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ABSTRACT Brownian dynamics simulations have been carried out to study ionic currents flowing across a model mem-
brane channel under various conditions. The model channel we use has a cylindrical transmembrane segment that is joined
to a catenary vestibule at each side. Two cylindrical reservoirs connected to the channel contain a fixed number of sodium
and chloride ions. Under a driving force of 100 mV, the channel is virtually impermeable to sodium ions, owing to the repulsive
dielectric force presented to ions by the vestibular wall. When two rings of dipoles, with their negative poles facing the pore
lumen, are placed just above and below the constricted channel segment, sodium ions cross the channel. The conductance
increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength does not
increase the channel conductance further. When only those ions that acquire a kinetic energy large enough to surmount a
barrier are allowed to enter the narrow transmembrane segment, the channel conductance decreases monotonically with the
barrier height. This barrier represents those interactions between an ion, water molecules, and the protein wall in the
transmembrane segment that are not treated explicitly in the simulation. The conductance obtained from simulations closely
matches that obtained from ACh channels when a step potential barrier of 2–3 kTr is placed at the channel neck. The
current-voltage relationship obtained with symmetrical solutions is ohmic in the absence of a barrier. The current-voltage
curve becomes nonlinear when the 3 kTr barrier is in place. With asymmetrical solutions, the relationship approximates the
Goldman equation, with the reversal potential close to that predicted by the Nernst equation. The conductance first increases
linearly with concentration and then begins to rise at a slower rate with higher ionic concentration. We discuss the implications
of these findings for the transport of ions across the membrane and the structure of ion channels.

INTRODUCTION

Theoretical studies of the biological ion channel have been
hampered by a lack of detailed structural knowledge. The
exact shape of any biological channel, either ligand-gated or
voltage-activated, is unknown, as are the positions, densi-
ties, and types of dipoles and charge moieties on the protein
wall. These details are needed to compute the intermolecu-
lar potential operating between water molecules, ions, and
the protein wall, which is the essential ingredient for mi-
croscopic studies of channels using molecular dynamics.
Even if such information were available, it would not be
feasible at present to carry out molecular dynamics calcu-
lations for all of the water molecules and ions in a biological
channel and its surroundings for a period long enough to
deduce any of its macroscopically observable properties.
For these and other reasons, it has not been possible to
compare the results obtained from microscopic models with
the real data obtained from patch-clamp recordings. There is
a need to develop models that can relate the structural
parameters of channels to experimental measurements and
to build a theoretical framework that interlaces all of the

disparate sets of observations into a connected whole. The
theoretical model described in this paper was produced in
the hope of furthering this aim.

It is possible to make the computations tractable by
making several simplifications of and idealizations about
the channel and electrolyte solutions, and to examine the
magnitude of currents flowing through the model conduit
under various conditions, using Brownian dynamics simu-
lations (Cooper et al., 1985). Brownian dynamics provides
one of the simplest methods for following the trajectories of
idealized particles in a fluid interacting with a dielectric
boundary. Here the water is treated as a continuum, and the
motions of individual ions are assumed to be governed by
electrostatic forces emanating from other ions, fixed charges
in the proteins, the applied electric field and the dielectric
boundary. The effects of solvation and the structure of water
are taken into account by frictional and random forces
acting on ions. Brownian dynamics simulations have al-
ready been fruitfully utilized to investigate the movement of
ions across a model cylindrical tube (Jakobsson and Chiu,
1987; Chiu and Jakobsson, 1989; Bek and Jakobsson, 1994)
and a toroidal channel (Li et al., 1998). With these simula-
tions, it was possible to capture some of the salient features
of biological ion channels and reveal the importance of the
vestibules in influencing the permeability properties of ions
through the pore.

To deduce the conductance of a model channel with
Brownian dynamics simulations, the number of ions placed
in the reservoirs that mimic the extracellular and intracel-
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lular media must be relatively large, and the simulation
period needs to be sufficiently long that reliable statistics for
currents flowing across the channel can be collected. With
this requirement in mind, we have devised a method of
reducing the amount of computational effort involved in
simulating a system of charged particles interacting with a
protein wall. Instead of computing the force acting on an ion
at each position and at each time step, we precalculated the
values of the electric potential and field for a grid of
positions and stored them in a set of lookup tables. Using a
multidimensional interpolation algorithm (Press et al.,
1989), the field and potential experienced by an ion at any
position could be deduced from the information stored in
the lookup tables. Using this method, we were able to study
ionic currents flowing across a realistic model channel
under various conditions.

Brownian dynamics simulations do not adequately cap-
ture the transport process of ions in the narrow, constricted
channel region. This is because water is treated as contin-
uum, ions are idealized as point particles, and the protein
wall is represented as a structureless, rigid, and smooth
dielectric surface. In this narrow cylindrical region, polar
groups on the protein wall are likely to interact with the
primary or secondary hydration shell of an ion as it drifts
across the conduit, possibly replacing several water mole-
cules in the shell and forming temporary hydrogen bonds
with the ion. Elucidation of the permeation processes taking
place in the transmembrane segment will require molecular
dynamics calculations, such as the ones carried out for the
gramicidin pore (Roux and Karplus, 1991a). In the absence
of a detailed knowledge of the location and types of polar
groups lining the channel wall and the precise geometry of
the transmembrane segment, we have represented the inter-
molecular interactions taking place between ions, water
molecules, and the protein wall in this region as a step
potential barrier of variable height. The barrier is con-
structed such that it rises gently to the desired height in 1 Å,
and its first and second derivative are zero at the end points.
Thus the energy must be paid to enter the neck and is
returned when the ion exits.

Here we describe a model channel and report the results
of Brownian dynamics calculations aimed at elucidating the
permeation of ions through it. The shape of the channel is
made approximately the same as that of the ACh channel
(Toyoshima and Unwin, 1988), and cylindrical reservoirs
containing sodium and chloride ions are placed at each end
of the channel. We show that by placing an appropriate
strength of dipoles in the channel wall and erecting a small
energy barrier at the entrance of the narrow transmembrane
segment, we can replicate some of the macroscopically
observable properties of biological ion channels. Among
these are the channel conductance, an ohmic current-voltage
relationship, inward rectification as predicted by the
Goldman equation, and the conductance-concentration
relationship.

METHODS

The channel model

There are two major impediments to formulating a micro-
scopic model of membrane ion channels and simulating
molecular trajectories of idealized particles interacting with
the protein boundary. First, the description of the protein
wall forming a narrow cavity is relatively incomplete. For
example, the precise shape, and the number, magnitude, and
location of dipoles or charge moieties on the protein wall of
biological ion channels are unknown. Second, even with the
most advanced computer currently available, it is not fea-
sible to simulate motion of all water molecules and ions in
a channel and surroundings for a period long enough to
measure conductance. To study the permeation of ions
through a biological channel, we need to devise an idealized
model channel and then make several simplifying assump-
tions about the intermolecular potential that operates be-
tween particles in the assembly. We therefore make the
following simplifications and idealizations about our model
channel to enable us to simulate current flow across the
channel under various conditions.

Shape of the channel

A catenary channel was generated by rotating the closed
curve shown in Fig. 1A around the axis of symmetry (z
axis). The vestibule of the channel, whose shape is similar
to that visible in the electron microscope picture of the
acetylcholine channel (Toyoshima and Unwin, 1988), was
generated by a hyperbolic cosine function,z 5 a coshx/a,
where a 5 4.87 Å. The radius of the entrance of the
vestibule was fixed at 13 Å. Two identical vestibules were
connected with a cylindrical transmembrane region of
length 10 Å and radius 4 Å. A cross section of the model
channel, the total interior volume of which was 2.163
10226 m3, is illustrated in Fig. 1B. We assumed, for
convenience, that the two vestibules are identical in size,
although the image of the channel produced by Toyoshima
and Unwin (1988) shows that the extracellular vestibule is
larger than the intracellular vestibule.

Dipoles in the protein wall

To investigate how the permeation of ions across the chan-
nel is influenced by the presence and absence of dipoles in
the protein wall, we placed in some simulations a set of four
dipoles inside the protein boundary atz 5 5 Å and another
set of four dipoles atz 5 25 Å. Their orientations were
perpendicular to the central axis of the lumen (z axis). For
each dipole, the negative pole, placed 2 Å inside the water-
protein boundary, was separated from the positive pole by 5
Å. Thus if 5/16 of an elementary charge was placed on each
pole, then the total moments of four such dipoles would be
100 3 10230 Coulomb-meter. The same configuration of
dipoles was used in all of the simulations, giving rise to an
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attractive potential for sodium ions and a repulsive potential
for chloride ions in the channel. These fixed charges repre-
sent the charged side chains thought to form a ring around
the entrance of the constricted region (Unwin, 1989), and
their nearby counter-charges. For convenience, we adjust
the amount of charge rather than the number or positions of
the charges, but in reality the side chains of charged amino
acid residues would have one electron charge each if they
are fully ionized or unprotonated at neutral pH. Polar groups
located in the transmembrane segment of the channel that
may rotate in and out form temporary hydrogen bonds with

an ion navigating across it, as found in gramicidin A pores,
are not explicitly modeled in this study.

Energy barrier to penetrating the transmembrane segment

An ion in the vestibule needs to surmount an energy barrier
to traverse the narrow, constricted segment of the channel.
The presence of such an additional energy barrier in the
gramicidin pore has been revealed by molecular dynamics
calculations. Additional evidence is provided by the con-
ductance-temperature curves measured from biological ion
channels, which are always steeper than the conductivity-
temperature curve of bulk electrolyte solutions. This steeper
rise in the channel conductance with temperature is inter-
preted as being due to the presence of a dynamic barrier that
ions need to overcome (Kuyucak and Chung, 1994; Chung
and Kuyucak, 1995). Intuitively, this barrier arises from the
interactions between the protein wall and the hydrated ion
as the ion negotiates its way into the narrow, cylindrical
transmembrane pore. To enter the narrow segment, the
hydration shell of an ion needs to be rearranged, or some of
the water molecules in the primary or secondary hydration
shell need to be substituted with polar groups on the protein
wall. To rearrange the ion-water geometry requires an ad-
ditional energy, and the ion can surmount such a barrier
only when it gains a sufficient kinetic energy. To mimic a
barrier present in the ion channel, we placed in some sim-
ulations a potential step near the constricted segment of the
channel. The method we used for implementing such a
potential barrier in the Brownian dynamics algorithm is
detailed in the Methods.

Water as a continuum

We treat the water as a continuum in which the ions move
under the influence of electrostatic forces and random col-
lisions. In the constricted region of the channel, where the
radius is;4 Å, the representation of water molecules as a
continuous dielectric medium is a poor approximation. The
addition of energy barriers to the model is an attempt to
compensate for this difficulty. We represent the water-
protein interface as a single sharp and rigid boundary be-
tween dielectrics. In reality, however, the channel wall is
not made of a structureless dielectric material. Instead, its
surface is likely to be lined with hydrophilic and polar side
chains, which will restrict the ability of water molecules to
align with the electric field. The interface could be more
accurately represented as a region of intermediate dielectric
constant. Because the use of a single boundary does not
introduce significant error, as has been shown elsewhere
(Hoyles et al., 1996), we adopt the simpler model. The polar
groups and ordered water at the interface are not explicitly
included in our model, being represented by the dielectric
boundary.

FIGURE 1 Idealized biological ion channel. A model channel with two
catenary vestibules was generated by rotating the closed curves outlined in
A along the symmetryzaxis (horizontal line) by 180°. A transverse section
of the channel so generated is shown inB. To approximate the shape of the
acetylcholine receptor channel, vestibules at each side of the membrane
were constructed by using a hyperbolic cosine function,z 5 a coshx/a,
wherea 5 4.87 Å. The radius of the entrance of the vestibule was fixed at
13 Å, and the cylindrical transmembrane segment had a radius of 4 Å. Each
cylindrical reservoir, 60 Å in diameter and 22 Å in height, contained a
fixed number of sodium and chloride ions. Unless stated otherwise, the
ionic concentration in the volume composed of the channel vestibules and
the reservoirs was 300 mM. The cylindrical reservoir had a glass boundary,
in that an ion moving out of the boundary was reflected back into the
reservoir.
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Applied electric field

A potential difference across a lipid membrane is produced
by a surface charge density on each side of the membrane.
In microscopic terms, the surface charge density is a cloud
of unpaired ions on either side of the membrane. Because
these clouds are too diffuse to be explicitly included in our
simulation, we apply an external electric field% of a con-
stant strength to represent the average effect of the ionic
clouds. In the absence of any dielectric boundary, the po-
tential difference across a channel with the lengthd is %/d.
The presence of a dielectric boundary, however, severely
distorts the field, enhancing it in the transmembrane seg-
ment and attenuating it in the vestibule (Kuyucak et al.,
1998). Thus the precise potential difference will depend on
the selected reference points at the two sides of the catenary
channel. For simplicity, we apply a field strength of 107 V
m21 and refer to it as an applied potential of 100 mV.

Brownian dynamics

The trajectories of ions drifting across the channel under the
influence of a driving force while executing random thermal
motion were followed with Brownian dynamics simula-
tions. A detailed account of the theory underlying Brownian
dynamics calculations is given elsewhere (Li et al., 1998).
Briefly, the computational method traces the motion of the
ith ion with massmi and chargeqi with the Langevin
equation:

mi

dvi

dt
5 2migivi 1 FR~t! 1 qi%i . (1)

The first term on the right-hand side of Eq. 1 corresponds to
an average frictional force with the friction coefficient given
by migi, where 1/gi is the relaxation time constant of the
system. The second term,FR(t), represents the random part
of the collisions and rapidly fluctuates around a zero mean.
The frictional and random forces in Eq. 1, which together
describe the effects of collisions with the surrounding water
molecules, are connected through the fluctuation-dissipa-
tion theorem (Reif, 1965), which relates the friction coeffi-
cient to the autocorrelation function of the random force,

migi 5
1

2kTE
2`

`

^FR~0!FR~t!&dt, (2)

wherek, T, andm are the Boltzmann constant, the temper-
ature in degrees Kelvin, and the mass of the ion, respec-
tively, and angle brackets denote ensemble averages. Fi-
nally, %i in Eq. 1 denotes the total electric field at the
position of the ion arising from 1) other ions, 2) fixed
charges in the protein, 3) membrane potential, and 4) in-
duced surface charges on the water-protein boundary. This
term in Eq. 1 is computed by solving Poisson’s equation.
Note that in three dimensions, Eq. 1 has to be solved for
each Cartesian component (x, y, z) of the velocity.

Computational steps

The Brownian dynamics algorithm we used for solving the
Langevin equation is that devised by van Gunsteren and
Berendsen (van Gunsteren and Berendsen, 1982; van Gun-
steren et al., 1981). That the behavior of the interacting ions
deduced from simulations using this algorithm accords with
the physical reality is detailed elsewhere (see Li et al.,
1998). To compute the positions and velocities of ions at
discrete time steps ofDt, the algorithm takes the following
computational steps:

Step 1. Compute the magnitude of the electric force
F(t) 5 qi%i acting on each ion at timetn and calculate its
derivative [F(tn) 2 F(tn 2 1)]/Dt.

Step 2. Compute a net stochastic force impinging on each
ion over the time period ofDt from a sampled value of
FR(t).

Step 3. Determine the position of each ion at timetn 1 Dt
and its velocity at timetn by substitutingF(tn), its derivative
F9(tn) andFR(t) into the solutions of the Langevin equation
(equations 2.6 and 2.22 of van Gunsteren and Berendsen,
1982).

Step 4. Repeat the above steps for the desired number of
simulation steps.
Throughout, we used the time step ofDt 5 100 fs, except
when an ion entered one of the two imaginary bands placed
around the rising and falling edges of the step energy barrier
(see the following section).

Implementation of a step potential barrier in
the algorithm

The use of a long time step causes a problem in implement-
ing potential barriers and steps in Brownian dynamics as
short-range forces. In our simulations, the Brownian dy-
namics algorithm operates predominantly in the diffusive
regime. In other words, random forces are far more impor-
tant than the velocity on the previous step in determining the
anion’s new velocity and position. The algorithm devised
by van Gunsteren and Berendsen (1982) uses the factors
[exp(2gDt)] and [1 2 exp(2gDt)] to switch between ki-
netic and diffusive regions. With the long time step that we
use (Dt 5 100 fs),

1 2 exp~2gNaDt! 5 0.9997,

1 2 exp~2gClDt! 5 0.9666.

Thus for chloride ions only 3% of the previous velocity
remains after one time step, whereas the motion of sodium
ions is in effect purely diffusive, with no velocity correla-
tion between steps. Because an ion can move a large frac-
tion of the barrier width in a single time step (;0.3 Å on
average), the effect of the barrier force on the ion’s motion
will not be accurately integrated. Moreover, in the diffusive
regime, external forces cause only an average drift velocity
that does not move the ion far in a single time step. For
example, a repulsive force of 1203 10212 N (3 kTr over 1
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Å) produces a drift velocity of 39 ms21 for sodium and a
displacement of 0.04 Å in one time step. This is only 1/7 of
the average random displacement in one time step—an ion
can diffuse right through a potential barrier before the
barrier force has time to act.

To obviate these problems, we used two different time
steps: a short time step of 1 fs when an ion was in the
process of climbing or descending the barrier, and a long
time step of 100 fs otherwise. A smooth potential barrier of
heightVB was erected atz 5 610 Å (5 Å from the entrance
of the cylindrical segment), with the profiles at the ends as

U~s! 5 VB~10s3 2 15s4 1 6s5!, (3)

where

s5
z2 zb

Dz
1

1

2
. (4)

Herezb 5 610 Å is the location of the center of the profile,
and Dz 5 1 Å is the width of the profile. The potential
profile U(s) is chosen such that it rises from zero atz 5
610.5 toVB at z 5 69.5, and the first and second deriva-
tives ofU(s) vanish atz 5 69.5 andz 5 610.5. The force
due to the barrier is obtained by differentiating Eq. 3.

We included a safety distance of 0.5 Å in the potential
profile. Thus, whenever ions were in the band ofz5 9 to 11
Å or z 5 29 to 211 Å, we switched from long time steps
to an equivalent sequence of short time steps for those ions.
Trajectories of ions in these bands were determined by a
sequence of 100 short time steps for the subsequent 100 fs.
In the meantime, all of the other ions were simulated for a
single long time step in the normal way. The long-range
(electrostatic) forces on the ion were calculated at the start
of the sequence of 100 short steps and held constant there-
after. Similarly, reflection from the boundary walls was
done once at the end of the sequence of short steps. The
force from the barrier, however, was recalculated for each
short step, thus ensuring that the effect of the barrier on the
ion’s motion would be accurately simulated.

Lookup tables for the electric field and potential

To reduce the amount of computational effort, we have
made use of lookup tables. The electric field and potential
on a grid of positions were precalculated, using a numerical
method of solving Poisson’s equation (Hoyles et al., 1996),
and then recorded in a set of tables. By interpolating be-
tween table entries, the electric field and potential anywhere
in and in the vicinity of the channel can be quickly deter-
mined. Technical details of this method will be described
elsewhere (Hoyles et al., 1998).

The electric potentialV experienced by an ion is com-
posed of the following four parts:

Vi 5 VS,i 1 VX,i 1 O
jÞi

VI, ij 1 O
jÞi

VC,ij , (5)

where the indexi labels ions and the four terms on the
right-hand side of the equation are 1) the self-potential due
to charges induced by ioni; 2) the external potential due to
the applied field, fixed charges in the protein wall, and
charges induced by these; 3) the image potential due to
charges induced by ionj; and 4) the Coulomb potential due
to the charge on ionj. We decompose the electric field%
experienced by an ion in the same way:

%i 5 %S,i 1 %X,i 1 O
jÞi

%I, ij 1 O
jÞi

%C,ij . (6)

the first three components in Eqs. 5 and 6 were stored in the
tables, whereas the Coulomb potential between each pair of
ions was computed directly.

To allow rapid lookup, the precalculated results must be
on an evenly spaced grid. Because the use of a rectilinear
grid would result in many wasted points and a jagged edge
near the pore boundary, we made use of a system of gen-
eralized cylindrical coordinates for constructing the lookup
tables. The position of an ion was first converted to gener-
alized coordinates, and then the values of the electric po-
tential and field in the vicinity of the ion were extracted
from the tables by multidimensional linear interpolation,
which is a simple algorithm that generalizes easily to di-
mensions greater than 2 (Press et al., 1989). We used
separate tables for the self-potential (VS,i), the external
potential (VX,i), and the image potential (VI,ij ). These are,
respectively, two-, three-, and five-dimensional tables. Cy-
lindrical symmetry has been exploited to reduce by one the
number of dimensions of the self-potential and image-po-
tential tables. The electric field was stored and extracted in
the same way as the potential, except that three values were
required for each point in a table, one for each Cartesian
component of the field. So while the field tables were
indexed by generalized coordinates, their contents were
stored as Cartesian coordinates.

Illustrated in Fig. 2 are a graph of potential energy (A)
and that of thez component of force (B) for a single ion
moving parallel to the central axis of a catenary channel
with no dipoles. The solid lines are calculated by using an
iterative method (Hoyles et al., 1996), and the circles by
interpolating from the precalculated values stored in the
lookup tables. The spacing between points in the lookup
table is 1.77 Å in thez direction, and the circles are at the
midpoints of these intervals, where the maximum interpo-
lation error is expected to occur. There are 37 points across
the lookup table in ther direction (perpendicular to thez
axis), and the spacing between these varies with the radius
of the channel. As indicated in the inset of Fig. 2, the path
of the ion is offset from thezaxis by 3 Å, and the ion passes
through the midpoint of the radial interpolation intervals in
the neck region.

The correspondence between the iterative and lookup
methods evident in Fig. 2 indicates that interpolation error is
negligible for potential energy and thezcomponent of force
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in the most important parts of the channel, namely, the
center of the vestibule and the neck region. More detailed
tests indicate that the relative error increases when an ion
approaches the vestibular wall. For example, at 1 Å from the
wall, the relative error in the repulsive force is;15%. This
is not of great concern, because ions in the vestibule tend to
stay away from the water-protein boundary (Li et al., 1998).
In the constricted region, where ions are forced into closer
proximity with the wall, the error in the repulsive force 1 Å
from the wall is;5%.

Input parameters and details of simulations

Simulations under various conditions, each lasting between
500,000 and 2,000,000 time steps, were repeated many
times, for five to nine trials. For the first trial, the positions
of ions in the reservoirs were assigned randomly with the
proviso that the minimum ion-ion distance should be 2.7 Å,
or 1.5 times the radius of a chloride ion. We note that with
all subsequent ion-ion distance checking, to be explained
below, the minimum allowed distance, which we refer to as
the “safe distance,” was chosen to be 3/4 of the sum of the
ionic radii. For successive trials, the positions of the ions in
the last time step were used as the initial starting positions
of the following trial. The current (in pA) was extrapolated
from the total number of ions traversing the channel over
the simulation period.

On each side of the vestibule, a cylindrical reservoir with
radius 30 Å and an adjustable height was placed. A fixed
number of sodium and chloride ions were placed in each
reservoir, and the height of the cylindrical reservoir was
adjusted to give a desired ionic concentration. As ions were
forbidden to approach the wall of the reservoir within 1 Å,
the effective radius of the cylindrical reservoir was 29 Å.
For example, if 13 sodium and 13 chloride ions were placed
in each reservoir and the desired ionic concentration was
300 mM, the height of each of the two cylindrical reservoirs
was adjusted to 22 Å.

To prevent two ions from coming too close to each other,
a repulsive short-range potential, varying as 1/r9, was in-
cluded (Pauling, 1942). This steeply rising potential imitates
the repulsive force produced when the electron shells of two
ions begin to overlap. When the ionic concentration in the
reservoirs was high, ions at times were able to jump large
distances and end up very close to another ion. The forces
at the next time step in such instances would be very large,
and the affected ions could leave the system. To correct this
problem, we checked ion-ion distances at each time step. If
two ions were closer than the defined safe distance, then
their trajectories were traced backward in time until such a
distance was exceeded. By performing these checks and
corrections, the system was well behaved over the simula-
tion, even for very high concentration. Such a minor read-
justment of the position of an ion was needed about once
every 100 time steps when the reservoirs and the channel
contained 52 ions. The steep repulsive force at the dielectric
boundary due to the image charges was usually sufficient to
prevent ions from entering the channel protein. We ensured
that no ions would appear inside the channel protein by
erecting an impermeable glass boundary at the water-pro-
tein interface. Any ion colliding with this boundary was
elastically scattered. A similar glass boundary was imple-
mented for the reservoir boundaries.

To ensure that the desired intracellular and extracellular
ion concentrations were maintained throughout the simula-
tion, a stochastic boundary was applied. When an ion
crossed the transmembrane segment, an ion of the same
species was transplanted so as to maintain the original

FIGURE 2 A potential energy profile (A) and thez component of force
(B) obtained by interpolating from the precalculated values stored in the
lookup tables. An ion was moved along a trajectory that is parallel to the
central axis but is offset from it by 3 Å, as indicated by the arrow in the
inset. The position of each circle is located at the midpoint between two
adjacent points stored in the lookup table. The solid lines passing through
the filled circles (potential energy) and open circles (z component of force)
are calculated by using an iterative numerical method.

798 Biophysical Journal Volume 75 August 1998



concentrations on both sides of the membrane. For example,
if a sodium ion from the left-hand side of the channel
crossed the narrow transmembrane segment and reached the
imaginary plane atz 5 10 Å, then the furthermost sodium
ion in the right-hand reservoir was taken out and placed in
the far left-hand side of the left reservoir. When transplant-
ing ions, we chose a point no closer to another ion than the
defined safe distance. The stochastic boundary trigger
points, located atz 5 610 Å, were checked at each time
step of the simulation.

The Brownian dynamics program was written in FOR-
TRAN, vectorized, and executed on a supercomputer (Fu-
jitsu VPP-300). The amount of vectorization varied from
67% to 92%, depending on the number of ions in the
reservoirs. With 52 ions in the reservoirs, the CPU time of
a supercomputer needed to complete a simulation period of
1.0 ms (10 million time steps) was;18.7 h. The following
physical constants were employed in our calculations:

Dielectric constants:ewater 5 80, eprot 5 2
Masses:mNa 5 3.8 3 10226 kg, mCl 5 5.9 3 10226 kg
Diffusion coefficients: DNa 5 1.33 3 1029 m2 s21,

DCl 5 2.033 1029 m2 s21

Relaxation time constants,g21: gNa 5 8.1 3 1013 s21,
gCl 5 3.4 3 1013 s21

Ion radii: rNa 5 0.95 Å, rCl 5 1.81 Å
Room temperature:Tr 5 298 K
Boltzmann constant:k 5 1.383 10223 J K21

Elementary charge:e 5 1.603 10219 C
Throughout we give energy in temperature units,kTr. We

note that 1kTr equals 4.113 10221 J and 2.478 kJ/mol.
Units of dipole moments are quoted in Coulomb-meters,
abbreviated hereafter as Cm. One Debye corresponds to
;3.333 10230 Cm.

RESULTS

Dipoles in the channel

In the absence of any charge moieties or dipoles on the
protein wall, the potential barrier presented to an ion mov-
ing under the influence of an applied potential of 100 mV is
shown in Fig. 3 (top curve, labeled 0). The potential energy
of a sodium ion placed at a fixed position on thez axis was
calculated numerically by solving Poisson’s equation itera-
tively, as detailed previously (Hoyles et al., 1996). The ion
was then moved by 1 Å and the calculations were repeated.
The potential profile presented to the ion as it moved from
outside (left-hand side) to inside (right-hand side) increased
slowly, peaking at the center of the cylindrical transmem-
brane segment (labeled 0 Å), and then decreased steadily as
it traversed the second half of the channel. Note that without
the membrane potential, one would have obtained a sym-
metrical, bell-shaped barrier with a peak height of 14.53
10221 J. The presence of the membrane potential had low-
ered the relative height of the barrier to 3.53 10221 J and
distorted the shape of the profile to an asymmetrical curve.

Two rings of dipoles, together with an applied electric
potential of 100 mV, eliminated the repulsive dielectric
force. The number accompanying each curve in Fig. 3
represents the total strength of four dipoles (310230 Cm) in
each ring. Because there were two rings of dipoles, one at
z5 25 Å and the other atz5 15 Å, the strength of dipoles
placed on the entire channel wall was twice the value
indicated in the figure. In the presence of dipoles, an ion
traversing from outside to inside would encounter an attrac-
tive potential throughout its trajectory. With each stepwise
increase in dipole strength, what used to be a potential
barrier became a potential well whose depth increased with
the strength of dipole moments.

The potential profiles illustrated in Fig. 3 were con-
structed under the assumption that there were no other ions
in the system. Such profiles merely reveal that the perme-
ation of ions across the channel would be hindered if no
dipoles were present on the channel wall. It is not possible,

FIGURE 3 Changes in the potential profile with dipole strength. The
potential barrier presented to a cation is plotted against its position along its
trajectory. A membrane potential of 100 mV was applied such that inside
(right-hand side) was negative with respect to outside (left-hand side). The
value at each position was computed from a numerical method of solving
Poisson’s equation. The uppermost curve, labeled 0, was obtained in the
absence of dipoles on the channel wall. The next four curves represent the
potential profiles encountered by a cation traversing the channel in the
presence of dipoles with strengths of, respectively, 50, 100, 200 and 3003
10230 Cm. The approximate positions of four of the eight dipoles in the
channel are indicated in the inset. The remaining four dipoles are on the
plane orthogonal to those shown.
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however, to deduce the conductance of the channel from
such profiles, or the effect a deep potential well will have on
ions permeating the channel. To study these properties, one
needs a dynamical theory.

We have used Brownian dynamics simulations to deduce
the conductance of the model channel under various condi-
tions. In all of the subsequent figures, unless stated other-
wise, each point is the average of nine simulations, each
lasting for 500,000 time steps (50 ns), or five simulations,
each lasting for 2,000,000 time steps (200 ns). The error bar
accompanying each data point is one standard error of
mean. The error bar is not shown if it is smaller than the size
of the data point. Again, unless noted otherwise, 13 sodium
and 13 chloride ions were placed in the left-hand reservoir
(representing the extracellular space), whose volume was
5.84 3 10226 m3, and the same number of ions in the
right-hand side reservoir (the intracellular space). Thus the
ionic concentration in the reservoirs was 300 mM, which is
about double the physiological concentration. This higher
concentration was preferred in the simulations to obtain
better statistics.

In Fig. 4, the number of ions that traversed the channel
under the driving force of 100 mV during a simulation
period of 0.45ms (4.5 million time steps) is converted to
current in pA and plotted against the dipole strength. On the
right-hand ordinate of Fig. 4, current in pA is converted to
conductance in pS at the physiological concentration of 150
mM. Because the current in these ranges of ionic concen-
trations increases almost linearly with concentration (see
later), such an extrapolation of conductance results is justi-
fied. With no dipoles placed on the channel wall, the num-
ber of sodium ions that traversed from outside to inside in
0.45ms was 10, which corresponds to a current of 3.6 pA.
The net current increased rapidly with the increasing dipole
strength up to 1003 10230 Cm (filled circlesin Fig. 4). The
number of ions crossing the channel increased further with
a further increase in the dipole strength, but many ions were
also traversing in the opposite direction, against the direc-
tion of the applied electric field. The current flowing from
inside to outside is indicated as open circles in Fig. 4. As a
result, the net current actually decreased as the dipole
strength was increased further from 300 to 6003 10230

Cm.
The strength of dipoles in biological ion channels is likely

to be sufficiently large to cancel the repulsive dielectric
force presented to the ion, but not so strong as to allow ions
to move against the applied electric gradient. If we assume
that the channel shape can be idealized as our model chan-
nel and that the dielectric constant of water in the vestibule
is 80, then the optimal strength of dipoles on the channel
wall is between 100 and 2003 10230 Cm. In reality, the
total dipole moment present on the channel wall will be
greater than the value we quote, because the dielectric
constant of water in the vestibule must almost certainly be
lower than that in bulk water (see, for example, Gutman et
al., 1992; Sansom et al. 1997). Hereafter, we place two rings
of dipoles, each with a moment of 1003 10230 Cm, just

above and below the transmembrane segment to investigate
other macroscopically observable properties of membrane
ion channels.

Energy barrier near the transmembrane segment

It is not known how large an energy barrier an ion must
overcome to cross the transmembrane segment of the chan-
nel. From the conductance-temperature relationship, it has
been estimated that the height of this barrier is;3 kTr

(Kuyucak and Chung, 1994). Here we examine how the
height of such a barrier influences the conductance of the
channel.

The number of ions crossing the channel was tabulated at
a given height of this step potential barrier during the
simulation period of 1.0ms. The current was not attenuated
appreciably when the height of the barrier was less than 1.0
kTr. The channel currents obtained in the absence of any
barrier and in the presence of a 1.0kTr barrier were the same
(23.76 1.4 versus 22.16 1.2 pA). With a further increase

FIGURE 4 Channel conductance as a function of dipole strength. The
magnitudes of sodium currents flowing across the channel in the presence
of a membrane potential of 100 mV are plotted against strengths of dipoles.
The ionic concentration of the reservoir was 300 mV. The left-hand side of
the ordinate indicates the current in pA at 300 mM, whereas the right-hand
side of the ordinate indicates the conductance in pS at 150 mM. The filled
circles show the net current, i.e., the sum of currents in both directions,
which flows from outside to inside. The open circles show the current
flowing against the potential gradient, namely, from inside to outside. The
simulation time for each data point was 0.45ms, except the value for 1003
10230 Cm, which was 2ms. The points were fitted with a polynomial
function.
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in the barrier height, however, the current was systemati-
cally reduced, as shown in Fig. 5. On the right-hand ordinate
of Fig. 5, we show the channel conductance at 150 mM
concentration. It decreased progressively from 110 pS with
an increasing barrier height, dropping to 526 7 pS at 2.0
kTr. When the barrier height was 2.5kTr, this conductance
of the channel became approximately the same as that
obtained experimentally from the ACh channel (Hamill and
Sakmann, 1981) or from theN-methyl-D-aspartate-activated
channel (Chung and Kuyucak, 1995).

Ionic concentrations in the channel

In the volume of our model channel, which is 2.163 10226

m3, there would be 720 water molecules. At a concentration
of 300 mM, a similar bulk volume would contain four
sodium and four chloride ions. Here we examine the number
of sodium and chloride ions inside the channel under vari-
ous conditions. To compute the average number and con-
centration of sodium and chloride ions inside the channel,
we divided the model catenary channel, whose length is 80
Å, into 16 5-Å sections, as shown in the inset of Fig. 6. The
volumes of the slices from the outermost layer to the small-
est layer in the transmembrane segment were 2.94, 2.18,
1.88, 1.54, 1.16, 0.71, 0.25, and 0.153 10227 m3.

In the absence of a membrane potential and dipoles in the
protein, ions were virtually excluded from entering the
vestibule neck, owing to the repulsive dielectric force pre-
sented to them by the dielectric wall. In Fig. 6,A andB, the
time averages of sodium and chloride concentrations in the
channel are illustrated. The number of ions present in each
layer per unit time was first tabulated (filled and open
circles), and then the concentration in each layer was de-
rived by taking into account its volume. The average ionic
concentration in each of the two outermost layers was

FIGURE 5 Channel conductance as a function of the height of the
potential barrier. The total strength of dipoles in each ring was 1003
10230 Cm, and a membrane potential of 100 mV was applied throughout.
A step potential barrier was placed withinz 5 610 Å, as indicated in the
inset. The current across the channel at 300 mM (left-hand ordinate) and
the channel conductance at 150 mM (right-hand ordinate) decreased
steadily as the barrier height increased. Each point was obtained from a
total simulation period of 1.0ms.

FIGURE 6 Concentrations of sodium and chloride ions in the channel.
The model channel was divided into 16 5-Å-thick sections, as indicated in
the inset, and the average number of ions present over the simulation period
of 0.45ms in each section was tabulated (filled and open circles). The ionic
concentration in each section was then calculated by dividing the average
number of ions in each section by its volume (bars). The concentration of
sodium (and chloride) ions in the reservoirs was 300 mM in this and the
following three figures. With no dipoles on the channel wall and no applied
electric field, the probability of sodium ions (A) and chloride ions (B) being
in each section decreased steadily with its distance from the reservoir.
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;10% lower than that in the adjoining reservoir, which was
300 mM. The ionic concentration in successive layers de-
clined progressively, dropping to less than 10% of the
reservoir value in the neck region.

When a membrane potential of 100 mV was applied
across the channel, such that the right-hand reservoir was
made negative with respect to the left-hand side, there was
a small but consistent increase in the concentration of so-
dium ions in the left vestibule and in the concentration of
chloride ions in the right vestibule (Fig. 7). Other than this
small asymmetry in the concentrations and a slight increase
in the probability of ions being present in the constricted
segment, the applied field had little effect on the average

concentrations in the channel. A drastic change in the pat-
tern of charge densities occurred when, instead of applying
an electric potential across the channel, two rings of dipoles
were placed on the channel wall. As shown in Fig. 8, there
was a marked increase in the concentration of sodium ions
in the constricted region of the channel. Sodium ions enter-
ing the channel occasionally would become detained in the
potential well created by the dipoles on the wall. Some ions
jumped from one well to the other and drifted across the
other side, but because there was no potential gradient, the
number of ions drifting in one direction (11.76 1.3 pA)
was about the same as that in the opposite direction (10.76
1.3 pA).

To mimic the concentration gradient in the channel dur-
ing its open state, we placed an energy barrier of 1.5kTr at

FIGURE 7 Concentrations of sodium and chloride ions in the channel in
the presence of a membrane potential%. When a membrane potential of
100 mV was applied, as shown in the inset, there was a small increase in
the concentration of sodium ions in the left-hand vestibule (A), and a
similar but slightly larger increase in chloride ions in the right-hand
vestibule (B). The difference is due to the larger diffusion coefficient of
chloride ions compared to that of sodium ions.

FIGURE 8 Concentrations of sodium and chloride ions in the channel in
the presence of two dipole rings. Each dipole ring, with a total moment of
1003 10230 Cm, was placed in the positions indicated in the inset. There
was a large increase in the concentrations of sodium ions in the innermost
sections of the channel (A). In contrast, chloride ions were excluded from
the innermost sections (B).
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the constricted segment and applied a membrane potential
of 100 mV. As shown in Fig. 9, the sodium concentration in
all layers of the channel was approximately constant under
these conditions and ions moved steadily from outside to
inside, without being detained by the dipoles on the channel
wall. In contrast, chloride ions were virtually excluded from
entering the inside of the channel (Fig. 9B). The conduc-
tance of the channel under this condition was 786 4 pS at
150 mM (or 15.56 0.7 pA at 300 mM), and no sodium ions
traversed against the potential gradient.

Current-voltage relationships

The current-voltage relationships obtained from excised sin-
gle channels are in general ohmic, although some show
pronounced inward or outward rectification. The reversal
potential observed in asymmetrical ionic solutions closely
matches that predicted by the Nernst equation. Here we
show how the presence of an energy barrier in the channel
can distort the linear current-voltage relation.

The current increased linearly with the applied voltage, as
shown in Fig. 10A, when there was no additional potential

FIGURE 9 Concentrations of sodium and chloride ions in the presence
of dipoles and an applied electric field. Two potential barriers of 1.5kTr

were placed at the positions indicated in the inset. With two rings of dipoles
canceling the repulsive dielectric force and a driving force provided by a
membrane potential of 100 mV, sodium ions steadily traversed the channel.
The concentrations of sodium ions in all sections of the channel remained
approximately constant (A). In contrast, chloride ions were virtually ex-
cluded from the transmembrane sections (B).

FIGURE 10 Current-voltage relationships obtained with symmetrical
solutions. (A) The currents flowing across the channel that had no potential
barrier near the entrance of the transmembrane segment were measured at
different applied potentials. Two rings of dipoles, each ring with the
strength of 1003 1030 Cm, were placed on the channel wall. The
current-voltage relationship obtained under these conditions is ohmic. The
slope of the line drawn through the data points is 2326 4 pS. (B) When
a potential barrier of 3.0kTr was erected, the current-voltage relationships
became nonlinear. The data points were fitted with a modified Ohm’s law
that takes the barrier into account (see Eq. 12). The values ofg andb used
to fit the curve were, respectively, 1426 4 and 3.56 0.4. The simulation
period used to obtain each data point was 1ms.
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barrier in the channel presented to ions for penetrating the
transmembrane segment. In this and all subsequent current-
voltage curves, we used the total strength of four dipoles in
each ring of 1003 10230 Cm. The core conductance of the
channel, deduced from the regression line of the form,I 5
gV, fitted through the data points, was 2326 4 pS (or 116
pS at 150 mM). When an energy barrier of 3.0kTr was
erected at the entrance of the constricted segment, the cur-
rent was attenuated, but not by a constant proportion at all
voltages. For example, the currents in the absence and
presence of this barrier at 200 mV were, respectively, 46.0
pA and 18.2 pA (39.6%). With the applied potential of 50
mV, however, the current was reduced from 14.0 pA to 2.2
pA (15.7%), thus indicating that the barrier of the same
height became less of an impediment when the driving force
was large. With a 3.0kTr barrier, the current-voltage rela-
tionship became nonlinear, deviating markedly from Ohm’s
law, as shown in Fig. 10B. The solid line fitted through the
data points in Fig. 10B was calculated from the Po¨schl-
Teller function of the formI 5 gV/[1 1 b sechx], where
x 5 eV/VB andVB is the barrier height. The justification for
fitting the data with this function is given in the Discussion
section. The values ofg andb used to generate the curves
shown in solid lines are given in the figure legend.

Fig. 11A shows the current-voltage relationship obtained
with asymmetrical ionic solutions in the two reservoirs. The
ionic concentrations outside (left-hand reservoir) and inside
(right-hand reservoir) were 480 mM and 120 mM, respec-
tively. To make the solution electrically neutral, the same
number of sodium and chloride ions was placed in each
reservoir. With no energy barrier in the channel, the slope
for the outward current (at the positive potential,filled
circles) was steeper than that predicted by the Goldman
equation. Then we added potassium ions such that the
number of cations (sodium and potassium) in one reservoir
was equal to that in the other reservoir. Thus the ionic
concentrations outside were 480 mM NaCl and 120 mM
KCl, whereas those inside were 120 mM NaCl and 480 mM
KCl. Potassium ions were prevented from entering the con-
stricted region of the channel by erecting two impermeable
barriers atz 5 610 Å. Potassium ions colliding with these
barriers were elastically scattered. The slope of the outward
current (open circles) obtained under these conditions was
less steep than that predicted by the Goldman equation. The
solid line fitted through the data points was calculated with
the Goldman equation of the form

I 5 KV
1 2 4 exp~2eV/kT!

1 2 exp~2eV/kT!
, (7)

whereK is a constant and the factor of 4 arises from the
outside to inside ratio of concentrations.

The slope of the outward current was affected more
markedly by the presence of impermeable potassium ions
when the concentration ratio was 2:1, as illustrated in Fig.
11 B. In these simulations, the ionic concentrations of NaCl
outside and inside were, respectively, 400 mM and 200 mM.

With no potassium ions, the magnitude of the inward cur-
rent at a given applied potential is about half that of the
outward current (filled circles). The currents flowing across
the channel at various holding potentials were determined
again with 200 mM KCl added to the extracellular solution

FIGURE 11 Current-voltage relationships obtained with asymmetrical
solutions. The strength of dipoles placed on the channel wall was the same
as in Fig. 10. Each point in this figure represents the average of five
simulations, each simulation lasting for 2,000,000 time steps (200 ns). (A)
The current-voltage relationship was first obtained with the ionic concen-
trations of 480 mM outside and 120 mM inside (F). Then, the ionic
strengths were changed such that the outside contained 120 mM KCl (and
480 mM NaCl) and the inside contained 480 mM KCl (and 120 mM NaCl),
and the channel was made impermeable to potassium ions. The outward
current was markedly depressed in the presence of potassium ions (E). (B)
The current-voltage relationship was obtained with ionic solutions of 400
mM outside and 200 mM inside (F). Then 200 mM KCl was added to the
outside solution and 400 mM KCl to the inside solution. The outward
current was depressed in the presence of potassium ions (E). The solid
lines drawn through the data point were calculated with a Goldman
equation of the form given in Eq. 7, with the constantK 5 0.085 forA and
K 5 0.146 forB.
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and 400 mM KCl to the intracellular solution. Thus the total
cation concentrations inside and outside in these simulations
were 600 mM. As shown in Fig. 11B, the outward current
was appreciably attenuated, whereas the inward current
remained unchanged (open circles). The solid line was
again calculated from the Goldman equation, with the pre-
exponential factor of 2 in the numerator of Eq. 7.

From a series of simulations such as those illustrated in
Fig. 11, we conclude that the Nernst equation correctly
predicts the reversal potential when the ionic concentrations
in the two faces of the channel are different. The relative
steepness of the slopes fitted through inward and outward
currents changes appreciably when other cations that are
impermeable to the channel are present. The shape of the
current-voltage relationship is further distorted when an
energy barrier is erected near the constricted segment of the
channel.

Conductance-concentration curve

Experimentally, current across a biological ion channel in-
creases monotonically with an increasing ionic concentra-
tion initially and then saturates with a further increase in
concentration (Hille, 1992). Saturation of channel currents
occurs when there is a rate-limiting permeation process that
is independent of ionic concentrations. For example, an ion
arriving near the constricted membrane segment will be
detained there for a period of time if, before traversing the
narrow pore, it needs to gain a sufficient kinetic energy to
climb over an energy barrier. The reason for the presence of
such a barrier is explained in the Methods.

In Fig. 12, the conductance of the channel is plotted
against the concentrations of sodium ions in the reservoirs.
The two reservoirs contained an equal number of sodium-
chloride pairs, and an applied membrane potential of2100
mV provided the driving force for sodium ions to move
inward. The presence of two rings of dipoles, with their
negative poles pointing to the lumen, ensured that the chan-
nel was selectively permeable to sodium ions. When the
channel had no potential barrier, the ionic current carried by
sodium ions increased linearly with concentration, as shown
in Fig. 12 A. Because the magnitude of the current in this
series of simulations was large, we used the total simulation
period of 0.225ms for each point shown in Fig. 12A. The
linear conductance-concentration relation became distorted
when a barrier was placed 5 Å from each end of the
cylindrical pore. Fig. 12B illustrates the conductance-con-
centration curve obtained from the channel with a step
potential barrier of 3.0kTr. The ordinate of Fig. 12B is
expanded, because the currents were greatly attenuated by
the presence of the barrier. At a low ionic concentration, the
conductance was nearly proportional to the ionic concen-
tration. As the ionic concentration was increased, however,
the conductance increased less with increasing concentra-
tions. We fitted the points with the curve calculated from the

Michaelis-Menten equation of the form

I 5
Imax

1 1 Ks/@c#
(8)

whereImax andKs are the fit parameters. For the solid line
drawn through the data points of Fig. 12B, the numerical
values of these two parameters areImax 5 25 6 5 pA and
Ks 5 9966 351 mM. In the Discussion we give a plausible
physical interpretation of Eq. 8.

DISCUSSION

As we have demonstrated here and elsewhere (Li et al.,
1998), the Brownian dynamics algorithm devised by van

FIGURE 12 Conductance-concentration curve. The ionic concentrations
in the two reservoirs were systematically increased while keeping the
strength of dipoles and an applied membrane potential constant at 1003
10230 Cm and 100 mV, respectively. The number of ion pairs in each
reservoir, with the radius of 30 Å, ranged from 3 (for 75 mM) to 78 (for
1800 mM). (A) With no barrier present, the current increased linearly with
ionic concentrations. Each point represents the average of nine trials, with
each trial lasting for 250,000 time steps or 0.225ms. (B) When a step
barrier with a height of 3.0kTr was erected 5 Å from the entrance of the
transmembrane segment, the conductance-concentration relation became
nonlinear. The current increased linearly with an increasing ionic concen-
tration at first and then began to saturate. The data points ofB were fitted
to Eq. 8. The simulation period for each point inB was 1ms, except for
those representing 1.2, 1.5, and 1.8 M, for which simulation periods of 0.3
ms were used.
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Gunsteren and Berendsen (1982) is highly suitable for
studying the motions of interacting ions in a fluid. One of
the major advantages of this algorithm is that the range of
time stepsDt is not restricted by the relaxation time constant
(g21) as Dt ,, g21, which is the case in most other
Brownian dynamics algorithms. At room temperature, the
relaxation time constant for sodium ions is on the order of
10 fs; thus, to meet the condition stipulated in this equation,
a time step on the order of 1 fs must be used with such
algorithms. As the computational cost of covering a simu-
lation period of a few microseconds would be prohibitively
expensive, the use of such algorithms in studying the per-
meation of ions across biological channels is severely lim-
ited. Our preliminary tests of the van Gunsteren-Berendsen
algorithm in a simple periodic boundary and a toroidal
dielectric boundary showed that many of the important
features of the motions of interacting ions in a fluid could be
captured even when aDt as large as 100 fs is used. Among
these important features are mean square displacement, the
velocity distribution, and the conductance of bulk electro-
lyte solutions. Furthermore, the temperature of the system
remained stable over the simulation period, and the ionic
concentration in a localized region, revealed by the time
average of the probability of occupancy, remained constant
at 150 mM.

The results of simulations are in agreement with experi-
mental findings in several respects. First, the channel con-
ductance is close to that determined experimentally for the
ACh channel when the height of the energy barrier is;3.0
kTr or 1.233 10220 J. Second, the current-voltage relation-
ship obtained with symmetrical solutions is close to linear
for moderate applied potentials, as is the case with many
biological channels. The relationship obtained with asym-
metrical solutions shows rectification, with the reversal
potential close to that predicted by the Nernst equation.
Third, the conductance-concentration curve has the same
shape as those observed experimentally, although the satu-
ration concentration is higher than expected. The model also
makes a number of other predictions. To render the channel
permeable to ions, several charge groups must be placed in
the protein wall to counteract the repulsive dielectric force.
An excessive number of charge residues, however, allows
sodium ions to flow against the potential gradient, so re-
ducing the conductance of the channel. Moreover, counter-
ions do not screen the image repulsion to any great extent,
in either the vestibule or the constricted region. Finally,
current-voltage curves can be expected to be nonlinear at
large potentials, or for channels with large energy barriers.

Suppression of currents by an energy barrier

A potential barrier presented to an ion, arising from the
dehydration and substitution process and the electrostatic
interaction between ions and charge multipoles on the wall,
will ensure that only the ions with thermal energiesE larger
than the barrier height will be allowed to go through the

neck. The probability3 of an ion surmounting a barrier of
heightVB follows from the Boltzmann distribution as

3~E . VB! 5
2

Îp
~kT!23/2E

VB

`

exp@2E/kT#ÎE dE, (9)

the solution of which is given by the incompleteG function,

3~E . VB! 5
2

Îp
GS32, aD, a 5 VB/kT. (10)

Using the asymptotic expansion for the incompleteG func-
tion, Eq. 10 can be written as

3~E . VB!

5
2

Îp
exp~2a!ÎaS1 1

1

2a
2

1

4a2 1
1

8a3 2 · · ·D. (11)

From Eq. 11, one would predict that the conductance should
be attenuated by a factor of 16 when a barrier with a height
of 3 kTr is erected. In contrast, the conductance in our study
decreased from 118 pS to 26 pS, or by a factor of 4.5 (see
Fig. 5). This is because an ion attempting to surmount a
barrier, instead of disappearing after a single try, makes
repeated attempts. Coulomb repulsion of another ion ap-
proaching the neck region would also enhance the proba-
bility of transit, which is an entirely dynamic effect not
anticipated in Eq. 9. This illustrates the danger of applying
a static equation such as the Boltzmann equation to a
dynamic situation.

Current-voltage relationship

If the ionic concentrations on the two faces of the channel
are the same, the current-voltage relationship obtained from
patch-clamp recordings is, in general, ohmic. The current-
voltage relationship deduced from our simulations becomes
nonlinear whenever there is a potential barrier for the ions to
surmount to cross the channel (Fig. 10). This deviation from
Ohm’s law is more pronounced when the potential barrier is
large. Although the precise shape of the curve cannot be
deduced a priori, it is easy to see how such a curvature in the
current-voltage relationship would arise. The presence of a
barrier is less of an impediment when the driving force is
large. This intuitive observation suggests a modification of
Ohm’s law with the Po¨schl-Teller function

I 5
gV

1 1 b/cosh~eV/VB!
, (12)

whereg is the conductance,VB is the barrier height, andb
is a dimensionless constant. WheneV .. VB, the denomi-
nator goes to 1, and one recovers Ohm’s law. ForeV,, VB,
Eq. 12 is again linear, but with a conductance reduced to
gV/(1 1 b). The nonlinearities in theI-V curves become
apparent only wheneV . VB, which corresponds to the
regionV ' 100–200 mV for the above barriers.

806 Biophysical Journal Volume 75 August 1998



That there is a potential barrier in biological ion channels
has been inferred from the temperature dependence of chan-
nel conductance. The conductance-temperature curve ob-
tained from biological channels is always steeper than the
conductivity-temperature curve obtained in bulk electrolyte
solutions (see Kuyucak and Chung, 1994; Chung and Kuyu-
cak, 1995; Milburn et al., 1995). A steeper increase in the
channel conductance with temperature is expected if we
assume that there is an additional barrier presented to ions
entering the transmembrane segment. It is possible that
current-voltage relations obtained from biological channels
may deviate from straight lines, especially at large values of
the applied voltage. If such deviations do occur, fitting the
data points with Eq. 12 will provide an estimate of the
barrier height present in the channel.

When the ionic concentrations in the two sides of the
channel differ, it is difficult to predict theoretically how the
current will vary as a function of the applied potential, even
in the absence of any potential barrier in the channel. On a
macroscopic level, the driving force provided to ions with a
potential difference and that with a concentration gradient
are equivalent, being coupled by the Nernst-Planck equa-
tion, and concentration differences are often expressed as an
equivalent potential. By making a simplifying assumption
that the electric field across the channel is uniform, the
Nernst-Planck equation is integrated to obtain an explicit
expression for the magnitude of currents flowing across the
membrane as a function of the applied potential and the
ionic concentrations at the two faces of the membrane. This
is the Goldman equation. Although the field across the
channel is far from uniform, being grossly distorted by the
dielectric boundary (Kuyucak et al., 1998), the measured
data points are in reasonable agreement with the predicted
values from the Goldman equation (Fig. 11). The relative
slopes for the inward and outward currents, however,
change in a sensitive way when impermeant ions are placed
in the extracellular and intracellular media. When a barrier
is introduced in the channel, the shape of the current-voltage
relationship becomes further distorted. In a narrow range of
the applied voltage, for example, within6100 mV, one
could fit the data points with a straight line that intersects
the abscissa at the reversal potential predicted by the Nernst
equation. If the Goldman equation fails to describe current-
voltage relations obtained from real biological channels, the
discrepancy, we believe, arises from the presence of a
potential barrier in the conduit and impermeant ions, rather
than from the constant field assumption that had to be made
to integrate the Nernst-Planck equation.

Ions in the channel

We took ensemble averages of time averages of ionic con-
centrations in discrete layers of the model channel under
various conditions (Figs. 6–9). The main point emerging
from these results is that the channel for the most part is
devoid of ions. If the outermost layer bordering the reservoir

is excluded, each vestibule on average contains about one
sodium ion and one chloride ion when the ionic concentra-
tion in the surrounding medium is 300 mM. With no dipoles
on the channel wall and no applied electric field, the average
number of sodium ions in the channel is the same as the
average number of chloride ions in the channel. Thus the
time average of the total induced surface charges will be
zero, as is the net dielectric force experienced by the ions.
One may thus be tempted to conclude that the dielectric
force plays no role in electrolyte solutions, because induced
surface charges of one polarity are canceled by those of the
opposite polarity. In reality, however, single sodium ions
and chloride ions stumble into the vestibule at different
times; thus each experiences the full repulsive dielectric
force arising from induced surface charges. Even if a so-
dium ion is deliberately placed within 1 Debye length of a
chloride ion, its thermal energy is about twice as large as the
interaction energy of the ion pair (6.03 10221 J versus
2.73 10221 J), and one drifts away from the other within a
few picoseconds. Therefore, any conclusion derived from
theoretical calculations that do not take induced surface
charges into account is likely to be flawed.

Ions do not traverse the channel in the absence of dipoles
on the channel wall. When an electric potential of 100 mV
is applied across the channel, there is a small increase in the
average number of sodium ions in one vestibule and a
similar increase in chloride ions in the other vestibule (Fig.
7). The driving force provided to ions by the membrane
potential is not sufficient to overcome the repulsive dielec-
tric force. Only when dipoles of a favorable orientation are
placed on the sides of the transmembrane segment can an
ion traverse the channel under the influence of the mem-
brane potential. This raises an intriguing question about
whether opening or closing of biological ion channels needs
to be steric. Ion channels, in theory, can be gated electro-
statically by rotating an appropriate number of charge moi-
eties into and out of the protein lining.

Current-concentration curve

Experimentally it has been shown that the current first
increases with an increasing ionic concentration and then
saturates (Rae et al., 1988; Hille, 1992). Such a relationship
is expected to be found when the transport of ions across the
channel is determined by two independent processes, one of
which depends upon ion concentration and one that does
not. In our simulations, for example, the timet1 it takes for
an ion to arrive near the constricted segment is inversely
proportional to the electric field% and ionic concentration
[c], whereas the timet2 it takes for the ion to acquire a
sufficient kinetic energy to surmount the barrier placed near
the transmembrane segment and traverse the second half of
the channel is relatively independent of the ionic concen-
tration but dependent only on the electric field. Thus, as-
suming a uniform electric field, the transit times can be
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written as

t1 5
k1

@c#%
, t2 5

k2

%
, (13)

wherek1 andk2 are constants. The total timet it takes an ion
to traverse the channel ist 5 t1 1 t2, and the current
flowing across it will beI 5 nze, where the numbern of ions
carrying chargesze is 1/t. Thus the current is inversely
proportional to the total transit time, that is,

I }
ze

~t1 1 t2!
5

ze%

k1/@c# 1 k2
. (14)

For large concentrations, Eq. 14 approaches a maximum
value that we denote byImax 5 ze%/k2. Factoring outk2 and
introducingKs 5 k1/k2, Eq. 14 can be written in the form

I 5
Imax

1 1 Ks/@c#
. (15)

The form of this equation is identical to that of the Michae-
lis-Menten equation, which is derived under an entirely
different set of assumptions. The curves calculated from Eq.
15 fit the current-concentration relationships obtained from
our simulations reasonably well (see Fig. 12).

CONCLUDING REMARKS

Although the results of our simulations are generally in
accord with measurements made from patch-clamp record-
ing techniques, we need to make several refinements in our
model channel. First, conclusions drawn and inferences
made from electrostatics are not valid in regions that are
small compared to the diameter of water and ion molecules.
In the constricted region of the channel, where the radius is
;4 Å, water molecules are ordered (see, for example,
Sansom et al., 1996) and are not free to align with the
external field. To account for the processes of ion perme-
ation inside of this region, we have placed in this study a
potential barrier near the entrance of the transmembrane
segment. The height of this barrier could be determined
from molecular dynamics calculations. Furthermore, in this
narrow cylindrical segment, the mobility of ions is drasti-
cally reduced, as demonstrated by several molecular dy-
namics studies (Roux and Karplus, 1991b; Chiu et al.,
1993). Thus the values of the friction coefficient in the
transmembrane segment need to be different from those in
the vestibules. Second, in applying continuum electrostatics
to describe long-range interactions between particles, we
used the dielectric constant of bulk water. Confined in each
channel vestibule are;360 water molecules. Almost cer-
tainly the effective dielectric constant (and the diffusion
coefficient) of ions in such “vicinal” water will be lower
than those in bulk water. Again, they must be first deter-
mined from molecular dynamics calculations and then in-
corporated into the Brownian dynamics algorithm. Third, if
the dielectric constant in the vestibule is lower than 80, there

will be an additional energy barrier for an ion entering from
the reservoir to the vestibule, resulting from the change in
Born energy. After its height is determined, this barrier must
also be incorporated into the algorithm. Once these modi-
fications are made, there can be a fruitful interaction be-
tween experiment and theory, the former providing hints
and clues for further modifications of the model, and the
latter making new testable predictions.
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