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Abstract. Recent determination of the molecular structures of potassium and mechanosensitive
channels from x-ray crystallography has led to a renewed interest in ion channels. The challenge for
permeation models is to understand the functional properties of channels from the available struc-
tural information. Here we give a critical review of the three main contenders, namely, continuum
theories, Brownian dynamics and molecular dynamics. Continuum theories are shown to be invalid
in a narrow channel environment because they ignore the self-energy of ions arising from the induced
charges on the dielectric boundary. Brownian and molecular dynamics are thus the only physically
valid methods for studying the structure-function relations in ion channels. Applications of these
methods to potassium and calcium channels are presented, which illustrate the multi-ion nature of
the permeation mechanism in selective biological channels.
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1. Introduction

A theoretical case for the existence of water filled holes in biological membranes
was first made by Parsegian [1]. He observed that otherwise ions would have to
overcome a self-energy barrier of 65 kT to cross the membrane, making this an
extremely improbable event contrary to the observations that ions flow almost
freely in and out of cells [2]. This was followed by many electrostatic calcula-
tions of potential energy profiles of single ions across schematic channels [3-7],
mostly modeled after Gramicidin A because of its known structure [8]. The in-
fluence of the ionic atmosphere on the potential profiles was explored next using
the Poisson-Boltzmann (PB) equation [9-11]. These results revealed substantial
reductions in the single-ion potential energy profiles due to the shielding provided
by the counter ions. Since then the PB equation has replaced Poisson’s equation
in potential energy calculations in numerous studies of ion channels [12-16]. In
a parallel development, continuum theories of permeation such as Nernst-Planck
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and Poisson-Nernst-Planck (PNP) equations were applied to ion channels to calcu-
late their conductance properties (see [17, 18] for reviews and [19-24] for recent
references). Unlike the popular rate theory, where the energy profile in a channel
is determined by fitting it to the current-voltage (I — V') curve, the PNP theory
actually calculates the potential for a given channel structure by solving Poisson’s
equation. In this sense, the PNP modeling of ion channels have been the first
attempts at relating channel function to its structure.

The alternative to continuum theories are Brownian dynamics (BD) and mo-
lecular dynamics (MD) methods, where trajectories of individual ions are followed
by computer simulations. Only ions’ motion is followed in BD whereas all the
atoms in a system are simulated in MD. Because these approaches are computa-
tionally very demanding, their application to realistic modeling of ion channels
are much more recent. For example, while BD was proposed by Cooper et al. in
1985 using a structureless 1-dimensional channel [25], its application to realistic
3-dimensional channels appeared only in 1998 [26, 27]. Similarly MD have been
used in simplified model studies of the gramicidin A channel from the eighties on
(see [6, 28] for reviews). But the free-energy profiles obtained from these studies
were mostly inconsistent with the experimental observations — the predicted barri-
ers were too large to allow permeation of ions at the measured rates. The problem
appears to be due to the simplifications made in the channel model and the force
fields employed in MD simulations, forced by the limitations in computer power.
With the current parallel and super computers, such simplifications are no more
necessary, and the MD method could, in principle, yield more accurate results.

Determination of the crystal structures of the KcsA potassium [29] and mechano-
sensitive MscL. channels [30] have shifted the focus of model studies from gram-
icidin A to these biological channels. The challenge for the permeation models
is to relate the channel function to its underlying molecular structure. Properties
such as I — V curves and saturation of conductance with concentration are of
primary importance in this regard. MD simulations are currently restricted to the
nanosecond time regime. Therefore they cannot be used to calculate the channel
conductance, and one has to resort to the coarser BD and PNP methods for this
purpose. Solving the PNP equations is computationally much cheaper than the BD
simulations, so, provided one could establish its validity in channels, it would be
the method of choice. Here we present a critical review of the PNP, BD and MD
methods and discuss their ability to model accurately the permeation process in ion
channels. The BD method is shown to provide the best choice as demonstrated by
applications to the potassium and calcium channels.

2. Permeation Models

We briefly introduce the basic formalism for the three permeation models PNP, BD
and MD. The first two methods rely on continuum electrostatics to calculate the
electric potential and field acting on ions. Here water, channel protein and mem-
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brane are treated as continuous media with uniform dielectric constants, typically
ey = 80 for water and &, = 2 for protein and lipid. Once the positions of fixed
external charges in the protein and mobile ions in water are specified with charge
densities pex and p., respectively, the potential ¢ is determined from the solution
of Poisson’s equation

gV - [e(r)Ve(r)] = —(pex + Pel), (D

with appropriate boundary conditions. For an arbitrary channel boundary, Equa-
tion (1) can be solved numerically using the boundary element [3] or the finite
difference [31] methods. Potential profiles obtained from such solutions indicate
presence of significant self-energy (or reaction field) barriers due to the induced
charges on the dielectric boundary that will prevent permeation of ions across a
narrow pore. These barriers need to be canceled by attractive interactions with
counter charges in the protein to make the channel operational.

In electrolyte solutions, mobile ions move to minimize the energy of the system
and, at equilibrium, distribute themselves according to the Boltzmann factor

per(r) =Y zyeng, expl—z,ep(r)/kT], )

where ny, is the bulk (or reference) number density of ions of species v and z,e is
their charge. Substituting o, in Equation (2) in Poisson’s equation (1), one obtains
the Poisson-Boltzmann equation for a z : z electrolyte

&V - [e(X)V(r)] = 2ezng sinh[zep(r)/kT] — pex. 3)

The PB theory has been applied successfully to macromolecules, and this was
deemed sufficient proof for its general validity including channels. However, there
is a big difference between the two systems electrolytes are external to macro-
molecules and therefore self-energy of ions are negligible compared to their kinetic
energy, whereas ions are surrounded by proteins in channels. This amplifies their
self-energy by more than an order of magnitude to several kT, which is certainly
not negligible. As shown by comparisons of PB and BD results [32], the potential
barrier of a test ion is grossly underestimated in PB calculations because the self-
energy is ignored in the continuum representation of ionic densities. As a result,
counter ions freely enter the channel and shield the test ion, reducing the energy
barrier it faces drastically compared to that of a single ion (zero concentration).
This result cautions against the use of PB equation in narrow pores and also points
to potential problems in application of PNP to channels.
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2.1. PNP EQUATIONS

In continuum theories, the flux J, of each ion species is described by the Nernst-
Planck equation which combines the diffusion due to a concentration gradient with
that from a potential gradient

Jo= =D, (Vn + 22Vp), )

where n, is the number density and D, is the diffusion coefficient of the ions of
species v, and we have used the Einstein relation o = (zen/kT)D to express
the conductivity in terms of the diffusion coefficient. For self-consistency, Equa-
tion (4) needs to be solved simultaneously with Equation (1), and together they
form the PNP equations. Because of their non-linear nature, the PNP equations
can only be solved numerically using finite difference methods [22, 33]. In this
regard, we note that the classic Goldman-Hodgkin-Katz equation [2] is, in fact,
not a self-consistent solution of PNP because it assumes a constant electric field in
disagreement with the solutions of Poisson’s equation. Lack of analytical solutions
has made it difficult to obtain an intuitive picture of ion permeation in the PNP
approach.

Applications of PNP to ion channels have mostly focused on fitting the / — V
curves using the diffusion coefficients of ions as adjustable parameters. Since the
I — V curves are usually linear in the physiological range, such fits are trivial
and tell us little about the capabilities of a model. In this respect, saturation of
conductance with increasing concentration is a far more significant property that
cannot be fitted by such a simple adjustment of parameters. Saturation arises be-
cause ions move in a single file and they have to overcome energy barriers in a
channel. Thus there is a minimal time for each ion to cross the channel that puts
an intrinsic limit on the amount of current it can carry regardless of how large the
bath concentrations are. Because the channel current depends on the barrier height
exponentially, the shape of the saturation curve is very sensitive to the details of the
potential. Hence saturation rather than / — V curves, provide the most stringent test
on the validity of a permeation model. Surprisingly, saturation has been completely
neglected in applications of PNP. Clues for reasons of this disregard may be found
in the PNP equations and the potential profiles calculated from them. Inspection
of Equation (4) gives no hints for the saturation behaviour. If anything, it suggests
that conductance will rise linearly with concentration. Also the potential profiles
calculated from PNP invariably exhibit deep wells without any barriers that are
requisite for the onset of saturation. These strongly suggests that PNP will have
problems in accounting for the saturation property of channels. After introducing
BD, we will demonstrate through comparisons of PNP and BD that this is indeed
the case.
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2.2. BROWNIAN DYNAMICS

Brownian dynamics provides the most economical modeling for the permeation
process in channels where ions are still described as individual particles rather
than in continuum. Because the problem involves interaction of many ions with a
complicated boundary and stochastic forces, no analytical solutions are possible,
and one has to resort to computer simulations to calculate the channel observables.
In BD simulations, the trajectory of each ion in a system of N ions is followed
using the Langevin equation

dV,’
m;——
dt

where m;, v; and y; are the mass, velocity and the friction coefficient of the ith
ion. The three force terms on the r.h.s. of Equation (5) correspond to the frictional,
random and the total systematic forces acting on the ion. The frictional and random
forces represent the incessant collisions of the ion with the surrounding water
molecules in an average way. Because they arise from the same source, the two
forces are not independent but related through the fluctuation-dissipation theorem

=-miy;vi + R +F;, i=1,... N, &)

00
1
iVi= —— Ry (O)R; (t))dt, k=x,y,z. 6
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Here the quantity in the integrand is the autocorrelation function of the random
force and the angular brackets denote average over an equilibrium ensemble.

Calculation of the systematic forces both accurately and fast enough is a crucial
requirement for the success of BD simulations. Ions are ultimately driven by the
electric forces acting on them so they need to be calculated at an accuracy of a few
percent. Solving Poisson’s equation at such a precision at every time step would
severely limit the total simulation time in BD, making it impossible to determine
the conductance of a channel. This problem is circumvented by precalculating the
electric potential and field on a grid of points and storing these values in a set of
tables [34]. During simulations, the potential and field at desired points are de-
termined by interpolating between the table entries. For calculational convenience,
the total potential ¢; experienced by an ion i is broken into four pieces using the
superposition principle

0 = @xi+ s+ Z(@c,ij + @Qr.ij)s (7N
J#i
where the sum over j runs over all the ions in the system, and the four terms refer
to:
i) ¢x ; is the external potential due to the applied field, fixed charges in the pro-
tein, and the surface charges induced by these on the channel boundary. Because it
is independent of ions, ¢x does not change during simulations. Poisson’s equation
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is solved in the absence of ions and the results at the grid points are stored in a 3-D
table.

ii) @gs.; 1s the self-potential due to the charges induced by the ion i itself on
the boundary. Poisson’s equation is solved for a single ion with the applied field
and fixed charges switched off. The ion is moved through the grid points and the
calculated self-potentials are stored in a 3-D table (2-D if the channel boundary is
axially symmetric).

iii) c.;j is the Coulomb potential due to the ion j. It is calculated directly from
the Coulomb law.

iv) @ ij 1s the reaction potential due to the charges induced by the ion j. This
is similar to the case ii) except a second ion is moved through all the grid points
while the first one is hold at one point. Because the solution of Poisson’s equation
contains the Coulomb and self-potentials at the position i, these need to be sub-
tracted to obtain ¢g ;;. The results are stored in a 6-D table (5-D if the boundary is
axially symmetric).

An identical procedure is used to store the three components of the electric field
on three sets of tables. Tests indicate that forces acting on ions in channels can be
calculated very accurately with this method [34]. In addition to the electric forces,
ions also experience short-range forces when they are close to other ions or protein
walls. These are typically modeled by two-body potentials with an »—° dependence.
More sophisticated forms determined from the MD simulations are also employed
and are, in fact, found to be necessary in modeling of multi-ion channels [35].

To complete the simulation system, electrolyte filled reservoirs are attached
on either side of the lipid-channel complex. From Debye screening arguments,
the optimal size for the reservoirs is about 30 A for physiological concentrations
(0.15 M). Concentrations of ions in the reservoirs are maintained at the specified
values by elastically scattering them off the boundaries. When an ion crosses the
channel, an ion of the same species is transplanted to the other side so as to keep
the concentrations at their specified values. This process simply mimics the com-
pletion of the circuit by a wire in an actual conduction experiment. Finally, the
membrane potential is implemented by applying a uniform electric field across
the simulation system. Once the system is equilibrated in BD simulations, charge
separation occurs across each reservoir so as to cancel the applied field. Thus the
potential drop occurs mainly across the channel. We calculate this potential drop
from the difference of the average potential values at the centers of the reservoirs,
similar to measuring the voltage difference between the two sides of a membrane
with the probes of a voltmeter.

What are the limitations of BD? The precise answer depends on how one calcu-
lates the systematic forces. The only phenomenological parameter in the Langevin
equation (5) is the diffusion coefficient of ions, which can be easily estimated
from MD simulations. If one could also calculate the average forces acting on
ions from MD simulations, BD would become a very rigorous method and give
similar results as MD. At present, this level of rigor has not been achieved yet,
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and continuum electrostatics is employed in force calculations. Applicability of
continuum electrostatics in channels is by no means a settled issue as one can
present arguments either way. Further study of this problem using MD simulations
is required to reach a definite conclusion. In the mean time, applications of BD
to channels that use continuum electrostatics are quite successful and, with the
exception of the gramicidin A channel, do not provide any evidence that may point
to its failure.

2.3. COMPARISON OF PNP AND BD

In the PNP approach, ion concentration and flux are described by continuous quant-
ities corresponding to macroscopic, space-time averages of microscopic motion of
individual ions. This averaging, called mean field approximation, is known to be
valid in bulk electrolytes where many ions participate and their interaction with the
system boundaries are negligible. The situation in channels is quite the opposite
— there are only a few ions and they interact strongly with the channel boundary.
Could one still expect PNP to work under these conditions? Until recently, this
question has been ignored by the practitioners of PNP, who offered the successful
fitting of the experimental / — V curves for justification of the theory. Here we
demonstrate that one of the primary contributions to the potential energy — the self
energy arising from the charges induced by the ion on the dielectric boundary —
is completely neglected in PNP. Therefore it cannot give a valid description of ion
permeation in narrow pores.

The simplest way to test this assertion is to compare the PNP and BD predictions
in two cases: 1) the dielectric constant of protein is set to &, = 80 so that there is no
self-energy barrier for permeating ions, ii) the usual case with &, = 2 when the ions
experience the full impact of the self-energy barrier. For simplicity, the comparis-
ons are carried out using a 35 A long cylindrical channel with a variable radius. As
shown in Figure 1, the two theories agree in case (1) regardless of the pore radius,
but a large discrepancy occurs in case (ii) at small radii. The suppression of current
in BD in the latter case is simply due to the large self-energy barriers ions face in
narrow pores. The fact that PNP gives more or less the same conductance in both
cases proves that the self-energy of ions is ignored in PNP. With increasing pore
radius, the self-energy contribution rapidly decreases, and the PNP and BD results
are seen to merge for r > 10 A. The biological ion channels have much smaller
radii, therefore they are outside the domain of validity of PNP.

Earlier we have stressed the importance of describing the saturation of conduct-
ance with increasing concentration in model studies, and conjectured that PNP is
likely to fail in this respect because the self-energy barriers are ultimately respons-
ible in limiting the transition rate of ions in a channel. We illustrate this point here
using a cylindrical channel as above with r = 4 A. In order to make it conduct
cations, negative charges of magnitude —0.72 e are distributed at the mouths of
the channel, which is sufficient to cancel the self-energy barrier. In Figure 2, we
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Figure 1. Comparison of conductance of Nat and Cl1~ ions predicted by PNP (solid lines)
and BD (circles fitted by dotted lines) in cylindrical channels with a varying radius. The
conductance values are normalised by dividing with the cross-sectional area. A symmetric
NACI solution of 0.3 M and an applied potential of 0.1 V are used. On the left, ¢p for the
channel protein is set to 80 so that there is no self-energy barrier for ions. The realistic case
with ep = 2 is shown on the right.

compare the PNP and BD results for conductance-concentration curves. The BD
results are just as one would expect from a cation selective channel: chloride ions
do not conduct and the sodium conductance saturates at about 150 pS. In stark
contrast, PNP predicts a linearly rising conductance for both sodium and chlor-
ide ions beyond a transient regime at low concentrations. The initial asymmetric
behaviour happens because the channel is negatively charged and exhibits some
degree of selectivity until it attains electroneutrality. Although we have used a
schematic channel to demonstrate our point, inability of PNP to describe saturation
is a generic future that applies to any channel model; the highly-charged, multi-ion
KcsA potassium channel being an extreme example [33].

There are important lessons to be learned from the brief history of PNP in
channels with regard to the modeling of biological systems. One should definitely
strive to explain the available experimental data, but not just a selected set that
appears to give good results. When a model fails to account for a particular feature,
it could simply be due to inadequate parameterization or oversimplification that
may ultimately be resolved by a more careful study. But if the problem persists after
such refinements, it is likely to be signaling a more fundamental short-coming of
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Figure 2. Conductance-concentration curves for Nat and Cl1~ ions in PNP (diamonds fitted
with solid lines) and BD (circles fitted with dotted lines) in a r = 4 A channel with fixed
charges. Symmetric solutions and an applied potential of 0.1 V are used.

the model that needs to be explored further by appealing to a higher level of theory.
Had this been done in applications of PNP to channels, so much effort would not
have been wasted in pursuing it.

2.4. MOLECULAR DYNAMICS

Compared to PNP and BD, the MD method is both more fundamental and con-
ceptually simpler: one solves Newton’s equation of motion for all the atoms in the
system

m;t; = —V;U({r;}), ®)

and traces their motion via computer simulations. Here m; refer to the mass of
atoms, r; to their coordinates and U ({r;}) is the potential function for the sys-
tem whose gradient specifies the force acting on individual atoms. Typically, U is
taken as pair-wise sum of the Coulomb and Lennard-Jones potentials. There are
two limitations of MD that prevents it from becoming the model of choice in per-
meation studies. The first is practical: MD simulations can be run for nanoseconds
using present computers whereas many microseconds is required to determine the
conductance of a channel. Even if the computer speeds keep increasing at current
rates, it will take decades to reach that level of performance. The second is to do
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with the force fields employed in the MD simulation packages that do not include
the polarization effects explicitly. Polarization interaction constitutes a significant
part of the total energy of a water molecule or ion, but because it is expensive to
calculate nonadditive forces, it is treated approximately by absorbing its effects
in the Coulomb and Lennard-Jones potentials. This may be fine in a bulk-like
environment but during permeation, ions move from bulk water into a channel
which has very different polarization characteristics. Therefore it is very important
to develop polarizable force fields in order to obtain realistic free-energy profiles
of ions in channels. The computational resources required for this purpose is now
within the reach of current parallel and super computers, and we can expect this
aim to be achieved in near future.

Because of the time limitation, the use of MD in channels is restricted to calcu-
lation of free energy profiles of ions and some other quantities related to permeation
(e.g. ordering of water molecules, diffusion coefficients). In this respect, it plays a
complimentary role to the BD simulations by providing the required input para-
meters such as the diffusion coefficients of ions and the effective dielectic constant
of water in the channel. Also, size based selectivity of ions cannot be described in
BD, so the free-energy perturbation calculations from MD simulations are required
to explain this property.

3. Applications to Specific Channels

Because of its known structure, a great deal of effort went into model studies of the
gramicidin A channel in the past. The expectation was that one would gather useful
insights about the permeation process in biological channels from such studies.
With the appearance of the structure of the KcsA potassium channel, we now know
that gramicidin A is rather remote and isolated case, and is not likely to shed much
light to other channels. Here we consider KcsA potassium and L-type calcium
channels to illustrate how channels reconcile the two conflicting requirements —
fast permeation demanding a relatively flat potential vs. selectivity requiring a deep
binding site — by using a multi-ion permeation mechanism.

3.1. KCSA POTASSIUM

The determination of the crystal structure of the KcsA potassium channel [29]
has given a new impetus to modeling of ion channels. While KcsA is a bacterial
potassium channel, quite different from those found in animals in many details
(e.g. gating), two of its main features are expected to be preserved in all potassium
channels, namely, the narrow selectivity filter with a 1.5 A radius that holds two
K™ ions, and a water filled cavity that follows it (see the inset in Figure 3). The role
of the filter is to select the K ions against Na' and the cavity helps in reducing the
self-energy barrier of ions [36]. Here we present the results of BD and MD studies
of the KcsA channel.
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Figure 3. Potential energy profiles of a KT ion traversing the KcsA channel under an applied
field of 107 V m~! when there are 0 (A), 1 (B) and 2 (C) resident ions in the channel. The
dielectric constants used in the solution of Poisson’s equation are 60 for channel water and 2
for the protein. The electric field is in the z direction driving ions from inside the cell (left)
to outside (right). The upward arrows indicate the location of the resident ions when the test
ion is at the center of the channel (z = 0 A). The schematic channel in the inset shows the
positions of the ions in case C.
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The first BD study of KcsA was carried out using a simplified pore shape and
representing the charge residues on carbonyl groups in the selectivity filter and
in the inner and outer mouths with dipoles [37]. This was followed by a more
sophisticated study that included all the experimentally-determined channel pro-
tein in the model structure [38]. As the crystal structure of KcsA corresponds to
its closed state, open-state configurations were constructed via MD simulations.
The refinement has led to a better description of some properties (e.g. positions
of the K ions in the channel were in better agreement with the experimentally
observed sites) but otherwise corroborated the permeation mechanism found in the
earlier study. We give an intuitive illustration of this mechanism using the multi-
ion potential profiles obtained by minimizing the energies of ions resident in the
channel while another ion is brought in the channel in small steps (Figure 3). As
seen in diagram A, there is a very deep well (67 kT') for a single K ion that will
permanently bind it to the selectivity filter. The potential profile of a second ion (B)
in the presence of the first one is again attractive though the well depth is reduced
by about half. A third K™ ion is still attracted to the channel from the intracellular
side but now it faces a barrier of several k7" high. Once it goes over this barrier
through thermal fluctuations, it moves rapidly under the potential gradient towards
the selectivity filter and destabilizes the equilibrium of the two resident ions there.
From this point on, the three ions move more or less in tandem to the right until
the right-most one is expelled from the channel, leaving again two K* ions in the
filter.

This qualitative account of the permeation process in KcsA has been made
quantitative by trajectory analysis of the BD simulations [37, 38]. For example,
the average concentration of ions in the channel, the average time an ion spends in
various parts of the pore, and its mean velocity provide complementary information
about the ion dynamics. In the presence of a driving field, two ions are found in
the filter and one near the inner mouth (cf. Figure 3C). Ions spend the most time
in accessing the channel and climbing over the central barrier, the remaining time
being negligible in comparison. As the first process depends on the concentration
and the second does not, this provides a natural explanation for the saturation of
current with increasing concentration. Similarly, analysis of the mean velocities
shows that ions move at a fraction of their drift velocity in bulk while climbing
the barrier but once over, they move an order of magnitude faster. This explains
the observed insensitivity of calculated current to diffusion coefficient of ions em-
ployed in BD simulations — a welcome result considering the uncertainties in the
estimated values of diffusion coefficients from MD (see below).

The permeation mechanism delineated by the potential energy profiles and the
BD simulations sheds much light into the central paradox in operation of ion
channels (i.e. large conductance vs. selectivity), and how nature has solved this
problem. The selectivity filter is very narrow to enable it to differentiate between
potassium and sodium ions, and it has a very deep binding site. On the basis of
these two factors, one would intuitively expect ions’ crossing of the filter to be
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the rate-limiting step in the permeation process. In fact, Coulomb repulsion in
the three-ion system causes it to be unstable and thereby making this the fastest
step in permeation. A related puzzle is the large variations (nearly two orders
of magnitude) observed in the conductance levels of various potassium channels.
Clearly one could not explain such a diversity, had the filter been the rate limiting
step because it is presumed to be conserved. Study of multi-ion potential profiles
show that the energy barrier in KcsA can be reduced substantially by increasing the
radius of the inner mouth of the channel by a few A, which leads to an exponential
increase in conductance [38]. Thus the large conductance variations in potassium
channels can be explained by changes in the radius of the intracellular mouth while
keeping the selectivity filter on the opposite side intact.

The physiological properties of KcsA such as I —V and G — ¢ curves have also
been determined from the BD simulations [37, 38]. The calculated conductance G
and half-saturation cg, values are found to be within the observed range [39, 40].

Many MD studies of the KcsA channel have been performed since the appear-
ance of its structure (see [41] for a review). Most of them focus on free-energy
calculations of K™ ions in the selectivity filter. There is a general agreement among
the MD simulations that the KcsA protein can hold three K ions in a stable
conformation, two in the filter and one in the central cavity, as observed in the
x-ray structure [29]. However, in view of the uncertainties associated with the
nonpolarizable force fields employed in these studies, the absolute values of the
calculated free energies has to be interpreted with caution.

A more rewarding quantity to study with MD is the selectivity of KcsA because
it cannot be described in BD and also it involves differences in free energies, hence
suffers less from the defects in force fields. Free energy perturbation calculations
for the transformation Kt — Na* predict relative barriers of ~ 8 kT for sodium
permeation, [43], sufficient to explain the observed selectivity margin of 10*. Fur-
ther study of coordination of potassium and sodium ions in the filter shows that the
carbonyl oxygens provide a bulk-like solvation environment for K* but fail to do
so for Na™ [42, 43]. According to the picture emerging from these studies, the filter
is quite rigid and its size is optimized for solvation of the K* ions (radius 1.33 A).
Therefore the smaller Na™ ions with radius 0.95 A are not as well hydrated and
rejected from the channel.

Diffusion of ions and water in KcsA have also been studied with MD [42, 43].
The main finding from these studies is that diffusion coefficient of K* ions is
suppressed down to about 10% of the bulk value in the filter region but remains
relatively high (> 50% of bulk value) in the rest of the channel. As mentioned in
the discussion of BD results, permeation dynamics in the filter region is dominated
by Coulomb repulsion during a conduction event, and despite the large suppression
of the diffusion coefficient, this is actually the fastest step in permeation. Motion
of individual ions in the channel has been discussed in some MD studies of KcsA.
However, such single-event studies have little meaning statistically, and cannot not
be used to draw conclusions about permeation dynamics.
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3.2. L-TYPE CALCIUM

Calcium channels are as ubiquitous in excitable cells as potassium channels and
share similar properties, that is, they are extremely selective (margin for Ca/Na
is 10°) and yet conduct at the picoampere level [44]. But there is also a crucial
difference: selectivity is based on charge and not size. Radius of the Ca?* ion
(0.99 A)is only slightly larger than that of Na* while the pore radius is estimated to
be about 2.8 A [45]. Thus selectivity of calcium channels can be understood at the
BD level without having to appeal to MD. An intriguing feature of this selectivity
against Na* ions is that it is contingent upon the presence of Ca>* ions. In their
absence, Na*t ions conduct at an even faster rate than Ca>*. Physiological proper-
ties of calcium channels are well known but the corresponding information on the
structural side is rather scarce, i.e. their tertiary structures have not been determined
from crystallography yet. This discourages any attempts to model calcium channels
using MD simulations because they are quite sensitive to structural details, and it
would be very difficult to get sensible results out of MD in such circumstances.
Fortunately, structural requirements for BD simulations are much less demanding
— an approximate shape of the channel and positions of the partial charges in the
protein are all one needs to model its functional properties. Such an attempt has
recently been made in a model study of L-type calcium channel [35].

The shape of the calcium channel used in the model study is shown in the inset
of Figure 4. It is inspired by the KcsA structure but modified to take into account a
variety of physiological data. Four glutamate residues are known to play an essen-
tial role in the channel conductivity and selectivity [46], and these are represented
by four negative charges in the narrow selectivity filter (indicated by squares in the
figure). The only other charge residues required to make the channel conduct are
the set of four dipoles placed on the intracellular mouth (diamonds in the figure).
As in the KcsA study, multi-ion potential profiles give an intuitive understanding of
the permeation mechanism in the calcium channel. As shown in Figure 4A, a single
Ca?* ion would be deeply bound (58 kT') in the selectivity filter. A second Ca>* ion
is attracted to the channel from the extracellular (right) side, and the two ions can
coexist in the filter region in a semi-stable equilibrium, until the resident ion on the
left climbs over the barrier of 5 k7 via thermal fluctuations and exits the channel.
A similar picture is obtained for the Na™ ions (B), except three of them can coexist
in the filter and the final barrier to permeation is only 1 k7, which explains why the
sodium ions conduct faster. Selectivity of the calcium channel can be understood
by constructing multi-ion profiles with mixed set of ions (Figure 4C). When a Na™
ion is resident in the filter, a Ca>* ion is attracted to the filter and expels the Na*
ion from the channel upon entry. A similar result is obtained when there are two
Na™ ions in the filter. In the reverse case of a Ca** ion in the filter, though a Na*
ion is still attracted, it is unable to push the Ca>* ion over the large barrier of 16 kT.
Thus once a Ca>* ion enters the channel, Na* ions cannot push it out, only another
Ca’* ion can achieve that feat. This gives a simple explanation of the selectivity
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Figure 4. Shape of a model calcium channel and locations of charge residues (inset). Potential
energy profiles for 1 and 2 Ca2t jons (A), and 1, 2 and 3 Na™ ions (B). The profiles for the
mixed system is shown in C. The parameters are as in Figure 3 except the electric field is
reversed to the inward direction (right to left).
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mechanism in calcium channels in terms of the electrostatic interactions of ions,
which is in conformity with the insights gathered from the rate theory models.

A number of physiological properties of calcium channels have been determ-
ined from the BD simulations [35]. For example, the / — V and G — ¢ curves
are found to be in good agreement with the experimental observations. We will not
dwell on these standard quantities here but rather discuss a few other exotic proper-
ties of calcium channels that have been elucidated by these calculations. The first is
the anomalous mole fraction effect, so called because the channel current vanishes
at a certain range of Ca>* concentrations in the presence of a fixed 0.15 M Na* as
shown in the inset of Figure SA. The BD results indicate that the rapid drop and
subsequent vanishing of the channel current is due to the blocking of Na™ current
by Ca’* ions. Once the Ca’** concentration is high enough to allow two Ca’*
ions in the filter, the channel starts conducting again but now Ca’* ions instead
of Nat. While sodium ions cannot block calcium, their presence in the vestibule
can nevertheless slow down entry of a second Ca*>* ion necessary for conduction.
As illustrated in Figure 5B, the predicted reduction in the channel current with
increasing Na* concentration is in excellent agreement with the experimental data.
A final example is the effect of mutating one of the glutamate residues to neutral
glutamine on the blocking of Na™ current (Figure 5C). The mutation leads to a
reduction in the depth of the potential well compared to the native case so that
entry of a Ca>* ion in the channel is delayed, and the blocking occurs at a higher
Ca* concentration. Trends in the data (inset of C) is again reproduced by the BD
simulations.

4. Conclusions

The main conclusion of this work is that Brownian dynamics currently provides
the best alternative for studying structure-function relations in ion channels. Con-
tinuum theories are ruled out because they ignore self-energy which is responsible
for many properties such as saturation of conductance through creation of energy
barriers. Molecular dynamics, although more fundamental than BD, is unable to
calculate the key property of channels (i.e. conductance), hence it is of limited use
for the above purpose. Studies of potassium and calcium channels using continuum
electrostatics and BD demonstrate that permeation mechanism involves multi-ions,
and Coulomb repulsion among the ions plays an essential role in explaining the
central paradox of ion channels, that is, the fast permeation of ions across a binding
site (i.e. the selectivity filter). Comparisons of BD simulation results to experi-
mental observations are very encouraging for future applications of this method
as they indicate that basic properties of ion channels can be understood using a
simplified model in the absence of a detailed tertiary structure.
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Figure 5. (A) Mole fraction effect. Ca?t (filled circles) and Na™ (open circles) current
passing through the channel normalized by the maximum value of each is plotted against
the Ca?™ concentrations while keeping the Na™ concentration fixed at 0.15 M. Experimental
results from [47] are shown in the inset. (B) Attenuation of Ca®™ current by Nat ions. The
percentage reduction in the channel current is plotted against Nat concentration while the
Ca®™ concentration is fixed at 0.15 M (filled circles). The open diamonds and dotted line show
the experimental data from [48]. (C) The effect of removing glutamate charges on channel
selectivity. The Na™ current passing through the channel at different Ca2t concentrations
with all four glutamate charges in place (filled circles), the outermost glutamate removed
(triangles) and the innermost glutamate removed (squares), otherwise all conditions are as in
A. Experimental data for wild type (filled circles) and for single glutamate to neutral glutamine
mutations of two different residues (triangles and diamonds) are shown in the inset [46]. In all
cases a driving potential of —0.2 V is applied.
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