
SUMMARY

1. The transport process of ions across the potassium 
channel is studied using computer simulations. The shape of 
the model channel corresponds closely to that deduced from
crystallography. 

2. We first give an intuitive account of how the motion of ions
experiencing an applied electric force and interacting with a
dielectric boundary and charge residues on the channel wall can
be simulated accurately by using a powerful supercomputer. 

3. We then show how some of the salient features of ion
channels can be deduced by following the positions of ions at
each discrete step over many millions of time steps.
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channel, KcsA channel, permeation theory, potassium channel.

INTRODUCTION

There are three prerequisites for constructing a theoretical model of
biological ion channels. First, because electric forces play a key role
in the movement of ions across the membrane, their correct treat-
ment is very important in modelling ion channels. The forces acting
on an ion can be deduced by solving Poisson’s equation, but sol-
utions to this equation are difficult for arbitrary channel boundaries
separated by the water–protein interface. In the past, studies of the
permeation of ions across the transmembrane conduit have been per-
formed almost exclusively in cylindrical geometry, reducing the
transport problem to one dimension. The relevance of these studies
to real biological channels remains doubtful.

Second, any proposed theoretical model has to be formulated such
that it can be validated or refuted experimentally. Thus, a model ion
channel should be capable of predicting the magnitude of currents
flowing under various conditions. Microscopic simulations in

which the motion of individual ions are traced must be performed
for periods long enough to measure conductance. Even with the most
advanced supercomputer currently available, this requirement has
been difficult to meet.

Third, the general shape and dimensions of the channel and the
positions and types of various polar groups must be known before
one can attempt to build a plausible theoretical model. Until recently,
this information has not been available. Towards the aim of build-
ing such an accurate theoretical model of ion channels, we have
devised an iterative, numerical method of computing electric field
at any point in two different dielectric media separated by an
arbitrary boundary, for which Poisson’s equation cannot be solved
analytically.1 Then, we have devised a method of reducing the
amount of computational effort involved in simulating a system of
charged particles interacting with a protein wall. Instead of com-
puting force acting on an ion at each position and each time step,
we precalculate the values of the electric field for a grid of positions
and store them in a set of look-up tables. Using a multidimensional
interpolation method, the force experienced by an ion at any position
can be deduced from the information stored in the look-up tables.2

Using this method, we are able to measure the current flowing across
a model channel. Recently, the potassium channel from soil bac-
terium has been crystallized and its crystallographic structure was
deduced.3 Using this newly unveiled structural information and using
our own preliminary work, we have made several predictions about
the properties of this potassium channel.

METHODS

Until recently, models of ion transport in membrane channels have been dom-
inated by two competing approaches based on reaction rate and continuum
theories.4 In the first approach, also known as Eyring rate theory, the diffu-
sion of ions is modelled as a hopping process. That is, ions move by jumping
from site to site, the probability of a hop being determined by the energy
difference between the sites and the available thermal energy. While the reac-
tion rate theory provides an intuitive picture for ion permeation in a multi-
ion channel, it has no structural basis and, clearly, is not suitable for studying
the structure–function relationship.

The continuum theory is based on the solution of two coupled differen-
tial equations, the Nernst–Planck equation for the electrodiffusion of ions
and Poisson’s equation for the mean electric potential; hence, it is dubbed
the Poisson–Nernst–Planck (PNP) equation. In this case, the channel struc-
ture is included in the calculations and does have an impact on the channel
conductance, so the above criticism for the reaction rate theory does not apply.
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However, comparisons of its predictions with those of Brownian dynamics
simulations have indicated that the mean field approximation in PNPtheory,
that is, the concept of an average potential acting on an average ion density,
completely fails in narrow channels with radii less than a Debye length (8Å
for a 150mmol/Lsolution). This leads to an overestimation of ionic shielding
effects in PNP, so much so that interaction of ions with the dielectric chan-
nel boundary is completely neglected. Another shortcoming of PNPis the
absence of ion–ion interactions, which are crucial in explaining ion per-
meation in multi-ion channels, such as potassium and calcium channels. Thus,
PNPfails to take into account important structural and dynamic factors in
modelling of channels and, hence, cannot be used in predicting channel
function from its structure.

The necessity of treating ions as particles leaves molecular and Brownian
dynamics (BD) as the only physical theories that allow realistic studies of
structure–function relationships in channels. In molecular dynamics, the
motion of all the atoms in the system (water, ions and protein forming the
channel) are followed using Newton’s equation of motion. The force on each
atom in the system due to all other atoms is calculated at a given time step
and used to determine the new position and velocity of that atom in the next
time step. This procedure is repeated until a statistically significant sample
of ion trajectories is obtained. While this is conceptually a very simple theory,
in practice it is very demanding on computational resources. For example,
computation of channel conductance using molecular dynamics is beyond
the capabilities of current supercomputers.

In BD, only the motion of ions is simulated, which considerably reduces
the computation time, allowing calculation of conductance. Here, a channel
is treated as a rigid structure, which can be taken from crystallography if
available. The effect of water molecules around an ion is represented by an
average frictional force and a random fluctuating force. These two forces
can be incorporated into Newton’s equation and the resulting stochastic
differential equation is known as the Langevin equation. The frictional 
and random forces act on ions locally as one-body forces and, hence, their
handling in BD is quite easy. The systematic forces in the Langevin equation
comprise ion–ion and ion–channel interactions. The former is a simple
Coulomb interaction modified at short ranges to take into account repulsive
forces due to electron clouds of ions and hydration forces. This involves two-
body forces and is again relatively simple to implement in BD. In contrast,
the ion–channel interaction requires solution of Poisson’s equation with
relatively complicated boundaries, which can only be performed numerically.
Using iterative numerical methods, one can determine the electric forces
acting on ions given their positions and channel boundaries. The compu-
tational effort required for such a solution is relatively small. However, the
fact that ions move to new positions after each time step means that this pro-
cedure has to be repeated millions of times during a simulation period. This,
too, is time consuming for practical purposes; for example, calculation of
conductance for a typical channel would take approximately 1 year on a
supercomputer. We have circumvented this computational bottle-neck by
introducing look-up tables. The electric field and potential due to one- and
two-ion configurations are precalculated at a number of grid points and stored
in a set of tables. During simulations, the potential and field at desired points
are reconstructed by interpolating between the table entries and using the
superposition principle.

We use e 5 60 for the dielectric constant of water inside the channel. This
choice is dictated by the fact that for lower values of e, the channel ceases
to conduct. To simplify the solution of Poisson’s equation, the same value
e 5 60 is used in both the channel and reservoirs. The difference in the Born
energies between e 5 80 for bulk and e 5 60 for channel configurations is
included as an energy barrier of height 0.6kT at both channel entrances.

We solve the Langevin equation using the BD algorithm devised by van
Gunsteren and Berendsen,5 which consists of the following computational
steps:

1. Compute the electric force acting on each ion at time tn and calculate
its derivative.

2. Compute a net stochastic force impinging on each ion over a time period
of Dt from a sampled value.

3. Determine the position of each ion at time tn 1 Dt and its velocity at
time tn by using the values of force and its derivative.

4. Repeat the above steps for the desired simulation period.

To simulate the short-range forces more accurately, we use a multiple time-
step algorithm in our BD code. A shorter time step of 2fs is used in the mouth
regions of the channel where the Born barrier is active and in the narrow
regions where ion–channel interaction is expected to contribute significantly.
A long time step of 100fs is used elsewhere. Specifically, there are two short
time-step bands, –25< z< –15 and 7.5< z< 25, comprising both entrances
and the selectivity filter. If an ion is in one of these bands at the beginning
of a 100fs period, it is simulated by 50 short steps instead of one long step;
so, synchronization between the ions is maintained. Long-range forces are
calculated normally at the start of the 100fs period and are assumed to be
constant throughout. The ion–ion interactions are normally treated using the
long time steps, except when both ions are in one of the above bands.

To mimic the intracellular and extracellular spaces, a cylindrical reservoir
with a radius of 30Å and a variable height is connected to each end of the
channel. The number of ions in each reservoir is fixed for convenience (13
of each species, unless otherwise stated) and its height is adjusted to obtain
a desired ionic concentration. Simulations under various conditions, each
lasting for one million time steps (0.1ms), are repeated numerous times.
Initially, a fixed number of ions is assigned random positions in the reser-
voirs with velocities also assigned randomly according to the Boltzmann dis-
tribution. For successive simulations, the final positions and velocities of
the ions in the previous simulation are used as initial positions and velocities
in the next trial. The current is determined by the number of ions traversing
the channel during the simulation period. To maintain the specified con-
centrations in the reservoirs, a stochastic boundary is applied: when an ion
crosses the channel, say from left to right, an ion of the same species is trans-
planted from the right reservoir to the left. For this purpose, the ion on the
furthermost right-hand side is chosen and it is placed in the far left-hand
side of the left reservoir, making sure that it does not overlap with another
ion. The stochastic boundary trigger points, located at either pore entrance,
are checked at each time step of the simulation.

The BD program is written in Fortran, vectorized and executed on a super-
computer (Fujitsu VPP-300). The time to complete the simulations depends
on how often ions enter the short time-step regions. With 48 ions in the
system, the central processing unit time needed to complete a simulation
period of 1.0ms (10million time steps) is roughly 30h.

Throughout, we quote energy in room temperature units (kT) and dipole
moments in Coulomb-meter (Cm). We note 1kT 5 4.11 3 10–21J or
0.592kcal/mol and 1Debye5 3.333 10–30Cm. The following physical
constants were used in our calculations (note that the friction coefficient 
is related to the diffusion coefficient via the Einstein relation D5 kT/mg):

masses:

mK 5 6.53 10–26kg, mCl 5 5.93 10–26kg

diffusion coefficients:

DK 5 1.963 10–9m2/s, DCl 5 2.033 10–9m2/s

ion radii:

RK 5 1.33Å, RCl 5 1.81Å

room temperature:

T 5 298K

RESULTS AND DISCUSSION

The transverse section of a model channel, shown in Fig.1, is
generated by rotating the two curves around the symmetry z-axis
by 180°. The channel is 50Å long, with a narrow selectivity filter
of radius 1.5Å and length 12Å. The selectivity filter extends towards
the extracellular space, whereas the wider pore, whose radius tapers
off gradually, extends inward, towards the intracellular space. The
radius at the entrance of the channel from the intracellular space is
3Å. To render the channel permeable to ions, we place sets of dipoles
in the protein wall with four-fold symmetry around the z-axis. First,
four rings of four carbonyl groups are placed along the selectivity
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filter (filled circles in Fig.1), such that the negative pole of each
carbonyl groups is positioned 1Å from the boundary and the posi-
tive pole 1.2Å away from the negative pole. Second, four helix
macrodipoles (open circles in Fig.1), with their N-terminals point-
ing at the oval chamber near the middle of the channel, are placed
90° apart. Third, at each entrance of the channel, four mouth dipoles
(filled diamonds in Fig.1), 5Å in length, are placed. The strength
of each of these three sets of dipoles is optimized so that the channel
conductance is largest.

The conductance of channels is one of the most important,
experimentally measurable features that characterizes a channel. To
deduce the conductance of the model potassium channel with BD,

the simulation period needs to be sufficiently long that reliable statis-
tics for currents flowing across the channel can be collected. Each
point in Fig.2 is derived from a simulation period of 0.5ms, or
5000000 time steps with an ionic concentration of 300mmol/L. The
current–voltage relationship reveals two distinct features. First, at
any given applied potential, the outward current is larger than the
inward current. The outward current at 100mV is 6.761.2pA.
Because the current begins to saturate with increasing ionic con-
centration (see later), the conductance at 150mmol/L K1 will be
slightly larger than 33pS. This value is close to the experimentally
determined single channel conductance from the Streptomyces
lividansK1 channel.6,7 Second, the current–voltage relationship is
ohmic for moderate applied potential, as is the case with many bio-
logical channels, but it deviates from the linear Ohm’s law as the
applied potential increases. Whenever there is an energy barrier in
the channel that ions traversing across it have to surmount, a curva-
ture in the current–voltage relationship is expected to be observed.
The solid line fitted through the data points is calculated from a theor-
etical current–voltage relationship that takes into account such an
energy barrier. Intuitively, an energy barrier is most effective when
the driving force is small and it will be less of an impediment for
ions when the driving force is large (see Chung et al.8). There are
some experimental indications for such a deviation of the
current–voltage curve from Ohm’s law.9 It will be of theoretical
interest to pursue this question further in future patch-clamp experi-
ments where the applied voltage is pushed beyond the usual range
of 6100mV. If such deviations do occur, it should be possible to
deduce the height of the energy barrier presented to permeating ions.

The current–voltage relationship obtained with asymmetrical solu-
tions in the two reservoirs is shown in Fig.3a. The ionic concen-
trations inside and outside are 500 and 100mmol/L, respectively.
As expected, the asymmetry between the inward and outward
currents is accentuated. The zero current of the current–voltage
relationship appears to be somewhere between –25 and –50mV. 
To ascertain how closely the measured reversal potentials match
those predicted by the Nernst equation, we estimate currents flowing
across the channel with two different ionic concentrations in the
reservoirs and under various applied potentials. The concentration
of K1 in the extracellular and intracellular aspects of the channel
are computed from the average number of ions in the reservoirs
throughout the simulation periods. The measured ionic concen-
trations in the left and right reservoirs in one series of simulations
are 71.5 and 482.0mmol/Land, in another series of simulations, are
176.2 and 385.3mmol/L. Figure3b shows the currents flowing
across the channel at various applied potentials. Because the net
current for these driving forces is small, the total simulation period
of 3ms is used to derive each data point. The reversal potential for
each asymmetrical solution is estimated by fitting a polynomial curve
through the data points (solid lines in Fig.3b). There are small but
consistent discrepancies between the reversal potentials deduced
from simulations and those predicted from the Nernst equation (indi-
cated with open downward arrows). The zero currents occur at –45
and –17mV when the concentration ratios in the two reservoirs are
6.7: 1 and 2.2: 1, respectively. The predicted reversal potentials are
–48.1 and –19.7mV. These discrepancies between the predicted and
measured zero currents disappear if we take the activity coefficients
of KCl at the measured ionic concentrations into account, as
indicated by the filled arrows in Fig.3b. The values of activity
coefficients used for 71.5, 176.2, 386.3 and 482.0mmol/Lare 0.79,

Fig. 1 Model potassium channel. A transverse section of the model chan-
nel with the positions of various dipole groups is illustrated. Eight of the
16 carbonyl oxygen atoms, two N-terminals of the four helix dipoles and
two of the four mouth dipoles at each entrance are indicated as, respectively,
filled circles, open circles and filled diamonds. The strength of these three
dipole groups we used are, in units of 10–30Coulomb-meter (Cm), 7.2, 96.2
and 30, respectively.

Fig. 2 The current–voltage relationship with symmetrical solutions. The
current measured at various applied potentials is obtained with symmetri-
cal solutions of 300mmol/L in both reservoirs. Each point is derived from
a simulation period of 0.5ms. The error bar accompanying a data point in
this and subsequent figures is 1SEM. e 5 60.
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0.73, 0.67 and 0.63, respectively. From the number of such
current–voltage relationships obtained with asymmetrical solutions,
we conclude that the zero current occurs at a potential predicted by
the Nernst equation, provided the activity of the solution is taken
into account.

It has been known for some time that the potassium channel is
normally occupied by several ions. It is of interest to deduce where
in the channel ions dwell predominantly. To compute the average
number of ions inside the channel, we divide the channel into 
32 thin sections, as indicated in the inset of Fig.4, and compute the
time averages of potassium ions in each section. For this series of
calculations, we use ionic concentrations of 500 and 100mmol/L
in the reservoirs representing, respectively, the intracellular and
extracellular spaces. When a potential of 200mV is applied so as
to produce an inward current, two ions, on average, tend to reside
in the channel. The preferred positions where ions dwell are in 
the selectivity filter at z5 9.4 and 17.2Å (Fig.4a). The preferred

positions of the ions in the channel are shifted when the direction
of the current is reversed by making the inside positive with respect
to the outside. Under these conditions, again two ions mainly linger
in the channel but the preferred positions where ions dwell are
shifted. Instead of two, there are now three peaks in the histogram
(Fig.4b), the peaks centred around 9.4, 14.1 and 23.4Å. We note
here that, although the histogram shows three distinct peaks near
the selectivity filter, there are, on average, 1.5 ions in this region,
as can be deduced by summing the heights of the bars. A similar
sum for the peak near the intracellular entrance gives 0.7 ions; that
is, an ion is present there 70% of the time. It must be emphasized
that ions in the channel are not firmly ‘bound’at two or three fixed
positions; rather, they undergo perpetual thermal motions. The time
average of the positions reveals the relative probabilities of finding
ions along the channel axis. Comparison of the two histograms
reveals that these preferred sites shift as the direction of the applied
potential is reversed.

Fig. 3 The current–voltage relationships with asymmetrical solutions. The
current measured at various applied potentials is obtained with asymmet-
rical solutions. (a) The concentrations in the reservoir representing the intra-
cellular and extracellular space are 500 and 100mmol/L, respectively.
e 5 60. (b) The measured concentrations in the intracellular and extracellular
reservoirs are 482.0 and 71.5mmol/L (s), respectively, and 385.3 and
176.2mmol/L (d), respectively. The open downward arrows indicate the
reversal potential calculated from the Nernst equation. The predicted Nernst
potentials taking the activity coefficient into account are indicated with filled
downward arrows. e 5 80.

Fig. 4 Concentrations of potassium ions in the channel. The channel is
divided into 32 sections, as indicated in the inset, and the probability of ions
present in each section over a simulation period of 0.5ms is tabulated (bars).
The ionic concentrations in the intracellular and extracellular reservoirs are
500 and 100mmol/L, respectively. The applied potential in (a) is 1200mV,
inside positive with respect to outside, whereas the direction of the potential
is reversed in (b). E, applied electric field.
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Experimentally, a current across a biological ion channel gener-
ally increases with increasing ionic concentration and then saturates
with a further increase in concentration. Saturation of the channel
current occurs when there is a rate-limiting permeation process that
is independent of ionic concentrations. For example, an ion arriving
near the entrance of the intracellular aspect of the channel will be
detained there for a period of time if, before traversing towards the
selectivity filter, it needs to gain a sufficient kinetic energy to climb
over an energy barrier. As shown in Fig.5, the magnitude of current
across the channel plotted against the concentrations of potassium
ions in the reservoirs has the same shape as those observed experi-
mentally.10,11 The two curves in Fig.5 are the outward and inward
currents using an applied potential of 200mV. The fitted lines
through the data points are calculated from the Michaelis–Menten
equation. The half-saturation values determined from the data are
151611mmol/L for the outward current and 127611mmol/L for
the inward current. These values are slightly higher than the experi-
mentally determined value for a potassium channel from sarco-
plasmic reticulum by Coronado et al.10

The conduction of ions across the potassium channel is critically
dependent on the strength of dipoles lining the channel entrance from
the intracellular space. In Fig.6, we plot the magnitude of the out-
ward current as a function of the strength of each mouth dipole. The
conductance increases rapidly as the moment of each dipole is
increased from 103 10–30Cm. The current begins to decline when
the moment is further increased to 603 10–30Cm. The current flow-
ing across the channel is largest when the charge on each of the four
dipoles is 0.63 10–19C and a small increase or decrease in the
strength of dipoles causes the channel to close. This fact leads us
to speculate that the opening and closing of the potassium need not
be steric. In theory, at least, the transition between the closed and
open states may be achieved by changing the strength of dipoles
surrounding the channel entrance.

For example, the channel in the closed state may have the mouth
dipoles orientated parallel to the rim of the entrance wall so that
their net moment viewed from the central axis will be zero, whereas
in its open state the dipoles may orientate perpendicular to the

channel rim. The channel may be in a conductance substate when
the dipoles are not optimally orientated. These possibilities are
schematically illustrated in Fig.6b. Alternatively, the channel in the
closed state may possess mouth dipoles that are much larger than
those required for optimal conduction. In such a case, the channel
will begin to conduct when the effective charges on the dipoles are
reduced by protonation or otherwise (Fig.6c).

CONCLUSIONS

We have used the recently unveiled structural information about 
the potassium channel in BD studies to understand its conduction

Fig. 5 The conductance–concentration curves for the outward (d) and
inward (s) currents. An applied potential of 200mV and symmetrical
solutions of varying concentrations in the two reservoirs are used. The lines
fitted through the data points are calculated with the Michaelis–Menten
equation. Each point is derived from a simulation period of 1ms.

Fig.6 Changes in channel conductance with the strength of mouth dipoles.
(a) The strength of each mouth dipole is changed systematically while
keeping the moments of each carbonyl group and helix dipole constant at
7.2 and 96.33 10–30Cm. (b) One possible way the channel may change from
the fully closed to partially and fully open states is illustrated schematically.
The channel entrance is viewed from the intracellular side. The orientation
of dipoles to the optimal angles to suboptimal angles may cause the channel
to close. (c) Alternatively, conduction may take place only when the effective
strength of mouth dipoles is reduced by protons in the solution, indicated
here by black dots.



94 S-H Chung and S Kuyucak

properties. We show that approximately two ions are attracted to
the deep well created by a set of dipoles on the channel wall. These
ions most commonly dwell near the equilibrium positions of two
ions in the potential well. A third ion entering the channel triggers
the motion of the resident ions via the ion–ion repulsive force, so
initiating a conduction event. The channel conductance determined
from BD simulations agrees closely with that determined experi-
mentally. The current–voltage relationship obtained with symmet-
rical solutions is linear when the applied potential is less than 
100mV, but deviates from Ohm’s law at a higher applied potential.
The reversal potentials obtained with asymmetrical solutions are in
agreement with those predicted by the Nernst equation. The con-
ductance exhibits the saturation property observed experimentally.
Finally, we demonstrate that, for conduction to take place, the
strength of four dipoles guarding the channel entrance facing the
extracellular space must be optimum. An increase or decrease of the
dipole strength from this optimal value effectively closes the 
channel. We postulate that the opening or closing of the potassium
channel may be governed by protonation of these mouth dipoles or
a small rotation of their orientation.
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