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Abstract

The field of ion channels has entered into a rapid phase of development in the last few years, partly due to the breakthroughs in

determination of the crystal structures of membrane proteins and advances in computer simulations of biomolecules. These advances have

finally enabled the long-dreamed goal of relating function of a channel to its underlying molecular structure. Here we present simplified

accounts of the competing permeation theories and then discuss their application to the potassium, gramicidin A and calcium channels.
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1. Introduction

The measurement of ionic currents flowing through

single channels in cell membrane has been made possible

by the giga-seal patch-clamp technique [1,2]. A tight seal

between the rim of the electrode tip and the cell membrane

drastically reduces the leakage current and extraneous back-

ground noise, enabling the resolution of the discrete changes

in conductance, which occur when single channels open or

close. The technique has so far proved to be a powerful tool

for characterizing biologically important currents. Because

all electrical activities in the nervous system, including

communication between cells and the influence of hor-

mones and drugs on cell function, are regulated by mem-

brane ion channels, understanding their mechanisms at a

molecular level is a fundamental problem in neurobiology.

Moreover, elucidation of how single channels work will

ultimately help us find the causes of, and possibly cures for,

a number of neurological and muscular disorders.

Despite the wealth of information accumulated over the

past two decades, some of the outstanding questions about

how biological channels work remain unanswered. The first

among these questions is the detailed dynamical processes

underlying the permeation of ions across an open channel.

An ion in electrolyte solution does not move freely but drags

along a shell of water that is semipermanently bound to it.

To give an example, the electrostatic binding energy of a

water molecule in the first hydration shell of a sodium ion is

about 10� 19 J or 24 kT in room temperature units. This is a

huge energy compared to the average kinetic energy of ions.

To move across a narrow conduit, such as the selectivity

filter of the potassium channel, the ion-water geometry

needs to be rearranged, with partially dehydrated ions

interacting electrostatically with the charged residues on

the protein wall. Secondly, all biological ion channels are

selectively permeable to a specific ion. Channels generally

discriminate anions from cations; some channels select

sodium ions but reject potassium ions or vice versa. This

selectivity mechanism needs to be understood in terms of

the interactions of the permeating ions with the surrounding

water and protein molecules. Thirdly, what determines the

upper-limit in channel conductance? To be functionally

effective, a channel must process a large number of ions

but, at the same time, it has to be highly selective to specific

ionic species. It is a challenge to unravel the design that

most satisfactorily reconciles these conflicting requirements.

Fourthly, what kind of structural changes take place when a
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channel makes transitions from the closed conformation to

the open conformation? Whether the gating of biological ion

channels is steric or controlled electrostatically, such as by

rotating the orientations of a ring of dipoles guarding the

channel gate, remains to be elucidated. Finally, the tertiary

structures of all known ionic channels need to be deter-

mined. The solutions proposed for the unsolved questions

have to be consistent with the channel structure deduced by

protein chemists.

During the past several years, there have been enormous

strides in our understanding of the structure–function rela-

tionships in biological ion channels. This sudden advance

has been brought about by the combined efforts of exper-

imental and computational biophysicists, who together are

beginning to unravel the working principles of these exqui-

sitely designed biological macromolecules that regulate the

ionic gradients across the living membrane. In a recent

breakthrough, the molecular structures of the Streptomyces

lividans potassium channel, mechanosensitive channel and

chloride channel have been determined from crystallo-

graphic analyses [3–5]. It is expected that crystal structures

of other ion channels will follow these discoveries, ushering

us into a new era in ion channel studies, where predicting

the function of channels from their atomic structures will

become the main quest. Parallel to these landmark exper-

imental findings, there have been also important advances in

computational biophysics. As new analytical methods have

been developed and the available computational power

increased, theoretical models of ion permeation have

become increasingly sophisticated. Now it has become

possible to relate the atomic structure of an ion channel to

its function, through the fundamental laws of physics

operating in electrolyte solutions. Many aspects of macro-

scopic observable properties of ion channels are being

addressed by molecular and stochastic dynamics simula-

tions. Intuitive and hand-waving explanations of the per-

meation and selectivity of ions are beginning to be replaced

by quantitative statements based on rigorous physical laws.

Here we give an overview of recent advances in bio-

physics of ion channels, placing a special emphasis on

theoretical approaches that are currently under development.

Computational methods of solving complex biological

problems, such as permeation, selectivity and gating mech-

anisms in ion channels, will increasingly play prominent

roles as the speed of computers increases. Our aim in this

article is to provide some understanding of various methods

that have been proposed for treating time-dependent, non-

equilibrium processes that underlie the flow of currents

across biological ion channels. The tools of physics that

are employed in this endeavor, from fundamental to phe-

nomenological, are ab initio and classical molecular dynam-

ics (MD), stochastic dynamics and continuum theories. In

MD simulations, trajectories of all the atoms in a system are

followed using Newton’s equation of motion. In ab initio

MD, the interaction between the atoms are determined from

first principles electronic structure calculations. As there are

no free parameters in this approach, it presents the ultimate

approach to modeling of biomolecular systems. But because

of the extremely demanding nature of computations, its

applications are limited to very small systems at present.

In classical MD, simulations are carried out using empiri-

cally determined pairwise interaction potentials between the

atoms. While it is possible to model an entire ion channel in

this way, it is not feasible to simulate the system long

enough to see permeation of ions across a model channel

and to determine its conductance, which is the most impor-

tant channel property. For that purpose, one has to go further

down to stochastic dynamics, where water molecules that

form the bulk of the system in ion channels are integrated

out and only the ions themselves are explicitly simulated.

The continuum electrodiffusion theory of Poisson–Nernst–

Planck (PNP) equations makes one further simplification

known as the mean-field approximation. Here, ions are

treated not as discrete entities but as continuous charge

densities that represent the space-time average of the micro-

scopic motion of ions. In PNP, the flux of an ionic species is

described by the Nernst–Planck equation that combines

Ohm’s law with Fick’s law of diffusion, and the potential

at each position is determined from the solution of Poisson’s

equation using the total charge density (ions plus fixed

charges). The PNP theory thus incorporates the channel

structure and its solution yields the potential, concentration

and flux of ions in the system in a self-consistent manner.

There is one other approach that has been fruitfully

employed to model biological ion channels, namely, the

reaction rate theory [6]. In this approach, an ion channel is

represented by a series of ion binding sites separated by

barriers, and ions are assumed to hop from one biding site to

another, the probability of each hop determined by the

height of the energy barrier. Many useful insights have been

gleaned in the past about the mechanisms of ion permeation

using this approach. The merits and demerits of this theory

have been debated extensively in the literature [7–12] to

which the interested reader is referred to. We will not

discuss the rate theories further in this article because the

model parameters have no direct physical relation to the

channel structure whereas our focus is on the structure–

function relationships.

This review article is primarily devoted to the three

computational approaches—molecular dynamics, stochastic

dynamics and continuum theories—to unravel the inner

workings of biomolecules. We give intuitive explanations

of the physics underlying each of the methods, referring

mathematical details to more comprehensive publications.

We discuss the merits and shortcomings of each computa-

tional approach. Detailed accounts of recent experimental

findings on ion channels are not given here; the reader is

referred to the latest edition of Hille [6], which provides an

excellent source of information in this regard.

The paper is organized as follows. We first describe the

principles underlying the continuum theories, stochastic

dynamics, and molecular dynamics, stressing the strengths
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and weaknesses of each approach. We then discuss briefly

how these computational tools have been applied in study-

ing selectivity and permeation of ions in biological chan-

nels. We do not attempt to give an exhaustive review of the

literature, which is given elsewhere [7,8,13–18]. Instead,

we discuss a few selected examples to illustrate how the

theories are applied in modeling of ion channels. We

conclude the paper by highlighting future directions for

research and identifying the problems in different ap-

proaches that need to be resolved.

2. Theoretical tools for studying ion channels

2.1. Continuum theories

2.1.1. Ohm’s and Fick’s laws and Nernst–Planck equation

The flow of ions across a channel is controlled by the

potential and concentration differences on the two sides of the

cell membrane. The potential difference creates an electric

field across the channel, which drives cations in the direction

of the field and anions in the opposite direction. The relation-

ship between the current density and the potential gradient (or

the electric field) is expressed by Ohm’s law

J ¼ �gju ¼ gE; ð1Þ

where g is the conductivity of the electrolyte solution whose

values are determined from experiments under various con-

ditions. To make contact with the more familiar expression

I =GV, where I is the channel current, V is the membrane

potential, and G is the channel conductance, we consider a

cylindrical channel with radius r and length L. Assuming a

uniform current density and electric field across the channel,

we have J= I/p r2 and E =V/L. Substituting these values in

Eq. (1) yields Ohm’s law with the conductance given by

G ¼ pr2g=L: ð2Þ

A similar line of analysis can be carried out for channels with

more complicated geometries, such as biconical or catenary

shape [19].

The physical basis of Ohm’s law can be easily under-

stood in terms of the microscopic motion of ions in water.

Ions in an electrolyte solution incessantly collide with the

surrounding water molecules and as a result execute a

random Brownian motion with an average collision time

s. When an electric field E is applied, an ion with mass m

and carrying a unit charge e accelerates, on average, for time

s, gaining a drift velocity, vd=(eE/m)s. Ohm’s law follows

when this drift velocity is substituted in the definition of the

current density

J ¼ nevd ¼
ne2s
m

E; ð3Þ

where n is the number density of the ions, which is related to

the concentration c (in mol/l) by n = 1000 NAc where NA is

Avogadro’s number. Eq. (3) also provides a microscopic

expression for the conductivity in terms of the properties of

the ion, g = n e2s/m. This simple expression works in gases

but not in electrolyte solutions where the correlation of

water molecules with the ions must be taken into account in

order to obtain sensible results. This can be done most

simply using the solvent model where the hydration waters

are considered as permanent fixtures around the ion. As a

result, the ion acquires an effective mass and radius, which

are significantly larger than their bare values. Using the fact

that the average collision time s is the mean free path

divided by the average speed, one can derive a phenom-

enological expression for the conductivity in terms of the

effective mass and radius of the ion [19].

Ohm’s law, simple as it may be, can provide us with

useful insights about the permeation mechanisms across a

transmembrane pore. As an example, we consider the

gramicidin A channel, a cylindrical pore whose radius r

and length L are approximately 2 and 25 Å, respectively.

The experimentally determined conductivity of 150 mM K+

ions is g = 8.4� 10� 3 S/cm in the conventional units of

Siemens (S) for conductance. Substituting these values in

Eq. (2), we obtain G = 42 pS. For an applied potential of 200

mV, the current across the pore is then expected to be 8.4

pA. This is about three times larger than the current

measured experimentally in gramicidin A (Andersen, per-

sonal communication). This example illustrates that ion

permeation across channels is not just a passive process as

envisioned in Ohm’s law—ions moving from one side of the

membrane to the other under a uniform driving field,

confined by the channel walls but not interacting with them.

In fact, ions do interact with the fixed and induced surface

charges on the channel walls that creates energy wells and

barriers along the permeation path, the net effect of which is

to attenuate the current from that of a purely passive pore.

Thus, a correct calculation of the ion-channel interactions is

of utmost importance in order to obtain reliable results from

a permeation model.

Fick’s law provides a similar relationship between the

flux of ions and the concentration gradient across a channel

Jn ¼ �Djn; ð4Þ

where D is the diffusion coefficient of ions. Here the

subscript n denotes number flux which is related to the

current density by J = eJn. As shown by Einstein in 1905,

the underlying physics is the same as in Ohm’s law, namely,

the Brownian motion of ions. In equilibrium conditions, the

average positions of ions do not change but their root mean

square distance from the initial positions grow with time as

hr2i= 6Dt due to the fluctuations. In the case of ion

channels, when one side of the membrane has a higher

concentration than the other (n1>n2), ions will flow to the

other side with a flux, Jn=D(n1� n2)/L, where L is the

channel length. The above remarks about the channel not

being a passive conduit for ions equally apply to such
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simple applications of Fick’s law, that is, ion-channel

interactions will lead to a reduction in the flux obtained

by assuming a passive pore.

In general, there could be both a potential and a concen-

tration gradient driving the ions across an ion channel. This

situation is described by the Nernst–Planck equation that

combines Ohm’s and Fick’s laws

Jn ¼ �Djn� g

e
ju ¼ �D jnþ ne

kT
ju

� �
: ð5Þ

In writing this expression, we have made use of the Einstein

relation, g = ne2D/kT, which relates the conductivity to the

diffusion coefficient. Because the potential in an ion channel

depends on the ion concentrations there, use of the Nernst–

Planck equation with a predetermined or assumed potential

is problematic. To avoid the question of self-consistency,

one has to include contribution of the ions to the potential,

which we discuss below. While the Nernst–Planck equation

is primarily used to describe current flow, in the special case

of a vanishing current, it makes an important statement

about the electrochemical equilibrium in cells. Using Jn = 0

in Eq. (5) and integrating once, we obtain the celebrated

Nernst equation

u1 � u2 ¼ � kT

e
lnðn1 � n2Þ ¼ �59 log

c1

c2
ðmV Þ; ð6Þ

that gives the potential difference required to maintain the

equilibrium when the concentrations are different on the two

faces of the membrane. The numerical factor in Eq. (6) is

obtained using T= 298 K. In practice, the Nernst equation is

often used to estimate the membrane potential generated by

asymmetric solutions in cells.

2.1.2. PNP equations

When ions move across narrow channels, they interact

with the charge groups on the protein walls, and the electric

potential at any given position changes due to their motion.

To account for these effects, the potential on the right-hand

side of Eq. (5) has to be calculated from Poisson’s equation

e0j:ðejuÞ ¼ �ðqel þ qexÞ; ð7Þ

using the charge density due to both the mobile ions in the

electrolyte, qel, and other external sources such as fixed

charges in the protein, qex. Here e is the dielectric constant

that has different values in water and protein. Once the

appropriate boundary conditions are imposed at the water–

protein interface, solution of Eq. (7) automatically takes into

account the effects of ‘‘induced surface charges’’ (discussed

in the following section). In the PNP theory, as the name

implies, Poisson’s equation is coupled to the Nernst–Planck

equation, and the two equations are solved simultaneously,

yielding the potential, concentration and flux of ions in the

system. The two coupled equations are notoriously difficult

to solve analytically, except for a few special cases (see

Refs. [20,21] for a discussion of the analytical treatment of

the PNP equations). With the advent of high-speed com-

puters, the PNP equations can be readily solved numerically,

enabling us to compute the current across ion channels. PNP

is perhaps the simplest form of a nonequilibrium theory that

takes into account the shape of the channel, the magnitude

and location of charge residues in the channel protein,

applied electric field and asymmetrical ionic concentrations

in the two sides of the channel.

To calculate the current across a channel, it is placed in a

simulation system, and a reservoir with a fixed number of

ions is attached at each end of the channel. The simulation

system is then divided into small rectangular grids, and the

PNP equations are solved at grid points using a finite

difference algorithm [22,23]. The grid size has to be

optimized for an efficient running of the PNP program. A

smaller grid size improves accuracy of the results but also

takes a much longer computational time. The required

inputs for the algorithm are: (i) the channel shape, (ii) the

dimensions of the reservoirs and ionic concentrations in

each reservoir, (iii) the dielectric constant of the protein and

the solution, (iv) the locations and strengths of charges on

the channel wall, (v) the membrane potential, and (vi) the

diffusion coefficients of cations and anions. Once these

parameters are specified, the solutions of the PNP equations

give the concentration and potential throughout the system

as well as the ionic currents through the channel.

2.1.3. Debye screening

To understand the range of validity of the PNP theory,

and where and how it fails, we investigate the behavior of

the two coupled equations more closely. Consider the

potential at some point in a 1:1 electrolyte solution. The

number densities of the positive and negative ions n+ and n�
at that point are given by the Boltzmann distribution:

nþ ¼ n0exp½�eu=kT 
; n� ¼ n0exp½eu=kT 
; ð8Þ

where n0 is the average number density of ions in the

solution. If u is positive, there will be more anions, whereas

if u is negative, there will be more cations. The charge

density in the electrolyte is the amount of excess positive or

negative ions multiplied by charge per ion:

qel ¼ eðnþ � n�Þ ¼ �2n0esinhðeu=kTÞ: ð9Þ

Expanding the sinh term in Eq. (9) and substituting only the

leading term in u in Poisson’s Eq. (7), we obtain

j2u ¼ j2u; ð10Þ

where j� 1 is the Debye screening length given by

j�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
e0ekT
2e2n0

s
: ð11Þ

At room temperature (T= 298 K) and in water (e= 80), the
Debye length is related to the concentration as j�1 ¼ 3:07/
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ffiffiffiffiffi
c0

p
Å, where c0 is in M. Thus, for c0 = 0.15, 0.5 and 1 M,

the Debye lengths are, respectively, 7.9, 4.3 and 3.1 Å. The

solution of Eq. (10) for a central test ion, also known as the

Debye–Hückel theory [24], gives a clear physical picture of

the behavior of ions in electrolyte solutions. When a cation

is located at a fixed point, the density of anions around it

increases, peaking at 1 Debye length or r = j� 1, and then

decays exponentially to the background number density.

The Coulomb potential due to this test ion is shielded or

screened by the excess of anions in the vicinity. The amount

of screening of this potential rises monotonically, reaching

25% at 1 Debye length and 80% at 3 Debye lengths. Thus,

for c0 = 150 mM, length scales of about 30 Å are required

for nearly complete screening of the Coulomb potential (or

charge) of an ion.

2.1.4. Induced surface charges

The relevance of the Debye shielding arises from the fact

that an ion near the protein induces surfaces charges of the

same polarity on the protein–water interface. When a cation

in an electrolyte solution is placed near a slab of protein,

water molecules near the ion align themselves such that the

oxygen atoms, with their partial negative charges, are

positioned nearest to the ion. Because polar or carbonyl

groups on the protein wall cannot rotate as freely as water

molecules, there will be excesses of hydrogen atoms at the

water–protein interface. Viewed from the ion, these excess

hydrogen atoms at the boundary appear as surface charges,

exerting a repulsive force on it. Macroscopically, we say that

a charge q located at a distance d from a slab of protein

surface induces surface charges on the dielectric boundary.

For an idealized infinite plane, the magnitude of the repul-

sive force this ion experiences is the same as when we place

another charge qV, at the other side, at a distance d from the

surface, and remove the boundary. The magnitude of this

image charge qVis related to the relative permittivities of the

protein (ep = 2) and water (ew = 80), given by

qV ¼ ew � ep
ew þ ep

q: ð12Þ

As the ion comes nearer to the boundary, the repulsive

image force it experiences grows as d2. A similar repulsive

force acts on an ion that is about to enter an ion channel.

Only, the force is more than an order of magnitude larger in

this case because the dielectric boundary is now wrapped

around the ion, enhancing the effect. Thus, an ion entering a

pore formed by membrane proteins encounters an energy

barrier due to the induced surface charges, the height of

which increases rapidly with decreasing radius of the pore.

This energy barrier, sometimes called self-energy or reaction

field, plays an important role in determining permeation

properties of ions across a narrow pore. For example,

saturation of conductance cannot be explained if one ignores

the self-energy barrier of ions. One shortcoming of the PNP

theory is in its failure to correctly calculate the magnitude of

the induced surface charges and the resulting self-energy

barriers.

2.1.5. Validity of the PNP theory

If the dimensions of the system one is dealing with is

much larger than the Debye length, the PNP will give

accurate results. As an example, consider ion diffusion

across a cylindrical channel whose radius is 30 Å. The

charge of an ion near the central axis of the pore will be

completely screened by the counterions, so that there will be

no induced surface charges on the water–protein boundary

due to this ion. Thus, no self-energy barriers will be

encountered by the permeating ions. In this situation, the

PNP theory will correctly predict the current across the pore

under various driving forces. Now, let us consider a similar

cylindrical channel with a radius of 3 Å, spanning a 30-Å-

thick membrane, whose volume is f 103 Å3. At physio-

logical concentrations, an anion or a cation is expected to be

in this pore only 10% of the time on average. As an ion

enters the pore, it induces surface charges of the same

polarity, which exert a repulsive force on it, pushing it

out. Normally, there are no counterions in the pore to screen

its charge and hence cancel the repulsive force. In the PNP

theory, the simulation system is divided into small cubic

cells with a volume, say, 1 Å3, each of which contains 10� 4

of a cation and an equal fraction of an anion. The effect of

the fractional charge in each grid on the protein wall is

completely screened by the equal and opposite fractional

charge present in it. These fractional charges diffuse across

the pore, one cubic grid to the other, under the influence of

the membrane potential, unencumbered by any induced

surface charges on the protein boundary. In short, the

ion–protein interaction, which is the dominant force in the

process of ion permeation across a narrow pore, is com-

pletely ignored in the PNP theory.

Detailed studies comparing PNP with Brownian dynam-

ics [23] and lattice Monte Carlo simulations [25] have

revealed that the PNP theory can be reliably applied to

study the permeation process across pores whose radius is

about 2 Debye lengths (or 16 Å for a 150 mM solution). The

magnitude of errors increases rapidly as the radius of the

pore becomes smaller. Thus, application of PNP to bio-

logical ion channels, which have radii much smaller than 2

Debye lengths, is not justified. A second problem in this

respect is how to treat the ion–ion interactions in PNP,

which are known to play an important role in multi-ion

channels such as potassium and calcium. These problems

need to be resolved satisfactorily before PNP can be used to

study the structure–function relations in ion channels.

2.2. Stochastic dynamics

2.2.1. Langevin equation

There are several tools in statistical mechanics that treat

the dynamics of nonequilibrium systems, the most widely

known is perhaps the theory of Brownian motion. The
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behavior of an ion in an electrolyte solution undergoing a

random type of motion can be described by the dynamical

equation of motion in classical mechanics, known as the

Langevin equation. The simplest form of stochastic dynam-

ics, which deals with many-particle systems such as liquids

and solutions, is Brownian dynamics. Brownian motion is

triggered by the presence of a background noise or fluctua-

tions and the energy gained by a Brownian particle is

dissipated in the medium.

When an impulsive force is imparted on a macroscopic

particle with mass m in a fluid medium, its subsequent

motion is given by Newton’s equation of motion

m
dv

dt
¼ �mcv; ð13Þ

where c is the friction coefficient, which is roughly propor-

tional to the viscosity of the medium and the radius of the

particle. The integral of Eq. (13) is simply given by v = v0
exp(� ct). Thus, the velocity of the particle exponentially

decays to zero due to the frictional force. In other words, the

energy of the particle is dissipated to the surrounding

molecules in the fluid. For an ion in water, however, the

situation is different because it has a similar mass as water

molecules. The mean squared velocity of the ion in thermal

equilibrium does not decay but remains at 3 kT/m (where k

and T are the Boltzmann constant and temperature in

Kelvin). This background motion of the ion is brought

about by random forces, caused by incessant collisions with

the surrounding molecules. Thus, a random or fluctuation

force FR needs to be added to the right-hand side of Eq. (13)

to account for the motion of an ion performing Brownian

motion

m
dv

dt
¼ �mcvþ FR: ð14Þ

Eq. (14), known as the Langevin equation, is the funda-

mental equation that describes the random motion of ions in

an electrolyte solution. Both the dissipative and fluctuating

forces stem from the same underlying mechanisms, namely,

the random bombardment of ions by water molecules in

thermal motion, and their interrelationship is described by

the fluctuation–dissipation theorem of statistical mechanics

[26].

The above description of the Langevin equation applies

to ions freely diffusing in water. For ions in the vicinity of a

channel, there is an additional, systematic force that influ-

ences their motion, namely, the electric force. It originates

from four different sources. First, there is the electric field

resulting from the membrane potential. Secondly, there are

fixed charges in the channel protein and the electric field

emanating from them will add to the field generated by the

membrane potential. Thirdly, charges carried by all the ions

in electrolyte solution contribute to the total electric field.

Finally, whenever any of these ions comes near the protein

wall, it induces surface charges of the same polarity at the

water–protein interface. This last component of the force

exerted on an ion plays a crucial role in influencing the

motion of an ion attempting to traverse across a narrow pore

formed by the protein wall. Each of these four components

of the electric force acting on an ion needs to be computed,

summed and added as a third term to the right-hand side of

Eq. (14).

2.2.2. BD simulations in ion channels

To carry out Brownian dynamics simulations of ion

channels, one needs to specify the boundaries of the system.

This is a relatively simple problem for one-dimensional BD

simulations [13,27,28], but requires addition of reservoirs to

the channel system in the more realistic case of three-

dimensional BD simulations. Here we describe a simple

stochastic boundary that has been used successfully in

applications of BD to a number of ion channels [29–33].

Large reservoirs with a fixed number of K+ (or Na+) and

Cl� ions are attached at each end of the channel. The

membrane potential is imposed by applying a uniform

electric field across the channel. This is equivalent to

placing a pair of plates far away from the channel and

applying a potential difference between the two plates.

Assuming that the space between the electrodes are filled

with electrolyte solutions, the potential drop occurs mainly

across the channel. When an ion strikes the reservoir

boundary during simulations, it is elastically scattered back

into the reservoir. This operation is equivalent to letting an

ion enter the reservoir whenever one leaves the simulation

system. Thus, the concentrations of ions in the reservoirs are

maintained at the desired values at all times. During

simulations of current measurements, the chosen concen-

tration values in the reservoirs are maintained by recycling

ions from one side to the other whenever there is an

imbalance due to a conduction event. This process mimics

the current flow through a closed circuit.

The number of ions that must be placed in each reservoir

for a chosen concentration depends on the size of the

reservoir. Because the computational cost is directly propor-

tional to the number of ions in the simulation system, it is

desirable to have a small reservoir. At the same time, it must

be large enough such that the ions in the system are in

conditions similar to those in bulk electrolyte solutions. For

example, the number of ions near the entrance of the pore

should fluctuate according to the binomial distribution. To

meet these requirements, an elaborate treatment of bounda-

ries using a grand canonical Monte Carlo method was

proposed [35]. Elsewhere it was shown that [36], provided

the dimensions of the reservoirs are about 3–4 Debye

lengths, the simple stochastic boundary as described above

gives the same results as the more sophisticated method

proposed in Ref. [35].

In BD simulations, the Langevin equation is solved

repeatedly to trace the trajectory of every ion in the

assembly. Snapshots of the simulation system are taken at

short time intervals for millions of time steps. At each time
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step, the Langevin equation is integrated to obtain the

velocity of each ion to determine to which position the

ion will move in the next time step. The new coordinates of

all ions in the assembly are deduced, and the calculation is

repeated. By repeating this process for a sufficiently long

period of time, usually many microseconds, one can deduce

how many ions move across the channel in a fixed period of

simulation time. Because of the random and frictional

forces, the methods for integrating Eq. (14) is complicated,

and the reader is referred to Ref. [18] for details.

The choice of the time step is very important for the

reliability of BD simulations. If the time step is chosen too

short, the number of times the Langevin equation needs to

be solved for a given simulation time increases. On the other

hand, the accuracy is compromised if the time step is too

long, although the computational cost is reduced. To under-

stand how a particle undergoing Brownian motion behaves,

we integrate Eq. (14) twice to obtain the expression for the

mean square displacement [18]

hx2i ¼ 2kT

mc
½t � c�1ð1� expð�ctÞ
: ð15Þ

Here c� 1 is the relaxation time constant, which corresponds

to the time required for a particle that is suddenly displaced

to relax back to the original equilibrium position. For K+

and Cl�, c� 1 is about 30 fs. If we look at a potassium ion

once every hundred of fs, (t is much larger than c� 1), its

mean square displacement becomes proportional to t

hx2i ¼ 2kT

mc
t: ð16Þ

In other words, the ion behaves like a diffusing particle

executing a random walk. In contrast, if we examine the

same ion at short time intervals, say a few fs (t is much

smaller than c� 1), the mean-square displacement is

hx2i ¼ kT

m
t2: ð17Þ

That is, the ion in a short initial time interval behaves like a

free particle moving with the constant thermal velocity of

(kT/m)1/2.

In implementing the BD algorithm for ion channels, we

need to consider the behavior of ions in these short and long

time intervals. When the force experienced by an ion is

changing rapidly, as it is when the channel geometry under-

goes sudden changes, it is desirable to use a short time step

of 1–2 fs. On the other hand, a long time up to 100 fs can be

used in the reservoirs with no loss of accuracy. In the

algorithm of Chung et al. [31], a short time step of 2 fs is

used when an ion is in the channel region where the force is

expected to change rapidly, and a long time step of 100 fs is

used when an ion is elsewhere. If an ion is in the channel at

the beginning of a 100-fs period, it is simulated by 50 short

time steps instead of one long time step; so synchronization

among the ions is maintained. One can simplify the algo-

rithm by omitting the inertial term m[dv/dt] from Eq. (14),

and take time steps larger than the relaxation time constant.

Because of its simplicity, this form is sometimes used in the

literature [35]. Its applicability to ion channels, however, is

limited because the rapidly changing forces inside a channel

demand use of short time steps.

2.2.3. Validation of the BD algorithm

The behavior of the interacting ions deduced from the

BD simulations accords with the physical reality. Fig. 1

shows the mean square displacement hx2i, the velocity

distribution, and the velocity autocorrelation function hv(0)
v(s)i obtained from one simulation lasting 500,000 time

steps. Theoretically, hx2i should be a linear function of time

as given in Eq. (16). The measured slopes for Na+ and Cl�

shown in Fig. 1A (solid lines) are about 7% lower than the

predicted values for a bulk solution, which is due to ions

scattering back from the boundary, retarding their free

diffusion. The velocity distributions of Na+ and Cl� in the

system are shown in Fig. 1B. From the equipartition

theorem, these distributions should be Maxwellian. The

measured distributions (circles) match closely those com-

puted from the theoretical distribution (solid lines). Theo-

retically, the velocity autocorrelation function should be of

the form:

hvð0ÞvðsÞi ¼ kT

m
expð�cAsAÞ: ð18Þ

Thus, regardless of the initial velocity, the successive

velocities will be correlated over a time interval on the

order of c� 1, the relaxation time constant of the ion. The

measured functions (circles) shown in Fig. 1C decay expo-

nentially, as predicted from Eq. (18) (solid lines). Thus, we

conclude that BD simulations can faithfully characterize the

motion of ions in a solution confined to a small reservoir.

2.2.4. Uses of BD in ion channels

The ability to compute current flow across ion channels

confers a distinct advantage to BD simulations compared to

other simulation techniques. Thus, two obvious applications

of BD in ion channels are the calculation of the current–

voltage and conductance–concentration curves, which can

be directly compared to the physiological measurements to

assess the reliability and predictive power of the method. By

simulating mixture of ions, one can also study selectivity

ratios of ions. Since ions with the same valence are treated

on an equal footing in BD, this can be used in a straightfor-

ward manner only in studies of valence selectivity. For

monovalent ions, one has to supplement the potential

profiles of ions with free-energy differences obtained from

MD simulations.

In addition to simple counting of ions crossing the

channel, one can carry out a trajectory analysis of ions in

the system to determine their average concentrations. This is

useful in finding the binding sites and the average number of
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ions in the channel, both of which are experimentally

observable quantities. Blocking of channels by larger mol-

ecules or divalent ions can be studied in a similar manner in

BD. A prime example is the mole fraction effect, where

increasing concentration of one type of ions leads to a

reduction in the conductance of another. More refined

analysis of BD trajectories can reveal the important tran-

sitions that take place during conduction events. This would

be very important in interpreting the BD simulation results

in terms of the rate theories. Alternatively, one can animate

the trajectories of ions obtained from the BD simulations

and directly watch the permeation of ions in real space time.

This aspect of BD simulations will be discussed in the

applications section below in more detail.

2.2.5. Limitations of BD

Ultimately, BD is a phenomenological theory with a

number of assumptions and parameters that must be vali-

dated or derived from a more fundamental theory, such as

MD. Treatment of water in a narrow pore as continuum is

presumably the most drastic simplifying assumption of the

BD method. The two basic parameters in BD simulations,

namely, the dielectric constant of channel water and the

diffusion coefficient of ions will certainly differ from their

bulk values because of this confinement. Perhaps a more

crucial issue is whether such a continuum approximation

can be justified or not. MD studies of water confined in

narrow pores have shown that the boundary imposes an

order on the water molecules reducing their polarizability

significantly [37–40]. On the basis of such studies, it has

been argued that one should use very low values of e for

channel waters. However, such deductions for pure water

are not quite relevant for ions because, from an ion’s point

of view, the role of the dielectric constant is simply to

reduce its field by 1/e. So in choosing an effective e value

for channel waters, one has to address whether and by how

much does the screening of an ion’s field is reduced in a

channel compared to the bulk environment. Dielectric

screening is described by the first hydration shell in the

Born model, which gives a successful account of the

solvation energies of ions. Recent MD free energy calcu-

lations of solvation energies and solvent charge distribution

around an ion have provided further microscopic support for

the primacy of the first hydration shell [16]. Because the

electric field of an ion in its first hydration shell is much

stronger compared to any other source, one expects it to

dominate the solvation dynamics regardless of whether the

ion is in bulk or in a channel environment. Thus, as long as

the first hydration shell of ions remains intact in a channel,

use of continuum electrostatics with an e closer to the bulk

value may be justified. This criterion is generally satisfied in

biological ion channels, including the narrow selectivity

filter regions where protein atoms substitute for water

completing the solvation shell. A rigorous justification of

these ideas and extraction of effective e values from MD

simulations remain as future problems.

Another limitation of BD is the treatment of the water–

protein interface as a rigid boundary. Proteins forming

channels are certainly not static, but whether their motion

Fig. 1. Validation of the BD algorithm. Results of the BD simulations are

indicated by o for chloride ions and . for sodium ions. (A) Comparison of

the mean-square displacements of ions with the diffusion formula,

hx2i = 2Dt (solid line). (B) Comparison of the velocity distributions of ions

with the Maxwellian distribution (solid line). (C) Comparison of velocity

autocorrelation functions of ions with Eq. (18).
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or flexibility plays an important role in ion permeation is not

known. Since large conformational changes of proteins is a

much slower process than ion permeation, such motions are

not likely to be relevant. Local motions such as flipping of a

side-chain are much faster and may play a role in ion

permeation. This problem needs to be explored both exper-

imentally and from MD simulations. If found to be impor-

tant, such motions of the protein need to be incorporated in

BD modeling of ion channels.

Finally, as pointed out above, size-dependent selectivity

among ions with the same valence cannot be understood

within the BD framework, and one has to appeal to MD

simulations for that purpose.

2.3. Molecular dynamics

Use of MD in modeling of biomolecular systems has

been growing continuously since the early eighties. Despite

the complexity of performing MD simulations, availability

of several user-friendly packages such as AMBER [41],

CHARMM [42] and GROMOS [43] have made the MD method

accessible to any researcher with a modest workstation. The

increasing applications of MD in biology have raised the

hopes that one can eventually study the biological processes

at a microscopic level and relate the function of a protein

complex to its underlying molecular structure. The resulting

proliferation has also its downside as there are many

difficult issues involved in ensuring the reality of results

of an MD simulation [44]. Applications of MD to ion

channels provide a case in point as will be discussed at

some length below.

2.3.1. General formalism

In MD simulations, one follows the trajectories of N par-

ticles interacting via a many-body potential U(r1, r2, . . . ,rN)
using Newton’s equation of motion:

mi

d2ri

dt2
¼ Fi; ð19Þ

where mi and ri denote the mass and position of the ith

particle, and the force on it is given by the gradient of the

potential U. Because all the atoms in the system (including

water molecules) are represented explicitly in MD, there are

no frictional or random forces to deal with as in BD. This

makes the integration of Eq. (19) rather trivial. Given the

positions and velocities of the particles at time t, at a later

time t+Dt they are updated to

riðt þ DtÞ ¼ riðtÞ þ viðtÞDt þ
FiðtÞ
2mi

Dt2;

viðt þ DtÞ ¼ viðtÞ þ
FiðtÞ
mi

Dt: ð20Þ

In most MD programs, alternative forms of solutions are

employed for convenience. For example, in the popular

Verlet algorithm, the velocity term is eliminated from Eq.

(20) by adding ri(t�Dt) to ri (t +Dt), which yields

riðt þ DtÞ ¼ 2riðtÞ � riðt � DtÞ þ FiðtÞ
mi

Dt2: ð21Þ

Another widely used form is the leap-frog algorithm, where

velocities are calculated at half intervals

riðt þ DtÞ ¼ riðtÞ þ viðt þ Dt=2ÞDt;

viðt þ Dt=2Þ ¼ viðt � Dt=2Þ þ FiðtÞ
mi

Dt: ð22Þ

The two forms are, in fact, equivalent as can be verified by

substituting velocity in position in Eq. (22), and eliminating

vi (t�Dt/2) using the corresponding expression for ri (t). At

every time step, the potential function is recalculated using

the new positions of the particles, and this process is iterated

for a number steps until a statistically satisfactory data set is

generated. The trajectory data thus generated are stored at

certain intervals, which are analyzed later to determine the

structural and dynamical properties of a system. Quantities

such as free energy, mean-square displacement, radial dis-

tribution and other correlation functions are calculated from

an ensemble average of several simulations.

The integration of the equation of motion is about the

only simple aspect of MD compared to BD—everything

else from the force fields and the boundary conditions

employed to the analysis and interpretation of results are

more involved. A major reason for this complexity is the

long-range Coulomb interaction between the charged par-

ticles that normally comprises almost all the atoms in a

biomolecular system. Here we briefly review those aspects

of MD relevant to simulation of ion channels. For more

details, the reader is referred to several textbooks on the

subject [45–47].

2.3.2. Force fields

Since the force fields (or potential functions) are the

crucial inputs in MD simulations, their correct choice is

essential for a realistic simulation of a biomolecular system

(see Ref. [48] for a recent review). If the atoms in a system

could be represented as charged balls, they would simply

interact via the Coulomb potential

UCoul ¼
1

4pe0

qiqj

Ari � rjA
: ð23Þ

For two elementary charges, this potential energy amounts

to 560/r kT when the distance r is taken in Å. In order to

prevent atoms from overlapping, the Coulomb potential is

usually supplemented with a hardwall potential. Unfortu-

nately, the electrons around atoms are not inert but move

S.-H. Chung, S. Kuyucak / Biochimica et Biophysica Acta 1565 (2002) 267–286 275



according to the quantum mechanical laws, which modify

this simple classical picture in subtle ways. Incorporation of

the effects of electrons in classical MD simulations has been

an ongoing concern since the inception of the method in the

1960s. Electronic contributions to the intermolecular inter-

action can be divided into three groups: polarization, attrac-

tive dispersion (or van der Waals) and short-range repulsion.

The first term refers to the shift in the position of the

electron cloud with respect to the nucleus when an atom is

placed in an electric field. An exact description of polar-

ization requires the solution of the Schrödinger equation for

an atom in an electric field. Nevertheless, polarization can

also be described using a simple classical picture where

electrons move in a harmonic potential, provided the polar-

izability parameter a is taken from experiments. To leading

order, an applied electric field E induces a dipole moment

dp in an atom, given by

dp ¼ aE: ð24Þ

Higher order polarizabilities (e.g. quadrupole) are much

smaller and usually neglected in simulation work. This

induced dipole, in turn, creates an electric field of its own

EpolðrÞ ¼
1

4pe0

1

r5
½3ðdp � rÞr � r2dp
; ð25Þ

which further polarizes the surrounding atoms. Thus, polar-

ization interaction is a many-body effect that needs to be

taken into account self-consistently via iteration of the

polarization and dipole field equations. Once a consistent

set of induced dipole moments are determined for all the

atoms in the system, the polarization contribution to the

energy is given by

Upol ¼ � 1

2

X
i

aiEi � E
ð0Þ
i ; ð26Þ

where Ei denotes the total electric field at the site i and Ei
(0)

is the field excluding the contributions of the induced

dipoles, which correspond to the final and initial values of

the field in the iteration process. Because this procedure is

quite costly computationally, in most force field parametri-

zations, polarization effects are incorporated implicitly by

invoking a mean field approximation. That is, an average

induced dipole term is added on top of the monomer value

so as to reproduce the bulk properties of a system. To give

an example, the dipole moment of water is taken as f 2.3

D in popular water models such as SPC [49] and TIP3P [50],

which is substantially larger than the experimental value of

1.85 D.

The second term, dispersion forces, arise from quantum

fluctuations that leads to correlations between the electrons

of two atoms. Virtual excitations of electrons in one atom

generate a spontaneous dipole moment that polarizes the

neighboring atoms yielding an induced dipole-induced

dipole interaction. An approximate derivation due to Lon-

don [51] gives for the dispersion potential between two like

atoms

Udisp ¼ � 3hx0a2

4r6
; ð27Þ

where r is the distance between the atoms and hx0 is an

average electronic excitation energy. More accurate treat-

ments that include the higher order induced multipole

moments lead to a power series in 1/rn with n = 6, 8, . . .
Unlike polarization, dispersion force is a purely quantum

phenomenon with no classical analogue. For example, there

are no polarization forces between neutral atoms but they

are still attracted by the dispersion forces.

The last term has its origins in the Pauli exclusion

principle that forbids two electrons occupying the same

quantum state. When two atoms come into contact, the

orbitals of electrons starts overlapping, which leads to a

sharply rising repulsive potential. Since the tails of the

electronic wave functions have an exponential radial

dependence, a suitable form for this potential would be

Aexp(� r/a). However, the rational algebraic form A/r12 is

often preferred in practical applications for computational

convenience. In fact, combining the dispersion and repul-

sive potentials in a so-called Lennard–Jones (LJ) 12–6

interaction has become almost an industry standard in MD

force fields

ULJ ¼ 4e½ðr=rÞ12 � ðr=rÞ6
: ð28Þ

Here e is the depth of the potential at the minimum

(rmin = 2
1/6r), and r is where the potential vanishes. This

form reduces the number of free parameters by one and it

appears to provide an adequate description of solutions.

Compared to the Coulomb and polarization interactions, the

LJ potential is weaker and has a much shorter range (eb1

kT and j is in the range of 2–4 Å for most atoms). The LJ

potentials between different atoms are determined from

those between the like atoms using simple combination

rules such as taking the geometric mean of the parameters

eij ¼
ffiffiffiffiffiffiffiffiffi
eiiejj

p
; rij ¼

ffiffiffiffiffiffiffiffiffiffi
riirjj

p
: ð29Þ

Alternatively, one can use the arithmetic mean of the LJ

distance parameter r, rij=(rii + rjj)/2 while keeping the

geometric mean for e.

As stressed above, in most force fields the polarization

interaction is neglected, and the parameters in the Coulomb

(partial charges on atom centers) and the LJ interactions are

determined from fits to the bulk properties (e.g., enthalpy of

vaporization and density for water). We remark that the pair

potentials determined in this way incorporate many other

effects in their parametrizations, and therefore do not have

much in common with the actual dimer interaction in

vacuum. The justification for such a simplified phenomeno-

logical approach ultimately comes from its success in
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reproducing experimental observations. In this regard, more

fundamental approaches based on accurate many-body

interactions have been much less successful [52].

The above description of forces applies to nonbonded

interactions among water molecules and ions in an electro-

lyte solution. The atoms in proteins and lipids that form the

rest of the system in ion channels are not free but bonded to

their nearest neighbors by covalent interactions. Three types

of bonding interactions are typically employed for this

purpose: stretching of a bond length r between two atoms,

bending of a bond angle h formed by three atoms and

torsion of a dihedral angle between the 123 and 234 planes

of four atoms. The first two are represented by harmonic

potentials

Ubond ¼
X
bonds

kr

2
ðrij � r0ijÞ

2;

Ubend ¼
X
angles

kh

2
ðhijk � h0ijkÞ

2; ð30Þ

where rij
0 and h0ijk are the equilibrium values for the bond

lengths and angles, and kr and kh are the corresponding force

constants. The torsion potential is needed to describe the

relative position of a third neighbor with respect to the plane

defined by the first two, which cannot be achieved by the

bending potentials alone. Because of the rotational symme-

try, it has to be written in terms of periodic functions, a

commonly used form being

Utorsion ¼
X

dihedrals

k/ðcosðn/ � /0Þ; ð31Þ

where k/ is the force constant, /0 is the phase and n

determines the periodicity of the potential.

The bonding interactions confer a certain degree of

flexibility to the protein atoms forming an ion channel,

which may change their configuration in response to a

permeating ion. Unfortunately, with the currently available

run times, this question is very difficult to address via direct

MD simulations. Thus, it remains an open question whether

protein flexibility plays an important role in ion permeation

or correlations between the two are negligible.

2.3.3. Boundaries

A major problem in MD simulations is how to achieve a

bulk-like environment when using a relatively small system,

where surface effects invariably dominate. To give an

example, for 1000 atoms in a box, about half of the atoms

are in direct contact with the surfaces. This number drops to

about a quarter for 10,000 atoms, which is still a significant

percentage. Naturally, to avoid the surface effects, one needs

to exclude more than one layer of atoms, which reduces the

number of atoms in a bulk-like environment very rapidly in

these systems. The traditional way to avoid the surface

effects is to impose periodic boundary conditions. That is,

the simulation system is replicated in all directions filling

the whole space. Such a boundary condition is obviously

desirable for crystals and seems to be a reasonable choice

for solutions. For a grossly inhomogeneous system such as

ion channels, periodicity introduces its own artifacts. These

artifacts can be monitored by checking the dependence of

results on the system size, though such precautions are

rarely exercised in practice because of the time required. It

is expected that the errors introduced by periodicity are

much less severe than those that would result from the use

of vacuum as a boundary. As a result, the periodic boundary

conditions are adapted almost universally in current MD

simulations of biomolecules as a lesser evil. A better

justification for its use in simulations of ion channels is

needed to substantiate accuracy of the current MD results.

The choice of periodic boundary conditions raises the

question of how to handle the long-range Coulomb forces in

the resulting infinite system. In earlier simulation work,

cutoffs were often employed to truncate the Coulomb forces

beyond a distance of f 10 Å. Lack of computer power was

the main reason for using cutoffs, though reducing artifacts

associated with periodicity was also cited as a justification.

Increased computer power and development of fast algo-

rithms that can evaluate the Coulomb interactions accurately

have solved this problem in the last decade. Many compar-

isons carried out since then have shown the inadequacy of

using cutoffs especially in systems containing charged

particles [53]. The two main methods used for this purpose

are Ewald summation and fast multipole method. In Ewald

sum [54], the Coulomb interaction is split into a long and a

short-range part using the identity involving the error

function and its complement, erf(br) + erfc(br) = 1. Since

erfc(x) behaves like exp(� x2) for large x, the short-range

part (also called real-space or direct-space part) can be

calculated accurately using a cutoff of f 10 Å. The long-

range part is evaluated in the reciprocal space using Fourier

transformation. Ewald sum reduces the computational cost

from N2 to N3/2 for N charges, which is still considerable for

large systems. The speed of the Ewald sum evaluations can

be increased substantially by using particle-mesh based

approaches that exploit the advantages of fast Fourier trans-

form in calculating the long-range part [53]. These algo-

rithms scale as NlogN and have finally enabled accurate

calculation of Coulomb forces in large systems. The fast

multipole method is based on multipole expansion of the

Coulomb potential in spherical coordinates. It is less effi-

cient than the particle-mesh Ewald method and has not been

widely adapted in MD packages.

2.3.4. Uses of MD in ion channels

Conductance is the primary observable in ion channels

and one would like to be able to predict it within the MD

framework. Unfortunately, this is not feasible with the

current computer speeds. Because the rotational motion

of water molecules is quite fast, one has to use a very

small time step (Dtc 1 fs) in the numerical integration of

Eq. (20) in order to maintain accuracy. Thus, an MD
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simulation lasting a million time steps covers only 1 ns,

which is too short to study conduction of ions in biological

channels. A typical channel current of 5 pA corresponds to

an average transit time of 32 ns for a single ion, and an

MD simulation lasting f 1 As is needed to obtain a

sufficiently accurate conductance measurement. A few

attempts have actually been made to compute the conduc-

tance of porin [55] and artificial channels [56] using

relatively high applied potentials in the range of 0.5–2

V. However, because the I–V curves are highly nonlinear,

it is not clear how these results can be extrapolated to the

physiological range of f 0.1 V.

In the absence of conductance, the quantity that provides

the most useful information on permeation dynamics is the

potential of mean force (PMF) of an ion calculated along the

permeation path. Just like the potential energy profile of an

ion in continuum electrostatics, PMF provides the work

required to push the ion through the channel. Thus, the wells

in a PMF point to the binding sites in a channel and barriers

can be used in estimating its transit rate. The PMF can be

calculated most simply from the definition of work as a line

integral of force. The mean force on a test ion at a fixed

position is determined from an ensemble average of several

MD simulations. This process is repeated along the perme-

ation path at small steps (f 0.1 Å), and integration of the

mean force along the path yields the PMF. For simple

systems such as electrolyte solutions, this method is quite

adequate and has been used to determine the PMF between

ion pairs in an electrolyte solution [57,58]. Alternatively,

one can use the definition of PMF in terms of the distribu-

tion function U, W=� kTlnq. Obtaining an accurate sam-

pling of the configuration space within a relatively short

simulation period presents a problem for this method. This

is circumvented by introducing a bias potential that enhan-

ces the sampling of the desired configuration, whose effects

are removed later (umbrella sampling) [59]. The second

method is more appropriate for complex systems containing

proteins and lipids, and has been used in calculations of the

PMF of ions in the gramicidin A channel [60].

The selectivity sequences among monovalent cations can

be predicted in MD from the free-energy perturbation

calculations. Because this quantity involves the energy

difference for transformation of an ion of one type into

another at the same location, inaccuracies in force fields are

likely to cancel out, making such predictions more robust

compared to the calculation of the free-energy profiles of an

ion along the permeation path. Moreover, ions with the

same valence cannot be distinguished in BD; hence, MD

offers the only method for understanding their selectivity

sequences. Diffusion coefficient of ions and dielectric con-

stant of water in the channel are two other local properties

that could be estimated from MD. These quantities are

required as input parameters in BD simulations that would

have to be determined from fits to experimental data

otherwise. Thus, MD plays a complementary role to BD

in many respects, reducing the arbitrariness in the choice of

free parameters that so often plagues application of phe-

nomenological models to realistic systems.

2.3.5. Limitations of MD

The currently available simulation times is presumably

the greatest limitation of MD. While calculation of PMF

provides useful information on ion permeation, it is not a

substitute for a direct estimation of conductance from

simulations. In the final analysis, the ultimate judge of the

reality of a computer simulation is comparison with the

experimental data. Without such comparisons, one has no

way of knowing whether the results of an MD simulation

reflects the reality or is an artifact of the method. With the

doubling of computer speeds every 2 years, this time

limitation will be eventually surmounted. In the meantime,

the coarse-grained but much faster BD simulations need to

be used to calculate the conductance of biological ion

channels. An alternative approach may be provided by a

combination of the BD and MD methods that will permit

faster simulation of the atoms in regions of marginal interest

without loss of accuracy for those in regions of focus. While

this approach is very appealing, handling of the interface

between the two regimes poses a problem that needs to be

resolved before it can be applied to ion channels.

Considering the simplicity of the potential functions in

current use, MD techniques have been remarkably success-

ful in studies of lipid–protein systems. This suggests that

the neglected terms in the potential—most notably induced

polarization—are incorporated in the two-body terms such

that their average effects are represented quite well. This

average treatment of polarization appears to work well as

long as one retains the bulk-like environment for the

molecules in question [52,61]. In application of MD to

ion channels, however, there is likely to be problems in

this regard because ions move from bulk water into a

narrow pore formed by protein molecules with very differ-

ent polarization characteristics. Indeed, PMF calculations

in the gramicidin A channel predict 20–30 kT barriers

[15,62,63], which would make the channel impermeable to

ions. Thus, the force fields currently employed in most MD

programs appear not to be sufficiently accurate for the

purpose of studying ion permeation in channels, and

construction of new, polarizable force fields is desirable.

A longer term goal is to use ab initio MD methods to

derive the force field parameters directly from the elec-

tronic structure calculations rather than determining them

empirically from fits to data [18]. There has been a great

deal of progress in application of ab initio MD methods

since the adaptation of the density functional theory [64] to

calculate the potentials between atoms on the fly [65].

Initial applications of ab initio MD were in condensed

matter physics, though in recent years, it has also been

used in studies of water, electrolytes and biological mol-

ecules [18]. Modeling of ion channels is a natural step in

this progression that presents a challenging problem for ab

initio MD.
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3. Computational studies on ion channels

All three permeation theories reviewed in the last section

have been applied to ion channels. However, because of the

shortcomings of the PNP approach outlined above, we

consider only applications of the BD and MD methods in

the following case studies. Of the channels with a known

structure, KcsA potassium channel, is by far the most

interesting case, and will be discussed in some detail. This

is followed by gramicidin A because it has been the most

studied channel model. Finally, we discuss the calcium

channel as an example of how one may proceed in cases

where there is limited structural information.

3.1. KcsA potassium channel

The unravelling of the crystal structure of the KcsA

potassium channel by Doyle et al. [3] at 3.2 Å resolution

is a landmark event that will have a lasting impact on ion

channel studies. This is the first biological ion channel

whose tertiary structure is elucidated. Therefore, it has

prompted a flurry of theoretical investigations on the mech-

anisms underlying the permeation of ions across the chan-

nel, the basis of ion selectivity, and the conformational

changes that occur in the KcsA protein when the channel

opens. Very recently, MacKinnon et al. [66,67] succeeded in

refining the crystal structure of KcsA to 2.0 Å, which

allowed direct observation of the binding sites of K+ ions

in and near the selectivity filter, as well as the water

molecules that are coordinated with these K+ ions. These

latest results could have ramifications in much wider fields

as they turned the KcsA channel into a microscopic labo-

ratory for studying the ion–water–protein interactions.

The KcsA structure determined from X-ray diffraction

consists of 396 amino acid residues, or 3504 atoms exclud-

ing polar hydrogens [see Video Clip #1]. The channel is

constructed by four subunits of a tetramer of peptide chains,

each subunit consisting of an outer helix, inner helix, pore

helix, and a TVGYG amino acid sequence that forms the

selectivity filter. The protein atoms form a central pore

between these subunits. An outline of this pore reveals that

the channel is composed of three segments—a long intra-

pore region of length 20 Å lined with hydrophobic amino

acids extending towards the intracellular space, a wide

water-filled chamber of length 10 Å, and a narrow selectiv-

ity filter of length 12 Å extending towards the extracellular

space (Fig. 2). The selectivity filter is the most important

element in this structure as it can distinguish K+ ions from

those of Na+ on the basis of their sizes (crystal radius of K+

is 1.33 Å and that of Na+ is 0.95 Å).

In the crystal structure, K+ ions are observed to occupy

four sites in the filter region with approximately equal

probabilities [66]. These sites are in between the planes

defined by the carbonyl and hydroxyl oxygens of the Y78,

G77, V76 and T75 residues. Thus, a K+ ion in one of these

sites is solvated by eight oxygens from the neighboring

residues. A similar eight-fold coordination of ions with water

molecules is observed in the cavity and at the extracellular

mouth of the channel [67]. These results are interpreted as

two K+ ions, with a water molecule between them, perma-

nently occupying either the sites 1–3 or 2–4, and oscillating

between these two configurations without any significant free

energy barriers. Appearance of a third K+ ion in the filter

disrupts this equilibrium, starting a conduction event. The

fact that K+ ions are eight-fold coordinated with oxygen

atoms at all sites from entry to exit makes the permeation

process through the filter energetically very smooth, espe-

cially during the critical dehydration and rehydration steps.

The KcsA potassium channel is known to be activated at

low intracellular pH [68,69] Paramagnetic spin resonance

studies [70–72] have indicated that the KcsA crystal struc-

ture corresponds to a closed conduction state and the trans-

membrane helices forming the intracellular pore move away

from the channel axis during gating. Also, in the crystal

structure, the radius of the narrowest section of the pore on

the intracellular side is 1.2 Å, smaller than the radius of the

potassium ion (1.33 Å).

3.1.1. MD studies

Appearance of the KcsA structure has prompted many

groups to investigate ion permeation in potassium channels

using MD simulations. The main focus of these studies has

been the selectivity filter and understanding the permeation

properties of K+ ions in the filter and cavity regions. Treat-

ment of the membrane is a major problem in MD simu-

lations of ion channels, and there has been a wide variation

among various studies of the KcsA channel in this respect.

In the most sophisticated ones [73,74], the KcsA protein is

embedded in a DPPC bilayer and solvated with a 150 mM

KCl solution. In a similar study [75], a POPC bilayer was

employed with a varying number of K+ ions. Because

explicit simulation of lipid bilayers is computationally

expensive, in most MD studies, they are represented with

octanes [76,77] and nonpolar atoms [78–80], or more

simply by harmonic constraints applied to the protein atoms

Fig. 2. Structure of the KcsA channel. The intracellular gate of the pore was

widened using molecular dynamics simulations. Four glutamate residues

(E118) and four aspartate residues (D80) are located near the intracellular and

extracellular entrances of the pore, respectively.
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[81–84]. Simplified representations of bilayer enables lon-

ger simulations necessary for a detailed study of ion

dynamics in the channel. Therefore, it would be worthwhile

to find appropriate sets of constraints that can mimic the

embedding of the KcsA protein in a lipid bilayer.

The MD simulations performed so far agree with the

stable occupation of the channel with three K+ ions, two in

the filter and one in the cavity, as observed in experiments

[3,66,67]. There is also some evidence that approaching of

the K+ ion in the cavity to the selectivity filter triggers a

conduction event, and permeation across the filter occurs

through the recycling of ions as 2K+! 3K+! 2K+

[73,74,78]. In particular, PMF calculations with multiple

K+ ions in the filter indicate that the free energy barriers

between the binding sites remain around 3–4 kT, consistent

with the estimates from experiments [74]. The question of

selectivity against Na+ ions has been addressed in several

studies through free-energy perturbation calculations, where

a K+ ion in one of the binding sites is alchemically trans-

formed into a Na+ ion [see Video Clip #2]. The calculated

free-energy barriers range from 11 kT [74] to 8 kT [82], and

5 kT [80], which are in rough agreement with the exper-

imental value of f 9 kT extracted from the K+/Na+ selec-

tivity ratio of f 104. As stressed before, energy differences

are less sensitive to inaccuracies arising from the use of

nonpolarizable force fields, making these predictions more

reliable.

Diffusion of ions and water in the KcsA channel have been

studied by Allen et al. [81,82,85] and Biggin et al. [83]. The

main finding from these studies is that the diffusion coef-

ficient of K+ ions is suppressed down to about 10% of the

bulk value in the filter region but remains relatively high

(>50% of the bulk value) in the rest of the channel. The

hydrophobic residues lining the intrapore and cavity regions

are responsible for the relatively high diffusion of ions in

those segments. Despite the large suppression of the diffusion

coefficient in the filter region, permeation through this seg-

ment turns out to be the fastest step in a full conduction cycle,

thanks to the Coulomb repulsion. These results provide

inputs for the BD simulations as discussed below.

Motions of individual ions in the channel have also been

discussed in MD studies of KcsA. Most of these involve

short time simulations of the concerted motions of the K+–

W–K+ complex in the selectivity filter. In one MD study, a

K+ ion originally placed in the cavity was observed to exit to

the intracellular space in 1 ns [75]. This appears to be a very

fast event considering that the channel structure employed

corresponded to a closed state and there was no applied

potential. In any case, such single-event studies have little

meaning statistically, and should not be used to draw

conclusions about the permeation dynamics.

3.1.2. BD studies of ion permeation

Of the two common approaches used to model the

potassium channels, MD simulations are incapable of sim-

ulating ion permeation for periods long enough to measure

channel conductance. To determine currents flowing across

the channel, Chung et al. [31,33,34] and others [86,87] have

carried out BD simulations on the KcsA channel using the

experimentally determined channel structure. In these sim-

ulations, water is treated implicitly as a continuum, and the

protein atoms forming the channel are assumed to be rigid.

With these simplifications, they were able to relate the

channel function to its structure.

BD simulations show that [see Video Clip #3] there are

three regions in the selectivity filter and cavity where K+

ions dwell preferentially, as illustrated in the histogram in

Fig. 3. Average number of ions in the channel with no applied field (A) and

with an applied field of 107 V/m (B). The channel is divided into 100

sections, and the average number of ions in each section is calculated over a

simulation period (0.1 As). The outline of the channel and the approximate

locations of ions in the absence of an applied field are shown in the inset.

S.-H. Chung, S. Kuyucak / Biochimica et Biophysica Acta 1565 (2002) 267–286280



Fig. 3A. The locations of their maxima are indicated

schematically in the inset. There is also another prominent

peak in the histogram, centered near the intracellular

entrance of the channel. The average number of ions is

2.9 in the selectivity filter and the cavity, and 0.9 near the

intercellular entrance. The preferred positions where ions

dwell preferentially are in close agreement with the posi-

tions observed in Rb+ X-ray diffraction maps [3]. When a

potential difference is applied such that ions move steadily

across the channel, the peak positions in the histogram

shifts, as illustrated in Fig. 3B. There are now two prom-

inent peaks in the selectivity filter region and one peak, as

before, in the intracellular entrance. The average number of

ions in the selectivity filter and cavity is reduced to 2.2,

whereas that near the intracellular entrance increases to 1.2.

To illustrate the permeation mechanism implied by the

BD results, we divide the channel into two halves such that

ions in the chamber and filter are consigned to the right side,

an the rest to the left side. For example, the most common

situation in the conducting state of the channel has one ion

on the left half, and two ions in the right half, and we refer

to this as the [1, 2] state. A typical conduction event consist

of the following transitions: [1, 2]! [0, 3]! [0, 2]! [1,

2]. In other words, the ion waiting near the intracellular

mouth overcomes a small energy barrier in the intracellular

pore to enter the chamber region. Because this system is

unstable in the presence of an applied potential, the right-

most ion is ejected from the channel. Another ion enters the

intracellular mouth, leaving the system in its original con-

figuration. Naturally, conduction of ions depends on their

concentration, applied potential and the ionization state of

the charged residues at the channel entry, and many other

states can be involved in the conduction process depending

on the values of these variables. For example, at high

concentrations and potentials, a likely event follows the

transitions: [1, 2]! [0, 3]! [1, 3]! [1, 2]. A common

feature of all these conduction events is that the presence of

3 K+ ions on the right side of the channel triggers a

conduction event. This prediction of the BD simulations

on the mechanism of ion permeation across the filter region

has been confirmed by the latest experiments on the KcsA

channel [66].

In Fig. 4A,B, we display the current–voltage and cur-

rent–concentration curves obtained from BD simulations

[33]. The outward conductance at 140 mV is 35 pS, increas-

ing to about 65 pS at 250 mV. The relationship is linear when

the applied potential is in the physiological range (V < 150

mV) but deviates from Ohm’s law at a higher applied

potential. The current saturates with an increasing ionic

concentration, as shown in Fig. 5B. This arises because ion

permeation across the channel is governed by two independ-

ent processes: ions accessing of the channel entry depends

inversely on the concentration while their transit across the

channel is independent of the concentration. As an example,

we give the average times it takes for an ion to move through

the various sections of the channel with an applied potential

of 250 mVand concentration of 300 mM: the time it takes for

an ion to enter the channel from the intracellular side is about

5 ns, the time for this ion to transit across the channel to reach

the cavity is 6 ns, and finally, the time for the right-most ion

to exit the filter is less than 1 ns. The last two processes, being

independent of concentration, are the rate-limiting steps in

conduction at high concentrations. It is worth emphasizing

that permeation across the filter is much faster than in other

parts of the channel. Thus, although the filter plays a crucial

role in selecting the K+ ions, its role in influencing their

conductance properties is minimal. The conductance of the

potassium channel and the shape of the conductance–con-

centration curve shown in Fig. 4 are in broad agreement with

those determined experimentally [68,69,88–92].

The above result that shows the selectivity property is

decoupled from the other physiological properties, offers a

natural explanation for a well-known paradox in the potas-

sium channel family, namely, despite the fact that the filter

Fig. 4. The current–voltage (A) and current–concentration (B) curves

obtained from BD simulations.
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sequence is conserved in all potassium channels [93–95],

individually they exhibit very diverse conduction rates. This

has important ramifications for modeling of other potassium

channels because one can start from the KcsA structure as a

template. A first step in this direction was taken by Chung et

al. [34], who constructed a simplified model of KcsA that

reproduced the calculated properties of the atomic-detail

model, and studied how changes from this structure influ-

enced its permeation properties. They found that changing

the radius of the intrapore region from 2 to 5 increased the

channel conductance by nearly two orders of magnitude,

sufficient to explain the range observed in nature. This gives

hope that individual potassium channels can be modeled

using BD by taking into account available structural and

physiological data. In this respect, homology and MD

modeling of different potassium channels based on the

KcsA structure could provide valuable clues [96,97].

Another important source of information is site directed

mutagenesis, which can help to identify the charge residues

that influence the permeation characteristics of a channel

[98,99]. The recent modeling of calcium channels provides

an apt illustration of this point that we discuss below.

3.2. Gramicidin A channel

In membranes, the dimer of the antibiotic peptide grami-

cidin A (GA) forms a cylindrical channel with length 25 Å

and radius 2 Å, that selectively conducts monovalent cati-

ons. Its physiological properties are characterized by linear

I–V curves and relatively large half-saturation concentra-

tions. These observations point to lack of substantial barriers

within the channel. In addition, NMR studies indicate well

established binding sites near the pore entrances. This

wealth of functional data has been matched with an atomic

resolution structure since 1971 [100]. For these reasons, the

GA channel have played a prominent role in development of

permeation models in ion channels. There is an extensive

literature on modeling of the GA channel, which can be

traced from several review articles [14,15,101,102]. Here we

give a summary of the current situation with regard to

applications of MD simulations to the GA channel, and

comment on the relevance of such investigations on model-

ing of biological ion channels. Because inapplicability of

continuum electrostatics to the GA channel was demonstra-

ted in a recent work [103], such applications are not

considered.

Free-energy profiles of ions calculated along the axis of

the GA channel provide the most important information

about permeation dynamics. To date, all such MD calcu-

lations have lead to central energy barriers that are too high

to allow ion permeation through the GA channel at the

observed rates. To give an example, the lowest translocation

barrier calculated for Na+ ions is about 20 kT [63], which

would completely suppress flow of ions. Binding site

locations at the channel entrance are generally reproduced

by these profiles but again the absolute well depths do not

appear to be consistent with the experiments. The selectivity

sequences among monovalent cations, calculated from the

free-energy differences, are in agreement with the exper-

imental sequence Cs+>K+>Na+>Li+ [104,105]. That is, the

larger ions with smaller hydration energies conduct better

just as in bulk electrolytes. A common prediction of all MD

simulations is that the backbone of the GA peptide exhibits

some flexibility with the carbonyl oxygens swinging up to

10–20j [60,62] to provide adequate solvation for a nearby

ion. Recent high-resolution NMR studies of cation transport

in the GA channel [106,107] find that the GA peptide

remains rather rigid upon cation binding and the ion is

solvated by just two carbonyl oxygens and two water

molecules. The loss in ion coordination number from 6 in

bulk to 4 is significant because the missing solvation energy

has to come from another source. One possible scenario is

that the water molecules in the channel have, in fact, a more

ordered structure than predicted by the current MD models

of GA. Such an order could be induced by polarization

interactions that would lower the energy of the ion-water

column in the channel substantially.

Taken together, the above results point to potential

problems with the force fields currently employed in the

MD simulations. Thus, development of new force fields that

take into account polarization effects should be a priority

area in future studies. Unfortunately, with the appearance of

the KcsA channel structure, GA has lost its once prominent

status in the field. Nevertheless, because the GA channel has

such a simple structure and is so rich in physiological data,

it can still play an important role in the development of

permeation models. After all, if a model works in the more

complicated case of KcsA but fails in GA, it would lose

much from its credibility.

3.3. L-type calcium channel

Calcium channels are as common as potassium channels

and have many similar properties. They are extremely

selective against Na+ ions and exploit a multi-ion Coulomb

repulsion mechanism to achieve a high throughput of Ca2 +

ions [108]. The fact that Ca2 + and Na+ ions have similar

radii but different charges indicates that, unlike potassium

channels, selectivity must be based on charge. Another

difference of the selectivity property from the potassium

channels is that it is contingent upon the presence of Ca2 +

ions in the channel, and in their absence, Na+ ions conduct

at an even faster rate than Ca2 +. These observations suggest

that one may be able to explain the selectivity of calcium

channels within the BD framework without having to appeal

to MD. Since the tertiary structure of the calcium channels

are not known, this indeed appears to be the only way to

study the structure–function relationships in this important

class of channels. A first attempt to model the L-type

calcium channel using BD was made by Corry et al. [32],

who used the available information on its structure and

conductance properties to construct a model channel con-
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sisting of inner and outer vestibules and a selectivity filter

(see the inset in Fig. 5). The selectivity filter is the most

important part of the model and requires a careful design in

order to reproduce the observed properties of calcium

channels. Two critical elements, namely, its size and charges

on its walls, are determined from the experimental data. The

radius is set to 2.8 Å from the size of tetramethylammo-

nium, the largest permeable ion [109]. The mutation data

indicate presence of four negatively charged glutamate

residues in the filter region [110]. BD simulations performed

with this model has been very successful in replicating

many physiological properties of L-type calcium channels.

These include current–voltage curves, saturation of con-

ductance with concentration, selectivity against Na+ ions,

the anomalous mole fraction effect, attenuation of calcium

current by external sodium ions, and the effect of mutating

glutamate residues on blocking of sodium current [32].

An intuitive understanding of how these properties

follow from the ion-channel interactions can be gleaned

from a study of the potential energy profiles of ions in the

channel. In Fig. 5, we present multi-ion potential profiles for

the cases of pure Ca2 +, pure Na+ and mixed Ca2 + and Na+

ions in the channel. As shown in (A), a single Ca2 + ion is

deeply bound (58 kT) in the selectivity filter, and a second

Ca2 +ion is easily attracted to the channel from the right

(extracellular side). The two ions can coexist in the filter

region in a semistable equilibrium, until the resident ion on

the left climbs over the barrier of 5 kT via thermal fluctua-

tions and exits the channel. Thus, a single Ca2 + ion is in a

waiting state and entry of a second Ca2 + ion triggers a

conduction event. Profiles for Na+ ions (B) are similar

except permeation involves three Na+ ions just as in the

case of potassium channels. Also, the final barrier to

permeation is only 1 kT, which explains why sodium ions

conduct much faster. The mechanism of selectivity is

explained in diagram (C). When a Na+ ion is resident in

the filter, a Ca2 + ion is attracted to the filter and expels the

Na+ ion from the channel upon entry. A similar result is

obtained when there are two Na+ ions in the filter. In the

reverse case of a Ca2 + ion in the filter, though a Na+ ion is

still attracted, it is unable to push the Ca2 + ion over the large

barrier of 16 kT. Thus, once a Ca2 + ion enters the channel,

Na+ ions cannot push it out, and only another Ca2 + ion can

achieve that feat. This gives a simple explanation of the

selectivity mechanism in calcium channels in terms of the

electrostatic interactions of ions.

Of the many properties of the calcium channels, the most

interesting ones are associated with the blocking effects. In

the anomalous mole fraction effect, the channel current

vanishes at a certain range of Ca2 + concentrations in the

presence of a fixed 150 mM Na+, as shown in the inset of

Fig. 6A. The BD results (Fig. 6A) indicate that the rapid

drop and subsequent vanishing of the channel current is due

to the blocking of Na+ current by Ca2 + ions. Once the Ca2 +

concentration is high enough to allow two Ca2 + ions in the

filter, the channel starts conducting again but now Ca2 + ions

Fig. 5. Shape of a model calcium channel and locations of charge residues

(inset). Potential energy profiles of one and two Ca2 + ion (A) and one, two

and three Na+ ions (B), and for the mixed system (C) are shown.
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instead of Na+. While sodium ions cannot block calcium,

their presence in the vestibule can nevertheless slow down

entry of a second Ca2 + ion necessary for conduction. As

illustrated in Fig. 6B, the predicted reduction in the channel

current with increasing Na+ concentration is in excellent

agreement with the experimental data. A final example is

the effect of mutating one of the glutamate residues to

neutral glutamine on the blocking of Na+ current (Fig.

6C). The mutation leads to a reduction in the depth of the

potential well compared to the native case so that entry of a

Ca2 + ion in the channel is delayed, and the blocking occurs

at a higher Ca2 + concentration. Trends in the data (inset of

C) are again reproduced by the BD simulations.

The level of agreement between theory and experiment

obtained from BD studies of calcium channels is substantial

and should encourage further applications of the BD method

to modeling of other ion channels with limited structural

information.

4. Conclusions and outlook

In this review, we have attempted to give a flavor of the

recent advances in ion channel research brought about by

resolution of the structure of channel proteins and progress

in computational methods and power. These developments

have enabled, for the first time, rigorous study of structure–

function relationships in ion channels. Discussion of the

merits and shortcomings of various permeation models have

led us to identify molecular and Brownian dynamics simu-

lations as the most appropriate tools for this purpose. BD

enables calculation of conductance properties while MD can

provide input and justification for BD as well as explaining

finer details such as size-based selectivity. As practiced,

both methods have unjustified approximations and deficien-

cies that need to be better understood and improved in future

work. For example, use of continuum electrostatics in

calculation of forces in BD simulations need to be better

validated by appealing to MD. Similarly, the force fields

employed in MD simulations need to be improved by

including the polarization effects, perhaps using ab initio

MD as a guide in this process.

Future developments in the field will much depend on

the success of the protein chemists in resolving structures of

membrane proteins. Because MD simulations rely on

atomic-detail structure of a channel, such information is

essential for using MD in structure–function studies. On the

Fig. 6. (A) Mole fraction effect. Ca2 + (.) and Na+ (o) current passing

through the channel normalized by the maximum value of each is plotted

against the Ca2 + concentrations while keeping the Na+ concentration fixed

at 0.15 M. Experimental results [111] are shown in the inset. (B)

Attenuation of Ca2 + current by Na+ ions. The percentage reduction in the

channel current is plotted against Na+ concentration while the Ca2 +

concentration is fixed at 0.15 M (.). The w symbol and dotted line show

the experimental data [112]. (C) The effect of removing glutamate charges

on channel selectivity. The Na+ current passing through the channel at

different Ca2 + concentrations with all four glutamate charges in place (.),
the outermost glutamate removed (D) and the innermost glutamate

removed (5); otherwise, all conditions are as in (A). Experimental data

for wild type (.) and for single glutamate to neutral glutamine mutations of

two different residues (D, w) are shown in the inset [110]. In all cases, a

driving potential of � 0.2 V is applied.
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other hand, as the success of the BD simulations in explain-

ing the physiological properties of the calcium channel

indicates, a detailed tertiary structure is not essential for

BD—knowledge of the gross shape of the channel and the

approximate locations of the charged residues in the channel

wall appear to be sufficient for this purpose. The present

difficulties in crystallizing the membrane proteins suggests

that BD is likely to play a more prominent role in structure–

function studies of ion channels in near future. Therefore,

one would like to see more modeling efforts expended in

development and applications of the BD method to ion

channels.
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