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Summary

Hidden Markov modelling is a powerful and efficient digital signal processing strategy for extracting
the maximum likelihood medel from a finite length sample of noisy data. Assuming the number of
states in the model is known, then the state levels, transition probabilities, initial state distribution
and the noise variance can be estimated. We investigate the applicability of this technique in
membrane channel kinetics not only as a parameter estimator, but also as an aid to discriminating
between various model {ypes according to their statistical likelihood. We survey three representative
classes of channel dynamics, namely: aggregated Markov models, semi-Markov models (with
asymptotically convergent transition probabilities), and coupled Markov models; reformulating each
within a discrete-time hidden Markov model framework. We then provide numerical evidence of the
effectiveness of the procedure using simulated channel data and hence show that the correct model,
as well as the model parameters, can be discerned. We also demonstrate that the model likelihood
can be used to indicate the approximate number of states in the model.

Key words: Channel dynamics; Model evaluation; Ion channels; Hidden Mar-
kov models; Maximum likelihood estimation.

1. Introduction

It is generally accepted that the current fluctuations in biological membrane
channels can be modelled adequately as a function of a finite-state Markov
process. Opinions vary as to exactly what kind of model is “best suited” to
describing real patch-clamp data. Among the models which have been proposed
are aggregated Markov models (CoLQuHOUN and HAWKES, 1977), fractal models
(LieBoviTCH et al., 1986; KorN and HORN, 1988; LIEBOVITCH and SULLIVAN,
1987; LieBoviTcH et al., 1987), semi-Markov models which include fractal
models (BALL et al., 1991 and 1993), hidden Markov models (FREDKIN and RICE,
1992a and 1992b) and coupled Markov models (KENNEDY and CHUNG, 1992).
Other examples may be found in SANSOM et al., (1989). With so many competing
models it is expedient to decide upon a means of ranking them, thereby
eliminating implausible models.
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Our work is motivated by two practical considerations. Firstly, having postu-
lated a particular model, we need to estimate (in an optimal sense) the model
parameters based on the observation sequence. Secondly, given a set of alterna-
tive models for the channel kinetics, we seek an analytical scheme able to
discriminate between them by assessing their plausibility. Here we demonstrate
that the hidden Markov model (HMM) technique fulfills both of these require-
ments. We will restrict ourselves to models which can be classed as or adequately.
represented by discrete-time Markov chains with a possible aggregation of states.
Lest the reader be led to believe that this is too restrictive an assumption, we
point out that the previously cited models can be treated within our framework.
For models which are continuous in time, for example those of Colquhoun and
Hawkes (CoLQuHOUN and HAWKES, 1977; 1981; 1982), we sample at a sufficiently
high rate to recover a discrete-time model that is an accurate approximation.
Hidden Markov models have already been applied successfully in other areas of
signal processing (RABINER, 1989), and details concerning their implementation
may be found in CHUNG et al. (1990, 1991).

Traditionally, identification of membrane channel models has focussed on
techniques involving the numerical fitting of the interval histograms or the power
spectrum of the noisy channel data. These approaches are often not robust when
the data are noisy and are limited in the amount of information they can yield
about the process parameters. For instance, fitting a sum of exponential distribu-
tions to an interval histogram will only reveal the mean durations (or, equival-
ently, the diagonal transition probabilities) and relative component amplitudes
of the process. Fitting Lorentzian functions to the power spectrum will again
only partially identify the Markov chain. Furthermore, such approaches only
work when the relevant time constants, i.e., mean durations differ sufficiently.
Some other approaches which have been tried include maximum likelihood
estimation (BALL and Sansom, 1989), which suffers an exponential complexity
problem, and correlation functions (LiEBOVITCH et al., 1987), which have only
been applied to identify binary Markov chains.

On the other hand, hidden Markov modelling is a computationally efficient
maximum likelihood estimator which is robust in the presence of white noise and
applicable to processes with many states. Moreover, HMM estimation yields
a complete description of the process in that it can identify the initial distribu-
tion, state levels and transition probabilities of the underlying Markov chain;
and it evaluates the model likelihood, thus providing a sensitive measure of the
goodness of fit. A disadvantage of the technique—a common drawback for many
identification schemes—is that the number of states in the underlying Markov
process must be known a priori. We will see that this problem can be overcome,
in an empirical sense, by running several estimators with different numbers of
model states and then locating the “knee” in the log-likelihood curve from which
the most appropriate number of model states may be estimated.



Biom. J. 37 (1995) 1 41

After a brief discussion of some broad classes of Markov models, we outline in
Section 3 three representative examples of channel dynamics, and reformulate
each model within the HMM framework. We will present the discrete-time
formulation of these models as it is our intention to apply digital signal
processing techniques from hidden Markov model identification. In section 6 we
give numerical examples of these three HMM types and show that the HMM
algorithm can be used to discriminate between them. We will see that, with
appropriate interpretation, the HMM technique is a powerful tool not only in its
ability to estimate the model parameters, but also in identifying which type of
Markov model is more plausible in a statistical likelihood sense.

2. Representative Markov Models
2.1 The Three Models For Comparison

The three representative types of HMM that we have chosen for this exposition
can be classed under the broad headings of Colquhoun and Hawkes models
(CoLQUHOUN and Hawkes, 1977; 1981; 1982), coupled Markov models (K&n-
NEDY and CHUNG, 1992), and semi-Markov models. The unobservable or hidden
process 18 assumed to be a discrete-time Markov chain with a finite state space.
For detailed exposition of the theory of such processes, see BHARUCHA-REID
(1960), GANTMACHER (1974), HOWARD (1960), and IsaacsoN and MADSEN (1985).
The standard HMM framework does not generally allow for chains with
time-varying transition probabilities. However, in the particular case of a semi-
Markov model (FELLER, 1966; Cox, 1962; SmiTH, 1955), where the transition
probabilities depend on the time since the last transition, we can approximate the
process by one in which significant time variation is limited to a maximum
number of lags, and then concatenate the (discrete) time and state to form
a homogeneous vector Markov chain. Thus a semi-Markov model can be
approximated by a vector Markov model (i.e., a Markov chain with vector state)
whenever the transition probabilities can be considered constant for large time
lags.

A special case of discrete-time semi-Markov models, which will interest us
here, is the so-called “fractal model” (LieBoviTcH et al., 1986; LieBoviTCH, 1989;
KRISHNAMURTHY et al., 1991) whose kinetic rates have an exponential form. We
will use this model to illustrate how HMM estimation techniques can be applied
to identify the parameters of a non-stationary process. Fractal models, unfortu-
nately, have the disadvantage that their transition probabilities cannot usually be
expressed in terms of elementary functions. We will return to a discussion of
semi-Markov models in Section 3.3.
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The preceding discussion should give the reader some idea of the range of
possible underlying models encompassed by the Markov model framework. We
now proceed with a description of some mechanisms by which these signal
processes can be “hidden” or observed indirectly. Firstly, the physical process
can only be measured in the presence of corrupting noise which we model as
white Gaussian noise with zero mean. Secondly, in keeping with the application
of HMM techniques to membrane channel models, in which the stochastic
process represents the channel current, it is traditional to assume that the
observable process has only 2 states—corresponding to an open or closed
channel. This suggests an aggregation or many-to-one mapping of the underlying
model states. An exception to this binary aggregation is the case of a coupled
Markov model where a single channel is modelled as comprising a number of
binary pores, each of which may be open or closed. This type of model has
generally more than 2 states whose physical manifestation is the presence of
conductance sublevels in the membrane current. Of course, if the individual
pores are not independent but function in sympathy, i.e., they are tightly
coupled, then, especially in the presence of noise, these multiple levels need not
all be visible in the data record. This property of coupled Markov models will be
apparent from the simulated channel data in Section 6. We can now state
formally the three categories of HMM which will concern us in the remainder of
the article. These are:

(CMM) Coupled Markov models which are representative of first order,
n-state (n = 2), homogeneous Markov chains.

(CHM)  Discrete-time Colquhoun and Hawkes models, representative of first
order, multi-state, homogeneous HMMs with aggregation to two
observable states.

(SMM)  Binary semi-Markov models with asymptotically convergent transi-
tion probabilities which can be approximated by homogeneous vector
Markov models.

In all cases, we assume that only noisy measurements of the underlying stochastic

process are available. We will consider the three representative classes of hidden
Markov models in more detail in the following sections.

2.2 Notation

We define in Table 1 some notation and abbreviations that will appear in the rest
of the paper. We use bold face to denote vectors and matrices.
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Table 1

Notation and abbreviations

Symbol Description

b scalar Markov chain

Vi scalar Markov chain with additive noise
Z, vector Markov chain for semi-Markov model
X, vector Markov chain for coupled Markov model
5; state level i, i=1, ..., N

S, N — 1-vector of state levels

P transition probability matrix

Q intensity matrix

N number of states

L maximum time lag since last transition
K number of data points

t continuous time

k discrete time index, k=0, 1,2, ...

T time since last transition

T sampling time

HMM Hidden Markov Model

CHM Colquhoun and Hawkes Model

CMM Coupled Markov Model

SMM Semi-Markov Model

3. Model Descriptions
3.1 The Coupled Markov Model

The channel 1s viewed as consisting of a number N —1 of identical pores which
may be either open or closed. The pores may function independently of one
another, in the decoupled case; or as a single unit, in the fully coupled case; or be
interdependent to some extent, in the partially coupled case. If x{" is the state of
pore [ ({=1, ..., N—1) at time k, taking values s, when the channel is closed or s,
when the channel is open, then the total current is proportional to

X=X XNV, L, 1T X, (1)
L"\f“‘““J

N-1
where the N — [-vector X, is defined as

Xp =[x, %, o x0T 2

IN -1

denoting the transpose of x by x'. This has 2¥ 7! possible values {S,}2; ",

S;=1[5050 5815 Sy;=105,84,...,8]5..., ¢etc.
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Thus x; has N possible values since the component currents are binary. In the
decoupled case, each x{? is a binary Markov chain with transition matrix

- 1-¢
P=(p, j) = I: , (3
I—¢ o
where the transition probabilities are defined independently of I by
Pij— Pr(x{ = S x = S;)- @

The 2¥71x2V¥~! transition matrix for the vector process X, is given by the
Kronecker product of the individual transition probability matrices:

P,=POP® - Q®FP. (5)

N—1 terms

In the fully coupled case, the state of each pore is allowed to be different initially,
but all pores synchronise, i.e., all open or close together at the next sampling
instant. In this case, the vector process X, has 2V~ ! x 2V~ ! transition matrix

— 00 - 0 1-(7]
5 0 . 0 1-6
Py = : | : S (6)
5 0 . 0 1-5
| 1= 0 - 0 o _

where 6 can be chosen according to

_1-¢
- 2—g—¢

to reduce the number of free parameters in the model. Even with this restriction,
a wide variety of signal behaviours can be generated by the CMM model.

The partially-coupled system is described by the convex combination of the
decoupled and fully-coupled systems, so that its transition matrix is given by

9 (7

P.=(1—-x)}P,+xP;, xe[0,1]. (8)

The parameter k governs the amount of coupling between individual pore chains.
When x=0 the chains are decoupled (independent), whereas for k=1 they are
fully-coupled. The channel current x, resulting from this partially-coupled model
can be shown to be Markov and is obtained from the vector process X, by
aggregating states with equal numbers of open pores. Thus the transition matrix
of x, is related to (8) by

PCMM = Lo PC Ro » (9)
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where L, and R, are respectively Nx2¥~! and 2¥ ! x N constant matrices
determined by the number of pores L. For a given number of pores, there are
N channel states in CMM and the free parameters are {(, g, x}, with § deter-
mined by (7). In addition, given a matrix Pg,,,, it is possible to estimate the
model parameters using a recursive least squares technique whose details need
not concern us here.

3.2 The Discrete-Time Colquhoun and Hawkes Model

The traditional ion channel based on the work of Colquhoun and Hawkes
represents the channel current as an N-state, continuous-time Markov chain
aggregated to a binary process x(t) in which ¢t denotes the time. The N states,
numbered from 1 to N correspond to conformations of the channel macro-
molecule which cannot be observed directly, but are responsible for the channel
openings. Not all the conformational states communicate, so that there are
disallowed transitions. Because the N underlying states have been aggregated
into just open and closed channel states, the model is non-Markovian. The
continuous-time formulation requires the specification of a constant NxN
intensity matrix Q which determines the matrix of transition probabilities

P(t)=(p;(1)) with
py;(t) ="Pr(x(t) =j|x(0)=1), (10)

via the equation P(¢) =exp(Q?1), with initial condition P(0)=1.
We can view a discrete-time Markov chain as the process whose transition
matrix is obtained from that of the continuous-time process by sampling via

P=exp(QT) (L1)

with state x, =x(kT) and transition probabilities p;;=Pr(x,,; =j[x, =1i). The
sampling period T is chosen to give a reasonable approximation to the continu-
ous-time system. If T is sufficiently small, we may take the discrete-time transi-
tion probabilities corresponding to forbidden transitions as zero.

Suppose the states are ordered so that states {1, ...,n} are closed and states

{n+1,..., N} are open. In the absence of noise, the aggregated process is given
by
s, if x . e{l,...n
Y= b ¢ { } (12)
s, if x, e{n+1,.., N},

where s; are the currents due to closed (i=1) and open (i=2) channels. The
continuous-time Colquhoun and Hawkes model can be slightly more general
than the discrete-time version presented here.
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For clarity, we take the simple 3-state example from COLQUHOUN and HAWKES
(1977) in which state 1 may only transit to state 3 by passing through the
intermediate state 2. The relevant transition matrix is of the form

P11 I—pyy 0
Pey=| P21 1—DPay—Pas P23 (13)
0 1—pas P33

which, as indicated, has 4 independent parameters. States 1 and 2 are aggregated
to the closed channel state and state 3 is the open channel state. We will return to
this model in the section on numerical simulation.

3.3 The Semi-Markov Model

Semi-Markov models are well known in the area of renewal theory (Cox, 1962)
and are characterised by transition probabilities which depend on the time since
the last transition which we denote by 1. Thus 7 is the local time which is reset at
each transition. A semi-Markov model can be characterised by a time-varying
intensity matrix Q(z) (under certain weak conditions on the semi-Markov
kernel). The transition matrix is the solution of the Chapman-Kolmogorov
differential equations:

dP() -
di

Q@) P()=P(x) Q(x), PO)=L (14)

By analogy with the theory of linear systems (CALLIER and DESOER, 1991;
KaArLATH, 1980), the state transition matrix @(t, 1,) for the continuous-time
system (14), defined by the equations

D(z,15) =Q(1) Pz, 7y) (15)
D1y, 10) =1,

yields the discrete-time system matrix
P,=0((k+1) T, kT) (16)

when sampled with period T.

We can approximate the semi-Markov model, making it amenable to HMM
estimation, by assuming that after some time LT, where L is called the lag, the
transition probabilities can be regarded as constant. In other words, for all i, j,

p;i(T if 7.,<LT
pij(Ik)={ ! k) . ¢
pi;(LT) if 7, >LT.
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We now specialise to the two-state case as it is more relevant to channel
modelling. By defining a vector state

7 = [T %], (17)
whose values we number from 1 to 2 L according to the rule
(Zy=i+(—-1)YN if 7,=1, x,=s, (18)

fori=1,...,L and j=1, 2, we arrive at a homogeneous Markov chain with 2L
states. The transition matrix Pg,,,, of this chain, whose (m, n) element is defined
by

Pr(<zk+1>=n|<zk>=m); manzls EERE] 2L7

has the structure shown below:

0 pi.L1] ... 0 p12[1] 0 0
0 0 .. 0 p:,[2] 0 0
0 0 pu: [L—17 | py,[L—1] 0 0
0 0 P11 L] pi2[L] 0 0
(19)
P21 [1] 0 0 0 p22[1] ... 0
P21 [2] 0 0 0 0 0
Py [L—1] O 0 0 0 ...p,,[L—1]
| pag (L] 0 0 0 0 ... pylL]

where the transition probabilities of the discrete-time semi-Markov model are
defined as?

A .
pijlml=p,;mT)=Pr(x,, =s;lx,=s); m=1,..,L j=12, (20)
with t,, = mT being the time spent in the current state s; which is updated as

,+1 if x,.,,=x, and 7, <L
1 otherwise.

1} We use the symbol 2 o signify defined equality.
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In practice, the choice of lag L will trade off the quality of the approximation
and the computational burden associated with estimating the 2 . parameters in
P> DOt to mention the length of the data record required for estimation when
L is large. Note that we do not constrain the individual transition probabilities
p;;(t)) to follow the trajectories predicted by the model (16). We merely constrain
the structure of the transition matrix during the estimation. Effectively, this
means that the estimation procedure is blind to the actual form of time
dependence of the underlying process in the sense that arbitrary time variation in
p;;(ty) is permitted. We will treat these parameter estimation questions more fully
in the following sections. As an example of a semi-Markov model, we now
describe the fractal model. We mention that other such models are possible,
depending on the behaviour of the transition probabilities, for instance, these
may exhibit a damped oscillation before settling down to a steady value.

In continuous time, a fractal model is a finite-state semi-Markov process
whose intensity matrix is given by

L 1-D 1-D;
kit kit } 22)

Q(‘C)=|: kz'l'l_Dz _kz,z:l—Dz
for some constants k; > 0, the kinetic rate constants; and D, with 1 £ D, <2, called
the fractal dimensions. Thus the intensities are supposed to vary inversely with
the time since the last transition between open and closed states. It can be shown
that the transition probabilities of a fractal model become constant for large lags
so we may approximate the process by a homogeneous Markov chain.

We follow the prescription described before to obtain a discrete-time approxi-
mation of the continuous-time system. For simplicity, we assume that
D, =D, 2D to obtain an explicit formula for the transition probabilities of the
discrete-time chain:

k+1)T
szexp{ | Q(a)do}
kT

1 [ly+kekT) k(1 —c(kT)) )
Tk tky | ky(1—c(kT)) ki +kyc(kT) )
- where
k+k
c(r)=exp (—ﬁ (ff'”-r%:f’)) .

The general behaviour of the transition matrix for a fractal model is illustrated in
this special case—namely that the probability of remaining in a given state
increases monotonically as a function of the time spent in that state, becoming
constant for large time lags. We will use the fractal model for data generation in
Section 6.
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4. HMM Processing Framework
4.1 Model Parameters

The quantities which characterise a discrete-time, n-state, hidden Markov model
with state variable x, and observable output y, are the following:

(1) The number of states n and the corresponding state levels s,, ..., s

(2) A vector of initial state probabilities 7, with components
(i) =Pr(x,=s), i=1,...,n.

(3) A matrix of constant transition probabilities P = (p;;) where
pii=Pr(x,.;=s;lx,=5); i,j=1,..,n.

(4) A matrix of observation symbol probabilities B=(b,(y,)), i=1, ..., n, where,
for computational purposes, y, is quantized to M levels and

bi(ye) =Pr(y1x,=s).
The observation process y, is given by
V=X + Wy, (24)

where x, is the n-state, homogeneous, Markov chain characterised by (1), (2) and
(3) above, and w, is a sequence of independent® random variables which, as
before, we assume to be taken from a white Gaussian density with zero mean and
variance o2, thus

- 1 (yk_si)z '
b;(vi) = P {"—“2‘“62— : (25)
We denote a HMM by the triple A=(P, B, n,) on the understanding that the
number of states n has been chosen prior to estimation of the model. More
general formulations of hidden Markov models are possible, but the present
framework is adequate for our demonstration.

4.2 HMM Parameter Estimation
The usual HMM framework allows us to obtain maximum likelihood estimates
of the model 4, ie., estimates of the initial state probabilities, the transition

probabilities, the state levels, the noise variance and the state sequence. For our

2 The standard HMM framework does not allow for filtered observations or coloured noise.
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purposes of comparing the various models, we will be content with estimating the
transition probabilities and evaluating the likelihood function

Pr(Yel4), (26)

in which Yy denotes the sequence of observed data {y,, ..., yx}. The maximum
likelihood model 1 has the property that

Pr(Y| )= Pr(Y|A), V1.

An efficient (recursive) procedure for computing the likelihood of a given
model—a calculation which would otherwise require a sum over all n* possible
state sequences, is given by the “forward-backward” procedure. This is an
iterative procedure for computing the likelihood in terms of the “forward”
variables o, (i), defined by

() =Pr(yp ..o Voo X, =5;14), i=1,...,nm, (27)

which yields the likelihood as

n

Pr(Ygld)= Z g (i).

i=1

We will not supply further details of these equations here, but instead refer the
interested reader to RABINER (1989) (and references therein) for a fuller treatment.
Similarly, the “backward” variables 5, (i) are defined as

Bi(@) =Pr(Yys1s s Vx| X =515 ). (28)

Both the forward and backward variables are needed to obtain the model
parameter estimates via the Baum-Welch re-estimation formulae (BAum and
PETRIE, 1966; BAUM et al.,, 1970). The HMM algorithm is a multi-pass strategy
computing, at each pass i through the data, the variables (27), (28) given the
model A; and using these to evaluate the current model likelihood as well as to
re-estimate the model parameters. This procedure yields an updated model 4, ;
which is assumed during the next pass through the data. The crucial property of
this re-estimation process is that the likelihood of the sequence of models {4;} is
a non-decreasing function of the number of passes i, with the consequence that
the algorithm converges to a local maximum of the likelihood function (26). It
should be noted that the complexity involved in HMM processing is of the order
of n? K operations per pass.

Given a HMM 4,, it is possible to compute the “most probable” underlying
state sequence {X,}, although the solution will depend on the criterion of
optimality which is adopted. Two common interpretations are the (single symbol)
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maximum a posteriori (MAP) criterion and the maximum likelihood sequence
estimator (MLSE). We will not, however, elaborate these concepts here, as
knowledge of the likelihood and associated transition probabilities is sufficient
for our purposes in the model evaluation.

4.3 General Remarks

A few general comments seem in order before we discuss the technique for model
comparison. The first of these concerns the computation of model statistics. It
should be noted that all statistics of interest can be calculated once the model has
been identified. In particular, the computation of channel properties such as
mean durations, spectra and histograms is a straightforward matter with the
model in hand. Since these quantities can be obtained in an analytical manner,
they can be used to validate the model by comparison with the statistics
computed directly from the noisy data.

Secondly, it is easy to incorporate models such as the discrete-time Colquhoun
and Hawkes model which contain disallowed transitions into the HMM frame-
work. All that is required is the setting of the relevant initial transition probabili-
ties to zero. The HMM framework also allows for Markov models some of
whose states have been aggregated. We need only constrain the state levels of the
aggregated states to be equal during processing, although, in practice, such
models tend to be difficult to identify due to the lack of information concerning
transitions between states within the same aggregate.

We saw before that the Markov model framework is able to encompass
a variety of different channel models, providing that these can be represented, or
approximated, by homogeneous Markov chains. However, in the standard
HMM framework, it is not generally a simple matter to include functional
constraints on the transition probabilities. The reason is that such constraints
imply a different parametrisation of the transition matrix. The conventional
HMM re-estimation formulae are the end product of a constrained optimisation
problem resulting from the Expectation Maximization algorithm (BAuUM, et al.,
1970; TITTERINGTON, et al., 1985). In the standard formulation, the only con-
straints are that the estimation transition probabilities must form a stochastic
matrix—they are otherwise free to vary. Any additional constraint, due to other
model parametrisations, e.g. CMM, or known time-variation, e.g. fractal models,
would need to be included before computing the re-estimation formulae. Disal-
lowed transition constraints may be an exception, and can be incorporated
simply by setting the required elements of P to zero during estimation. In this
article, we will not attempt to redesign the HMM procedure to allow for models
with probability constraints more general than forbidden transitions. However,
we caution that in certain instances even models with forbidden transitions may
lead to problems in estimating the intensity matrix (FREDKIN and Ricg, 1992b).
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In the interests of completeness, we describe a technique for evaluating the
approximate model likelihood when the parametrisation of the model does imply
additional functional dependence between its transition probabilities, as is the
case for both CMM and the fractal model. We emphasize that this technique is
laborious in practice as it necessitates an extra parameter estimation step after
the HMM processing. For this reason, we have not included this last step in the
simulation examples. We first incorporate any structural constraints anticipated
in the model, by setting the required elements of the transition matrix to zero,
e.g., as displayed in the reformulation of the semi-Markov model (19). We then
proceed with the HMM processing without further constraints on the p;;, until
convergence of the algorithm is observed and yields the model estimate. We can
then “fit” the assumed model to the estimated model in a least squares sense. In
the case of CMM, this means obtaining values of the parameters {{, g, x} that
give a best sum-of-squares fit to the estimated transition matrix. This 1s largely an
ad hoc procedure except we note that if the model accurately represents the real
process the fitting of the model parameters is a sound procedure. The transition
probabilities of the process can be compared with those of the model using the
estimated parameters to judge (both qualitatively and quantitatively) the accu-
racy of this extra parameter estimation step.

Once the particular model parameters have been obtained from the estimated
model, one can perform a further pass of HMM processing, using the transition
matrix corresponding to the fitted model. Thus it is possible to obtain (at least
approximately) a likelihood value for the specific model in question, which will
be less than that of the unconstrained model. This brings us to an important
question which we discuss in the next section, namely: how should we compare
models of different types with differing numbers of free parameters?

5. Ethic For Model Comparison
5.1 Overview

It is well known that the error in fitting a model to a given set of data decreases
with the number of free parameters in the model. Thus it makes sense, in
selecting a model from a set of models with different numbers of parameters, to
penalise models having too many parameters. This is perhaps the most subjective
part of any parameter estimation scheme. To give a well known example, in the
identification of ARMA systems (LJUNG, 1987) many criteria are available to
decide upon the “best” model, among the more common are Akaike’s informa-
tion theoretic criterion (AKAIKE, 1974) and the Schwarz criterion (SANSOM et al.,
1989 and Scawarz, 1978). In summary, the choice of model from a set of
possible models invariably depends on the way we choose to discriminate
between them. Often, the selection criterion is combination of a measure of how
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well the model fits the data, e.g. the likelihood; and the complexity of the model,
€.g. the number of parameters. The question of how to penalise a HMM for
having an excessive number of free parameters is an area of current research and
one proposed criterion for model order selection is the compensated likelihood
approach (FINEsso, 1990). Researchers in this area often focus on asymptotic
estimators of the number of states. In practice the sample size is finite, and these
estimators may exhibit bias in some cases.

5.2 Log-Likelihood Comparison Criterion

In this paper, we will appeal to the principle of parsimony in comparing models
with different numbers of free parameters but similar structures. We measure the
goodness of fit by evaluating the log likelihood of the model, and weigh this
against what is to be gained by increasing the number of parameters, which
generally increases the likelihood. Therefore, if a plot of log likelihood versus
model order shows a “knee” for a certain model order®, we would prefer this
model to one of higher order. For a CMM, the model order is equal to N,
although the number of free parameters is three for a fixed model order. In the
case of a fractal model, the number of free parameters is four, but the order of the
model depends on the value of the lag L. we choose in the implementation (19).
For a semi-Markov model of this form the order is 2L and there are 2L free
parameters—the p;(k), k=1, ..., L, i=1, 2. In the latter case there is an additional
caveat—the estimates of the time-varying transition probabilities should form
a “reasonably smooth” curve, i.e, one that is consistent with the transition
probabilities of the assumed semi-Markov model. Note that a model with a large
number of states but whose transition matrix structure is constrained need not
necessarily have a higher likelihood than a model with fewer states and an
unconstrained transition matrix.

In addition, we can ascertain a limited amount of information from the
structure of the estimated transition matrix. If the HMM estimates indicate that
certain states have very small average residence times or near zero transition
probabilities, then this implies that we should delete these states from our model.
We can now give some numerical examples illustrating the effectiveness of HMM
processing both as an estimator and as an aid to discriminating between various
model types.

3 We are using “order” to mean the dimension of the transition matrix in a particular HMM
implementation. This should not be confused with the order of the Markov chain, which is unity for
all the models we consider.
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6. Numerical Estimation Examples
6.1 Sirmulation Environment and Parameters

The HMM algorithm as well as the data generation module were coded in C for
execution on a SUN workstation. The noisy simulated data were scaled by
a factor of 204.8, equal to the product of amplifier and ADC gains, and then
quantized to 12-bit integer values. To avoid numerical underflow in the calcula-
tions, the scaling and initialisation procedures described in CHUNG et al. (1990)
were used. In all simulation examples, the standard deviation of the additive,
white Gaussian noise was set to 0.5, and the length K of the data segment was
100000 points. For each chain, the closed state level was taken to be zero (s, =0)
and the fully open state level (s,) as —2 in dimensionless units. For brevity of
simulation, the state levels and noise variance were assumed to be known. In
practice it is reasonable to expect that initial estimates of these quantities are
available from visual examination or histograms of the data record prior to
HMM processing. The accuracy of such estimates will affect the number of
passes needed for convergence of the HMM algorithm.

6.2 Data Generation
The following models were used to generate simulated channel data:

(1) A 3-state (N=3) coupled Markov model with parameters {=0.99, ¢=0.97,
8=0.25, k=04; and state levels 0, —1, —2, with corresponding transition
matrix: :

0.9841 0.0119 0.0041
Poyr =1 03178 05764 0.1058 |. (29)
0.0125 0.0349 0.9525

(2) A discrete-time Colquhoun and Hawkes model with transition matrix:

0.999 0001 0
P =| 0025 095 0025 (30)
0 003 097 ‘

and state levels 0, 0, —2.

(3) A fractal semi-Markov model with fractal dimensions D, =D, = 1.95 and rate
coefficients k, = 0.5, k, = 1,0, with state levels 0, —2 and lag of 10 samples.
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Fig. 1. Short segments of data generated according to three different signal models. Signal
sequences were generated using (a) the 3-state coupled Markov model; (b) the 3-state
Colquhoun-Hawkes model (b); and (¢} a fractal semi-Markov model with a lag of 10
points. To make the data appear realistic, zero-mean Gaussian noise was added to all three
signal sequences.

Figures la—1c show the noisy data generated by the models listed above.
Although it may be argued that the trained eye could determine which signal
corresponds to a particular model class, this distinction becomes increasingly
difficult at low signal-to-noise ratios. Moreover, histogram-based techniques are
quite sensitive to the level of noise. The results presented in the next part should
convince the reader of the power of HMM-based techniques in the identification
of model type and model parameters.

6.3 Simulation Results

For each of the three data sets in turn, and for a variety of model types, HMM
processing was carried out until convergence of the log likelihood was observed.
The assumed model types were 2 and 3 state CMMs (which have no disallowed
transitions); a 3-state CHM; and SMMs with lag between 4 and 20 samples.
For computational simplicity, we illustrate the method using CMMs and
CHMs having up to 3 states, and use a relatively high signal-to-noise ratio. The
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log Likelihoods obtained for models in the same class always display a “knee” as
the number of states increases, and this property is adequately illustrated by the
SMM examples. We emphasize that the technique is applicable to chains with
more than 3 states and to data with much lower signal-to-noise ratios. Of course,
such cases require considerably more computation. For this reason also, the
SMM simulations, which involve chains with up to 32 states, were only carried
out over 20 passes, which is adequate for convergence of the log likelihood to
3 decimal places.

The bar graphs of Fig.2 and tables 2—4 show the log likelihoods for the
various model types obtained by HMM processing of the three data sets. The
correct model is indicated by a dagger (}). Concentrating on the first of these,
Table 2 and Fig. 2a, which show the log likelihoods for the CMM data, it is clear
that the 3-state CMM (with no disallowed transitions) gives the best fit of all the
models tested. Recall that the fit should improve monotonically as the number of
states and hence free parameters in the model increases. The other models
provide a fit to the data which is significantly worse—a difference of about 109° in
likelihood. The estimated transition matrix for the 2- and 3-state CMMs were

0.9824 0.0125 0.0050
. 0.9820 0.0180 .
' ‘ 0.0176 0.0335 0.9488

These may be compared with the generating transition matrix (29). The differen-
ces in the 3 x3 case are attributable to the finite length of the record—10°
points—and the relatively low signal-to-noise ratio. Fitting the estimated transi-
tion matrix to give a true coupled Markov model resulted in only a small
decrease in the log likelihood, although this is not always the case.

Table 2

Log likelihood values and number of passes for CMM data. The number of passes shown
is the number required for convergence to 7 decimal places of the log likelihood, except
where indicated by a star (*) in which case the convergence is to 3 decimal places only.

Assumed Model Type Log Likelihood No. of Passes
2-state CMM —268732.49 12
T 3-state CMM —268018.40 35
3-state CHM —268643.17 700
SMM lag 4 —268637.78 20*
SMM lag 6 —268637.10 20%
SMM lag 8 —268636.74 20%
SMM lag 10 —268635.73 20*
SMM lag 12 —268633.35 20%
SMM lag 14 —268632.51 20%
SMM lag 16 —268630.33 20%
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Fig. 2. Log likelihoods for models based on the CMM, CHM or SMM data. The
observation sequence generated by the coupled Markov model was analyzed using
a HMM tailored to the three different signal models.

(a) The likelihood that the data were generated by a coupled Markov model (cross
hatched) is the largest, as indicated on the bar graph. The true model was a 3-state coupled
Markov model.  (b) The highest likelihood is obtained when the observation sequence is
assumed to be generated by a Colquhoun-Hawkes model (horizontal shading), as was the
case in this simulation. (¢) Using a HMM based on the assumption that the underlying
generating mechanism is fractal in nature gives the highest likelihood values (cross
hatches). As the lag of the SMM is increased, the model likelihood increases, but only
marginally once the true model order (lag 10) is reached.
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Fig. 3. Semi-Markov model estimates for the data generated by the semi-Markov model,
Colquhoun-Hawkes model and coupled Markov model.

(a) Estimated transition probabilities for the fractal semi-Markov model are plotted against
lag. Thus, by employing a HMM based on the assumption of time-varying transition
probabilities, it is possible to estimate the form of the time variation. The closeness of the
estimated curves (solid lines) to their true values (dotted lines) indicates the accuracy of the
technique.

(b) Semi-Markov model estimates for the Colquhoun and Hawkes and CMM transition
probabilities are plotted against lags. Although the estimates vary wildly, their variation is
bounded in the range 0.9 to 1.0. One has the general impression that a model with constant
transition probabilities would have been more appropriate, as is the case for both model
types.
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Turning to the CHM results in Table 3 and Fig.2b, we see that the 3-state
CHM gives the highest log likelihood of those tested, although the differences are

less marked than in the previous example. The estimated transition matrix for the
3-state CHM was

0.9987 00013 0
P,y =| 003448 09400 0.0252 |,
0 0.0357 0.9643

which is close to the true transition matrix (30), indicating that the HMM
algorithm was able to estimate transition probabilities between states in the same
aggregated class. The estimated transition matrix for the 3-state CMM was

0.9984 0.0007 0.0009
Poorn = 1 0 0 ,
0.0353 0 09647

implying that the state 2 at —1 was in fact not statistically supported by the
data. The estimated transition probabilities for the lag 16 SMM based on the
CHM data are shown in Fig. 3b. The estimates are unsteady but point to the fact
that the true model did in fact have constant transition probabilities.

Table 3

Log likelihood values and number of passes for CHM data.

Assumed Model Type Log Likelihood No. of Passes
2-state CMM —263213.88 10
3-state CMM —263213.56 600
T 3-state CHM —263181.23 661
SMM lag 4 —263206.41 20
SMM lag 6 —263200.42 20*
SMM lag 8§ —263199.63 20%*
SMM lag 10 —263198.87 20%
SMM lag 12 --263197.28 20%*
SMM lag 14 —263192.72 20%
SMM lag 16 —263190.06 20%

The model likelihoods for the SMM data (generated by a fractal model with
lag 10) are displayed in Table 4 and Fig.2c. Clearly the semi-Markov models
have the upper hand in this case. The estimated time-varying transition probabil-
ities are shown in Fig. 3a and these clearly demonstrate a smooth, exponential
increase, as expected for a fractal model. The roughness of the estimates for large
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Table 4

Log likelihood values and number of passes for SMM data.
Assumed Model Type Log Likelihood No. of Passes
2-state CMM —277007.17 11
3-state CMM —276961.06 700
3-state CHM —276652.27 450
SMM lag 4 —276232.65 12
SMM lag 6 —276191.14 12
SMM lag 8 —276183.83 12
T SMM lag 10 —276183.09 14
SMM lag 12 —276182.90 : 13
SMM lag 14 —276182.10 15
SMM lag 16 —276182.07 15

values of lag is a result of the shortness of the data record. The estimated
transition matrices for the CMM and CHM,

02318 0.7682 | Pcar=| 0.1810 0.6083 0.2103

0.9199 0.0801 R 0.8853 0.1147 0
0 02373 0.7627

f)ZCMM :[

on the other hand would lead us to suspect that a homogeneous Markov model
was perhaps inappropriate for this data set. This example serves to demonstrate
the “knee phenomenon” alluded to earlier. The log likelihood for the SMM
models increases monotonically: rapidly at first (for lags 4-8), and only in-
crementally for lags above 10. The actual lag was 10, so that the likelihood curve
is an indicator of the order of the model. Similar arguments can be brought to
bear on the number of states in homogeneous Markov models.

7. Discussion

We have presented a method based on hidden Markov models that is applicable
not only in the estimation of model parameters for a given model structure, but
also in comparing models from different classes. In illustrating this concept, we
chose three types of models that are relevant in the field of biological channel
modelling, namely, coupled Markov models, discrete-time Colquhoun and
Hawkes models, and semi-Markov models. The CHM class is representative of
aggregated, homogeneous Markov models with disallowed transitions, while
SMMs can deal with time-varying transition probabilities. The simulation results
support the empirical observation that the log likelihood is a satisfactory
measure of proximity of the model to the data, and additionally that the knee in
the likelihood curve gives a fair indication of the most suitable number of states
or order of the model. We do not claim to have demonstrated the latter point in
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an analytical sense, rather it is an observation that appears to be valid at least for
the limited class of models we consider.

We repeat that, during estimation, we can constrain the structure of the
transition matrix by setting some elements to zero, but the transition probabili-
ties are otherwise freely varying. A further fitting step would be required to
determine the parameters of a CMM or fractal model which are close in some
sense to the estimated transition matrix. An example of this model fitting may be
found in KeNNEDY and CHUNG (1992). It should be clear, however, that the
optimal model structure can be estimated by our method. Strictly speaking, the
incorporation of models which are parametrised by fewer quantities than the set
of their transition probabilities involves a redesign at the EM algorithm level,
and this is a subject for future research.

A further model, not explicitly treated here, is the higher order scalar Markov
chain, in which the transition probabilities depend on more than one past state.
A higher order Markov chain can always be recast as a first-order vector
Markov chain using the simple observation that for any stochastic process {x,}

Prixysy[Xe coos X n) = Pr(Xpp 1, X ooy Xgem g 1| X0 20 Xp— )

=Pr(X; 11Xy, (31)

where X, =(x,, ..., x,_y) (see, e.g, BILLINGSLEY (1961)). In other words, by
relabelling the states we can obtain a first-order Markov chain. Owing to the
replication of some elements in X, , , and X, some transition probabilities in the
resulting first-order process for the vector z, will be zero. A similar remark
concerning the structure of the transition matrix holds in the case of the fractal
model. This has important computational consequences in that only the non-zero
transition probabilities need be updated in the parameter estimation scheme,
despite the usually large number of states. Our treatment of semi-Markov models
parallels the latter in its reformulation of the problem as a vector Markov chain
with a particular structure.

The implication of our results for real channel currents is that it should now be
possible to ascertain what type of signal model is most appropriate and consist-
ent with the data. Theoretically, the best model in the HMM framework is the
one which maximises the likelihood function of the data. It is hoped that this
mathematical tool, with appropriate application, may add to our understanding
of the physical mechanisms underlying ion transport in cell membranes.
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