theorem 3 gives a
characterization for the ion channel current in terms of the mean first passage time
of the diffusion process (Eq. 15.7).

To motivate these results, we first formalize mathematically the construction of
the BD simulation. There are two key requirements that a mathematical construction
of the BD simulation should take into account: First, the concentration of ions in
each reservoir R1 and R2 should remain approximately constant and equal to the
physiological concentration. Note that if the system was allowed to evolve for an
infinite time with the channel open, then eventually due to the external applied
potential, more ions will be in R2 than R1. This would violate the condition that the
concentration of particles in R1 and R2 remain constant.

Second, the dynamics of the BD simulation has an inherent two-time scale
property. Typically, the time for an ion to enter and propagate through the ion channel
is at least an order of magnitude larger compared to the time it takes for an ion to
move within a reservoir. That is, the time constant for the particles in the reservoirs
to attain steady state is much smaller than the time it takes for a particle to enter and
propagate through the channel.

The following two step probabilistic construction formalizes the above two
requirements and ensures that they are satisfied.

Procedure 1: Probabilistic construction of Brownian dynamics ion permeation in
ion channels

� Step 1: The 2N ions in the system are initialized as described in Eq. 15.1 and the
ion channel C is closed. The system evolves and attains stationarity. Theorem 1
below shows that the probability density function of the 2N particles converges
exponentially fast to a unique stationary distribution. Theorem 3 shows that in
the stationary regime, all positive ions in reservoir R1 have the same stationary
distribution and so are statistically indistinguishable (similarly for R2).

� Step 2: After stationarity is achieved, the ion channel is opened. The ions evolve
according to Eq. 15.7. As soon as an ion from R1 crosses the ion channel C
and enters R2, the experiment is stopped. Similarly, if an ion from R2 crosses
C and enters R1, the experiment is stopped. Theorem 3 gives partial differential
equations for the mean time an ion in R1 takes to cross the ion channel and reach
R2 (and for the time it takes an ion to cross from R2 to R1). From this a theoretical
expression for the mean ion channel current is constructed (Eq. 15.24).

These two steps constitute one iteration of the BD simulation Algorithm 1.
The construction of restarting the simulation each time an ion crosses the channel
ensures that the random amount of time for an ion to cross the ion channel in
any BD simulation iteration is statistically independent of the time for any other
iteration. This statistical independence will be exploited in Theorem 3 to show
that the BD algorithm yields statistically consistent estimates of the ion channel
current.

527



SVNY290-Chung July 25, 2006 15:51

Shin-Ho Chung and Vikram Krishnamurthy

Remarks. The above construction is a mathematical idealization. In actual BD al-
gorithms, the ion channel is kept open and ions that cross the channel are simply
removed and replaced in their original reservoir. However, as described later (follow-
ing Algorithm 1), the above mathematical construction is an excellent approximation
due to the fact that by virtue of Step 1, the system of particles with the newly replaced
ion converges exponentially fast to its stationary distribution, and by virtue of the
two time scale property, the time taken to attain this stationary distribution is much
less than the time it takes for a single ion to cross the ion channel.

With the above mathematical construction of the BD simulation, we now pro-
ceed to stating and proving the main results. Let

�
(�,�)
t (X, (V) = p(�,�)

(
x(1)

t , x(2)
t , . . . , x(2N )

t , v(1)
t , v(2)

t , . . . , v(2N )
t

)
(15.13)

denote the joint probability density function of the position and velocity of all the 2N
ions at time t . We explicitly denote the �, � dependence of the probability density
functions since they depend on the PMF U� and applied external potential �. Note
that the marginal probability density function �

(�,�)
t (X) = p(�,�)

t (x(1)
t , x(2)

t , . . . , x(2N )
t )

of the positions of all 2N ions at time t is obtained as

�
(�,�)
t (X) =

∫
R6N

�
(�,�)
t (X, (V) dV.

The following result, the proof of which is not given here, states that for the
above stochastic dynamical system, �

(�,�)
t (X, V)dV converges exponentially fast

to its stationary (invariant) distribution �
�,�)
∞ (X, V ). That is, the ions in the two

reservoirs attain steady state exponentially fast.

Theorem 1. Consider Step 1 of the BD probabilistic construction in Procedure 1.
For the BD system, represented in Eqs. 15.7 and 15.8, comprising 2N ions, with
� = (X, V), there exists a unique stationary distribution �

(�,�)
∞ (� ), and constants

K > 0 and 0 < � < 1, such that

sup
�∈R2N ×R6N

|�(�,�)
t (� ) − �(�,�)

∞ (� )| ≤ KV(� )� t . (15.14)

Here V(� ) > 1 is an arbitrary measurable function on R2N × R
6N .

The next result to establish is, under the conditions of Step 1, the ions in the
two reservoirs are statistically indistinguishable. Let us first introduce the following
notation and the Fokker–Planck equation.

Notation. For � = (� (1), . . . , � (4N ))′, define the gradient operator

∇� =
(

∂

∂� (1)
,

∂

∂� (2)
, . . . ,

∂

∂� (4N )

)′
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For a vector field f(� ) = [
f (1)(� ) f (2)(� ) · · · f (4N )(� )

]′
defined on R

4N , define
the divergence operator

div (f�,�) = ∂ f (1)

∂� (1)
+ ∂ f (2)

∂� (2)
+ · · · + ∂ f (4N )

∂� (4N )
. (15.15)

For the stochastic dynamical system (Eq. 15.7) comprising of 2N ions, define
the backward elliptic operator (infinitesimal generator) L and its adjoint L∗ for any
test function �(� ) as

L(�) = 1

2
Tr[�∇2

� �(� )] + (f�,�(� ) + A� )′ ∇� �(� ) (15.16)

L∗(�) = 1

2
Tr

[∇2
� (��(� ))

] − div[(A� + f�,�(� ))�(� )].

Here, f�,� and � are defined in Eq. 15.8. We refer the reader to Karatzas and Shreve
(1991) for an exposition of stochastic differential equations driven by Brownian
motion.

It is well known that the probability density function �
�,�)
t (·) of the 2N ions

where �t = (X′
t , V′

t )
′ (defined in Eq. 15.13) satisfies the Fokker–Planck equation

(Wong and Hajek, 1985):

∂��,�
t

∂t
= L∗�

(�,�)
t , (15.17)

where �
(�,�)
0 is initialized as described in Eq. 15.1. We refer the reader to Wong

and Hajek (1985) for an excellent treatment of the Fokker–Planck equation. Briefly,
the Fokker–Planck equation may be merely viewed as a partial differential equation
(involving derivatives with respect to the state � and time t) that determines the time
evolution of the probability density function �

(�,�)
t .

Also, the stationary probability density function �
(�,�)
∞ (·) satisfies

L∗(�(�,�)
∞ ) = 0,

∫
R6N

∫
R2N

�(�,�)
∞ (X, V) dX dV = 1 (15.18)

The intuition behind this is that if �
(�,�)
t attains “steady state” (stationarity), it

no longer evolves with time, i.e., its derivative with respect to time is zero. Hence,
setting the left-hand side of Eq. (15.17) to zero yields the above equation.

We next show that once stationarity has been achieved in Step 1, the N positive
ions behave statistically identically, i.e., each ion has the same stationary marginal
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distribution. Define the stationary marginal density �
(�,�)
∞ (x(i), v(i)) of ion i as

�(�,�)
∞ (x(i), v(i)) =

∫
R6N−3

∫
R2N−1

�(�,�)
∞ (X, V)

2n∏
j=1, j �=i

dx( j)dv( j) (15.19)

We state the following result without the proof.

Theorem 2. Consider Step 1 of the BD probabilistic construction in Procedure 1.
Then the stationary marginal densities for the positive ions in R1 are identical:

�(�,�),R1∞ ≡ �(�,�)
∞ (x(1), v(1)) = �(�,�)

∞ (x(2), v(2)) = · · · = �(�,�)
∞ (x(N ), v(N/2)).

(15.20)

Similarly, the stationary marginal densities for the positive ions in R2 are
identical:

�(�,�),R2∞ ≡ �(�,�)
∞ (x(N/2+1), v(N/2+1)) = �(�,�)

∞ (x(N/2+2), v(N/2+2))

= · · · = �(�,�)
∞ (x(N ), v(N )). (15.21)

Theorem 2 is not surprising—as Eqs. 15.2, 15.3 and 15.4 are symmetric in i ,
one would intuitively expect that once steady state has been attained, all the positive
ions behave identically—similarly with the negative ions. Due to above result, once
the system has attained steady state, any positive ion is representative of all the N
positive ions, and similarly for the negative ions.

Having discussed Step 1, we now proceed to Step 2 of the BD probabilistic
construction of Procedure 1. Assume that the system (Eq. 15.7) comprising 2N ions
has attained stationarity with the ion channel C closed according to Step 1. Now in
Step 2 of Procedure 1, the ion channel is opened so that ions can diffuse into it. Our
key result below is to give a boundary-valued partial differential equation for the
mean first passage time for an ion to cross the ion channel—this immediately yields
an equation for the ion channel current.

Let �
(�,�)
R1,R2

denote the mean first passage time for any of the N/2 K+ ions in

R1 to travel to R2 via the channel C, and �
(�,�)
R2,R1

denote the mean first passage time
for any of the N/2 K+ ions in R2 to travel to R1:

�
(�,�)
R1,R2

= E{t
} where t
 ≡ inf
{

t : max
(

z(1)
t , z(2)

t , . . . , z(N/2)
t

)
≥ 


}
,

�
(�,�)
R2,R1

= E{t�} where t� ≡ inf
{

t : min
(

z(N/2+1)
t , z(N/2+2)

t , . . . , z(2N )
t

)
≤ �

}
.

(15.22)

In cationic channels, for example, only K+ or Na+ ions flow through to cause the
channel current—so we do not need to consider the mean first passage time of the

530



SVNY290-Chung July 25, 2006 15:51

15. Brownian Dynamics

Cl− ions. To give a partial differential equation for �
(�,�)
R1,R2

and �
(�,�)
R2,R1

, it is convenient
to define the closed sets

P2 =
{

� : {z(1) ≥ 
} ∪ {z(2) ≥ 
} ∪ · · · ∪ {z(N/2) ≥ 
}
}

P1 =
{

� : {z(N/2+1) ≤ �} ∪ {z(N/2+2) ≤ �} ∪ · · · ∪ {z(2N ) ≤ �}
}
. (15.23)

Then it is clear that �t ∈ P2 is equivalent to max
(

z(1)
t , z(2)

t , . . . , z(N/2)
t

)
≥ 


since either expression implies that at least one ion has crossed fromR1 toR2. Simi-

larly, �t ∈ P1 is equivalent to min
(

z(N/2+1)
t , z(N/2+2)

t , . . . , z(2N )
t

)
≤ �. Thus, t
 and t�

defined in Eq. 15.22 can be expressed as t
 = inf{t : �t ∈ P2}, t� = inf{t : �t ∈ P1}.
In a typical ionic channel, �

(�,�)
R2,R1

is much larger compared to �
(�,�)
R1,R2

. In terms

of the mean passage rate �
(�,�)
R2,R1

, �
(�,�)
R1,R2

, the mean current flowing from R1 via the
ion channel C into R2 is defined as

I (�,�) = q+
(

1

�
(�,�)
R1,R2

− 1

�
(�,�)
R2,R1

)
. (15.24)

The following result, adapted from Gihman and Skorohod (1972, pp. 306)
shows that the mean passage times �

(�,�)
R1,R2

, �
(�,�)
R2,R1

satisfy a boundary-valued partial
differential equation. In particular, the expressions for the mean first passage time
below, together with Eq. 15.24, give a complete characterization of the ion channel
current. Of course, the partial differential equation cannot be solved in closed form—
so later on in this chapter we use BD simulation as a randomized numerical method
for solving this partial differential equation.

Theorem 3. Consider the two step BD probabilistic construction in Procedure 1.
Then the mean passage times �

(�,�)
R1,R2

and �
(�,�)
R2,R1

(defined in Eq. 15.24) for ions to
diffuse through the ion channel are obtained as

�
(�,�)
R1,R2

=
∫

�
(�,�)
R1,R2

(� )�(�,�)
∞ (� ) d� (15.25)

�
(�,�)
R2,R1

=
∫

�
(�,�)
R2,R1

(� )�(�,�)
∞ (� ) d� (15.26)

where

�
(�,�)
R1,R2

(� ) = E{inf{t : �t ∈ P2|�0 = � }},
�

(�,�)
R2,R1

(� ) = E{inf{t : �t ∈ P1|�0 = � }}.
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Here �
(�,�)
R1,R2

(� ) and �
(�,�)
R2,R1

(� ) satisfy the following boundary value partial differential
equations:

L�
(�,�)
R1,R2

(� ) = −1 � �∈ P2, �
(�,�)
R1,R2

(� ) = 0 � ∈ P2

L�
(�,�)
R2,R1

(� ) = −1 � �∈ P1, �
(�,�)
R2,R1

(� ) = 0 � ∈ P1 (15.27)

where L denotes the backward operator defined in Eq. 15.16.

15.6 Brownian Dynamics Simulation

It is not possible to solve the boundary-valued partial differential equations, given in
Eq. 15.27, to obtain explicit closed form expressions. The aim of BD simulation is to
obtain estimates of these quantities by directly simulating the stochastic dynamical
system Eq. 15.7. Thus, BD simulation can be viewed as a randomized numerical
method for solving this partial differential equation.

To implement the BD simulation algorithm described below on a digital com-
puter, it is necessary to discretize the continuous-time dynamical equation of the
2N ions Eq. 15.7. A two-time scale time discretization is used in the BD simulation
algorithm. For dynamics of ions within the ion channel, The BD simulation algo-
rithm uses a sampling interval of � = 2 × 10−15 s. For dynamics of ions within the
reservoirs a sampling interval of � = 2 × 10−12 s is used in the reservoirs. There are
several possible methods for time discretization of the stochastic differential equation
Eq. 15.7, as described in detail by Kloeden and Platen (1992). Our BD simulation
algorithm uses the second-order discretization approximation of van Gunsteren et al.
(1981).

In the BD simulation algorithm below, we use the following notation:

The algorithm runs for L iterations where L is user specified. Each iteration l,
l = 1, 2, . . . , L , runs for a random number of discrete-time steps until an ion crosses
the channel. We denote these random times as �̂

(l)
R1,R2

if the ion has crossed from R1

to R2 and �̂
(l)
R2,R1

if the ion has crossed from R2 to R1. Thus

�̂
(l)
R1,R2

= min{k : �
(d)
k ∈ P2}, �̂

(l)
R2,R1

= min{k : �
(d)
k ∈ P1}.

The positive ions {1, 2, . . . , N/2} are in R1 at steady state ��,�
∞ , and the positive

ions {N/2 + 1, . . . , 2N } are in R2 at steady state.
LR1,R2 is a counter that counts how many K+ ions have crossed from R1 to R2 and
LR2,R1 counts how many K+ ions have crossed from R2 to R1. Note

LR1,R2 + LR2,R1 = L .
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In the algorithm below, to simply notation, we only consider passage of K+

ions i = 1, . . . , N across the ion channel.

Algorithm 1. Brownian dynamics simulation algorithm for ion permeation (for fixed
� and �)

� Input parameters � for PMF and � for applied external potential.
� For l = 1 to L iterations:

– Step 1. Initialize all 2N ions according to the stationary distribution �
(�,�)
∞ de-

fined in Eq. 15.18.
Open ion channel at discrete time k = 0 and set k = 1.

– Step 2. Propagate all 2N ions according to the time discretized BD system until
time k∗ at which an ion crosses the channel.
* If ion crossed ion channel from R1 to R2, i.e., for any ion i∗ ∈

{1, 2, . . . , N/2}, z(i∗)
k∗ ≥ 
 then set �̂

(l)
R1,R2

= k∗.
Update number of crossings from R1 to R2: LR1,R2 = LR1,R2 + 1.

* If ion crossed ion channel from R2 to R1, i.e., for any ion i∗ ∈ {N/2 +
1, . . . , N }, z(i)

k∗ ≤ � then set �̂
(l)
R2,R1

= k∗.
Update number of crossings from R2 to R1: LR2,R1 = LR2,R1 + 1.

– End for loop.
� Compute the mean passage time and mean current estimate after L iterations as

�̂
(�,�)
R1,R2

(L) = 1

LR1,R2

LR1,R2∑
l=1

�̂
(l)
R1,R2

, �̂
(�,�)
R2,R1

(L) = 1

LR2,R1

LR2,R1∑
l=1

�̂
(l)
R1,R2

.

(15.28)

Î �,�(L) = q+
(

1

�̂
(�,�)
R1,R2

(L)
− 1

�̂
(�,�)
R2,R2

(L)

)
(15.29)

The following result shows that the estimated current Î (�,�)(L) obtained from a
BD simulation run over L iterations is strongly consistent. This means that if the BD
simulation is run for a large number of iterations, i.e., as L → ∞, the estimate of the
current obtained from the BD simulation converges with probability one (w.p.1) to
the actual ion channel current that was theoretically obtained in Eq. 15.24 in terms
of mean passage rates. Thus, this theorem shows that BD simulation is a statistically
valid algorithm for estimating the ion channel current.

Theorem 4. For fixed PMF � ∈ � and applied external potential � ∈ �, the chan-
nel current estimate Î �,�(L) obtained from the BD simulation Algorithm 1 over L
iterations is strongly consistent, that is,

lim
L→∞

Î �,�(L) = I (�,�) w.p.1 (15.30)
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where I (�,�) is the mean current defined in Eq. 15.24.

Proof. Since by construction in Algorithm 1, each of the L iterations are statistically
independent, and E{�̂ (l)

R1,R2
}, E{�̂ (l)

R2,R1
} are finite, it then follows by Kolmogorov’s

strong law of large numbers (Billingsley, 1986)

lim
L→∞

�̂
(�,�)
R1,R2

(L) = �
(�,�)
R1,R2

, lim
L→∞

�̂
(�,�)
R2,R1

(L) = �
(�,�)
R2,R1

w.p.1.

Thus, q+
(

1
�

(�,�)
R1,R2

(L)
− 1

�
(�,�)
R2,R1

(L)

)
→ I �,�) w.p.1 as L → ∞.

15.7 Adaptive Controlled Brownian Dynamics Simulation

In this section, we briefly describe a new extension of BD simulation for estimating
the PMF of an ion channel. This extension involves a novel simulation-based learn-
ing control algorithm that dynamically adapts the evolution of the BD simulation.
It is based on our current and on-going research. The complete formalism, conver-
gence proofs, and numerical results will be presented elsewhere (Krishnamurthy and
Chung, 2005).

We estimate the PMF U� parameterized by some finite-dimensional parameter
� (e.g., � are the means, variances, and mixture weights of a Gaussian basis function
approximation), by computing the parameter � that optimizes the fit between the
mean current I (�.�) (defined above in Eq. 15.24) and the experimentally observed
current y(�) defined below. There are two reasons why estimating the PMF U� is
useful. First, by directly estimating PMF, the need for solving Poisson’s equation
is obviated. Thus, the problem of assigning the effective dielectric constants of the
pore and of the protein is avoided. Second, no assumption about the ionization state
of some of the residues lining the pore has to be made.

Unfortunately, it is impossible to explicitly compute I (�.�) from Eq. 15.24. For
this reason we resort to a stochastic optimization problem formulation below, where
consistent estimates of I (�.�) are obtained via the BD simulation algorithm.

From experimental data, an accurate estimate of the current–voltage–
concentration profiles of an ion channel can be obtained. These curves depict the
actual current y(�) flowing through an ion channel for various external applied po-
tentials � ∈ � and ionic concentrations. For a fixed applied field � ∈ � at a given
concentration, define the square error loss function as

Q(�, �) = E

{
În(�, �) − y(�)

}2

, Q(�) =
∑
�∈�

Q(�, �). (15.31)

Note that the total loss function Q(�) is obtained by adding the square error
over all the applied fields � ∈ � on the current–voltage or current–concentration
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Brownian
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Fig. 15.7 Block diagram of controlled Brownian dynamics simulations for estimating PMF. The
currents obtained from Brownian dynamics simulations using the parameters of the initial PMF are
compared with the experimental measurements. The parameters for the next iteration is modified
such that it would reduce the difference between the simulated and experimental results. The
procedure is iterated many times.

curve. The optimal PMF U�∗ is determined by the parameter �∗ that best fits
the mean current I (�, �) to the experimentally determined curves of an ion
channel, i.e.,

�∗ = arg min
�∈�

Q(�) (15.32)

Suppose that the BD simulation Algorithm is run in batches indexed by batch
number n = 1, 2,. . . . In each batch n, the PMF parameter �n is selected (as de-
scribed below), the BD Algorithm is run over L iterations, and the estimated current
În(�, �) is computed using (Eq. 15.29). In summary, Eqs. 15.32 and 15.31 define the
stochastic optimization problem we will solve in this section.

To solve the stochastic optimization problem by a simulation-based optimiza-
tion approach, we need to evaluate unbiased estimates Qn(�, �) of the loss function
and derivative estimates ∇̂�Qn(�, �). The estimation of the derivative ∇̂�Qn(�, �)
involves using recent sophisticated techniques in Monte-Carlo gradient estimation
(see, Vazquez and Krishnamurthy, 2003). Krishnamurthy and Chung (2005) present
several such algorithms including the Kiefer–Wolfowitz algorithm which evaluates
derivate estimates as finite differences, simultaneous perturbation stochastic approx-
imation (SPSA) which evaluates the derivatives in random directions (and thus saves
computational cost), and pathwise infinitesimal perturbation analysis (IPA) gradient
estimators.

The controlled BD simulation algorithm for estimating the PMF is schemat-
ically depicted in Fig. 15.7. Using an initial parameter set �, several BD simu-
lations are carried out under various applied potentials and concentrations. From
the results of these simulations, the loss function for each BD simulation is com-
puted, using Eq. 15.31. From the total loss function, a new parameter set � is esti-
mated, based on a stochastic gradient algorithm, and the entire process is repeated.
The iterative algorithm for carrying out controlled BD simulation is summarized
below.
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� Step 0: Set batch index n = 0, and initialize �0 ∈ �.
� Step 1 (Evaluation of loss function): At batch n, evaluate loss function Qn(�n, �)

for each external potential � ∈ �.
� Step 2 (Gradient estimation): Compute gradient estimate ∇̂�Qn(�, �)[�n].
� Step 3 (Stochastic approximation Algorithm): Update PMF estimate:

�n+1 = �n − 	n+1

∑
�∈�

∇̂�Qn(�n, �), (15.33)

where 	n = 1/n denotes a decreasing step size.
� Set n to n + 1 and go to Step 1.

A crucial aspect of the above algorithm is the gradient estimation Step 2. In this
step, an estimate ∇̂�Qn(�, �) of the gradient ∇�Qn(�, �) is computed. This gradient
estimate is then fed to the stochastic gradient algorithm (Step 3) which updates the
PMF. It can be proved via standard arguments in stochastic approximations that the
above algorithm converges to the optimal PMF �∗ w.p.1.

15.8 Concluding Remarks

Three computational tools discussed in this volume—Poisson–Nernst–Planck the-
ory (Coalson and Kurnikova, 2006), molecular dynamics (Grottesi et al., 2006), and
Brownian dynamics—will play increasingly prominent roles in understanding how
biological ion channel work. Each of these approaches has its strengths and limita-
tions, and involves a degree of approximation. The main defects of Poisson–Nernst–
Planck theory are errors stemming from the mean-field assumption. In particular,
it ignores the effects of induced surface charges created as a charged particle in
electrolyte solutions approaches the protein boundary. The magnitude of the errors
introduced by the mean-field approximation become large when the theory is applied
to a narrow ionic channels. By incorporating a term in the PNP equations to account
for the barrier created by induced surface charges, the magnitude of the errors can
be reduced somewhat (Corry et al., 2003). However, doing this removes much of the
simplicity of the theory, one of its main advantages over the other approaches, and
also it is still hard to know the accuracy of the results without comparison to a more
detailed model.

The greatest limitations of molecular dynamics is the computational power
required that limits the possible simulation times. While the calculation of free en-
ergy profiles provides useful information on ion permeation, it is not a substitute
for a direct estimation of conductance from simulations. Thus, virtually no predic-
tions derived from molecular dynamics simulations can be directly compared with
experimental data. If no such comparisons can be made, there can only be a lim-
ited interaction between experimenters and theoreticians. With the current doubling
of computer speeds every 2 years, this computational limitation will eventually be
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overcome. Then, the force fields employed in molecular dynamics simulations may
need to be improved to include polarization effects, perhaps using ab initio molecular
dynamics as a guide.

One of the main caveats to the application of Brownian dynamics to biological
ion channels is the use of Poisson’s equation to estimate the forces encountered by
permeant ions. The issue here is whether one can legitimately employ macroscopic
electrostatics in regions that are not much larger than the diameters of the water
molecules and ions. In the narrow constricted region of the channel, such as in the
selectivity filter of the potassium channel, the representation of the channel contents
as a continuous medium is a poor approximation.

All three theoretical approaches are useful in elucidating the mechanisms un-
derlying selectivity and permeation of ions across biological nanotubes. For ion
channels with large pore radii, such as mechanosensitive channels, Poisson–Nernst–
Planck theory can be fruitfully utilized. Also, if one is interested in simply obtaining
order-of-magnitude estimates of conductances of various model channels, this sim-
ple theory will provide the answers with little computational cost. To study the
mechanisms underlying the selectivity sequences of monovalent ions or to deter-
mine the precise conformational changes of the protein when a channel undergoes
the transition from the closed to the open state, one has to rely on molecular dynamics
simulations.

The ability to compute current flow across ion channels confers a distinct
advantage to Brownian dynamics compared to molecular dynamics. Because ions
are treated as discrete entities, induced surface charges are correctly accounted for.
Thus, an obvious application of Brownian dynamics is the calculation of current–
voltage and conductance–concentration curves, which can be directly compared to
the physiological measurements to assess the reliability and predictive power of the
method. In addition to simple counting of ions crossing the channel, one can carry out
a trajectory analysis of ions in the system to determine their average concentrations
and the steps involved in conduction. This is useful in finding the binding sites and the
average number of ions in the channel, both of which are experimentally observable
quantities. It is also possible to study the mechanisms of blocking of channels by
larger molecules or other ion species.

Brownian dynamics has been extensively used in the past to simulate the cur-
rent flowing across a variety of model ion channels (Allen et al., 1999, 2000; Allen Au: The year

“2001” here
has been
changed into
“2000”. Is this
OK?

and Chung, 2001; Chung et al., 1999, 2002a, b; Corry et al., 2001, 2004a, b; Im
and Roux, 2002a, b; Noskov et al., 2004; O’Mara et al., 2003, 2005; Vora et al.,
2004). Here we show that BD simulation is a statistically valid algorithm for es-
timating the ion channel current, placing this nonequilibrium method used by the
previous authors in studying model ion channels on a firm mathematical founda-
tion. In BD, the propagation of ions in the ion channel is modeled as a large-scale,
multi-particle continuous-time, stochastic dynamical system satisfying the Langevin
equation. The key idea here is that instead of considering the dynamics of individual
water molecules, which is computationally intractable, the BD system considers the
average effect of water molecules as a random force acting on individual ions. This
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treatment of water molecules can be viewed as an approximation of the central-limit
theorem by using stochastic averaging of water molecules. We then provide the proof
that ions drifting executing Brownian motion in a simulation assembly in which a
channel protein is imbedded achieve a stationary distribution (steady state) exponen-
tially fast (Theorem 1). We also demonstrate that the current across the model pore
is related to the mean first passage time of ions, which satisfies a boundary-valued
partial differential equation related to the Fokker–Planck equation. Thus, BD can be
construed as a randomized algorithm for numerically solving this partial differen-
tial equation. The simulated current converges to the explicit solution of the partial
differential equation w.p.1 (Theorem 4).

The mathematical formulation and statistical analysis of BD we provide in this
chapter are essential for further extension and refinement of the method. With the
BD method placed on a firm theoretical ground, we are now in the position to further
refine and extend it by applying the state-of-the-art, novel stochastic estimation
algorithms, thus making this approach far more versatile than in its current form.
One of the major caveats to the use of BD in studying the permeation dynamics
in biological ion channels is the use of Poisson’s equation to calculate the forces
encountered by permeant ions. The issue here is whether one can legitimately employ
macroscopic electrostatics in regions that are not much larger than the diameters of
the water molecules and ions. In the narrow, constricted region of the channel,
such as in the selectivity filter of the potassium channel, the representation of the
channel contents as a continuous medium is a poor approximation. The method
of adaptive controlled BD, which we discussed briefly, is designed to circumvent
the limitations posed in the conventional simulation approach. Using the learning-
based dynamic control algorithm, we are able to solve the inverse problem. That
is, given the three-dimensional shape of a channel, we can deduce the potential of
mean force encountered by an ion traversing the channel that correctly replicates
experimental findings, thus obviating the need to solve Poisson’s equation. The BD
algorithm thus can now be used to study the propagation of individual ions through
a mesoscopic system where continuum electrostatics breaks down (Edwards et al.,
2002) and molecular dynamics fails to yield a sensible profile of the PMF (Allen
et al., 2003, 2004). Alternatively, if continuum electrostatic is to be applied, we can
pinpoint, using a stationary stochastic optimization algorithm, the effective dielectric
constants of the pore and of protein that need to be used to replicate experimental
measurements.

The combined techniques of statistical signal processing and stochastic control
of large-scale dynamic systems of interacting particles will help us unravel the
structure–function relationships in ion channels. Also, by combining the state-of-
the-art dynamic control algorithms with BD, it should be possible to predict the
open-state structure of an ion channel with a fair degree of certainty and also design
new nanotubes that can be utilized as antifungal or antibacterial agents. Now and in
the near future, as we attempt to understand membrane channels in terms of rigorous
molecular physics, there will be an increasing interplay between experiment and
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theory, the former providing hints and clues for building and refining models and
the later making testable predictions.
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