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We present a new methodology, which combines molecular dynamics and stochastic dynamics, for
modeling the permeation of ions across biological ion channels. Using molecular dynamics, a free
energy profile is determined for the ion(s) in the channel, and the distribution of random and
frictional forces is measured over discrete segments of the ion channel. The parameters thus
determined are used in stochastic dynamics simulations based on the nonlinear generalized
Langevin equation. We first provide the theoretical basis of this procedure, which we refer to as
“distributional molecular dynamics,” and detail the methods for estimating the parameters from
molecular dynamics to be used in stochastic dynamics. We test the technique by applying it to study
the dynamics of ion permeation across the gramicidin pore. Given the known difficulty in modeling
the conduction of ions in gramicidin using classical molecular dynamics, there is a degree of
uncertainty regarding the validity of the MD-derived potential of mean force (PMF) for gramicidin.
Using our techniques and systematically changing the PMF, we are able to reverse engineer a
modified PMF which gives a current-voltage curve closely matching experimental results. © 2009
American Institute of Physics. [doi:10.1063/1.3233945]

I. INTRODUCTION

Biological ion channels are protein-based structures that
span the cell membrane and provide a passage for the con-
trolled transport of ions between the inside and outside of the
cell. They are responsible for processes such as the propaga-
tion of nerve impulses and muscle contraction. In recent
years, x-ray crystallographic structures have become avail-
able for ion channels,' thus making it possible to develop
theoretical models that provide a link between the detailed
structure of a channel and its function. Molecular dynamics
(MD) is one technique that appears to give the appropriate
level of resolution to allow detailed structural modeling of
ion channels.

In order to provide a link to experiment, a quantitative,
experimentally achievable means is needed to characterize
the function of channels. This is usually provided by current-
voltage and current-concentration curves, by measuring the
inhibitory effect that classical channel blockers such as tet-
ractylammonium or 4-aminopyridine have on ion currents,
by investigating the effect of site-directed mutagenesis on
ion currents, or by determining the location of ion binding
sites. Such multidimensional data provide a yardstick against
which theoretical models can be assessed.

A theoretical model should therefore ideally be capable
of simulating a channel long enough to provide reliable
current-voltage and current-concentration curves and the
like, or a means should be available to extrapolate theoretical
results in order to predict currents. In order to simulate the

“Electronic mail: dan.gordon@anu.edu.au.

0021-9606/2009/131(13)/134102/11/$25.00

131, 134102-1

channel long enough to produce a reliable set of simulation
results to compare to experimental measurements, we might
want to observe several hundred conduction events, which,
under physiological conditions for a channel such as the bac-
terial KcsA potassium channel, translates to a simulation
time of around 10—100 ws. Currently, MD simulations of
0.1 ws are about the limit of what is practical for realistic
models of ion channels containing tens of thousands of at-
oms [see Crozier et al.>> for an actual example of a MD
current calculation on a simplified system consisting of
around 1000 atoms or Aksimentiev and Schulten® for a cal-
culation of ionic current in a large (nanometer scale) pore].
So, while there is room for optimism about the possibility of
using MD to provide a direct and routine link between theory
and experiment in the future, there is still some way to go.

To make further progress, there are a number of possi-
bilities. One strategy is to turn to higher level physical theo-
ries, such as the Poisson—Nernst—Planck (PNP) theory5 or
Brownian dynamics (BD) (Ref. 6) or to higher level versions
of MD, such as implicit solvent MD or coarse-grained MD.
Another strategy, which we shall follow in this paper, is to
use a two-tiered approach. MD is used to measure various
properties of the system, such as free energy and diffusion,
and the results of the measurements are fed into a higher
level simulation that is able to extend the achievable simula-
tion time horizon beyond what is practical using MD.

This strategy has been applied in the past by several
groups. For example, transition state theory assigns discrete
states to system configurations and then models the transition
rates between these states as a Markov chain, potentially
using data from MD.” More recently, several authors® have

© 2009 American Institute of Physics

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.3233945
http://dx.doi.org/10.1063/1.3233945
http://dx.doi.org/10.1063/1.3233945

134102-2 Gordon, Krishnamurthy, and Chung

extended these ideas to models that describe the motion of
the ions as the limit of a random walk, typically using a
single spatial dimension and a reaction coordinate of several
dimensions. The dynamics are governed by the free energy
profile, or potential of mean force (PMF), and the position
dependent diffusion coefficient. The motion is assumed to be
first-order Markovian (memoryless), and inertial and fric-
tional terms are neglected. The entry and exit of ions to and
from the channel are assumed to be a first-order process, and
there is some uncertainty regarding the prefactor for the en-
try and exit rates. These models have been used to describe
complex interactions, such as proton transport in gramicidin
including a description of the water defect® and multi-ion
conduction pathways in KcsA,’ providing a good link to ex-
periment. In other related work, Burykin et al."® also per-
formed BD simulations on energy surfaces calculated using
mesoscopic electrostatics calculations for the KcsA channel.

In a somewhat different, fascinating application, termed
potential-of-mean-force-Poisson-Nernst-Planck  (PMFPNP)
theory, Mamonov et al.>"" modeled the flow of ions through
a gramicidin channel as a mean-field diffusion in a self-
consistent potential (such as standard PNP theory) but incor-
porating an external free energy (PMF) and diffusion con-
stants derived from MD measurements. A novel
methodology, combining MD and macroscopic electrostatics,
is employed to calculate the PMF,S’“’12 which, for narrow
channels such as gramicidin, may be important, since PMFs
calculated directly from MD in such cases tend to suffer
from slow convelrgence13 and artifacts due to the use of a
small, periodic unit cell and nonpolarizable lipids.14 In a sub-
sequent paper, Mamonov et al.’ investigated methods for
calculation of diffusion constants. To deduce the current
across the gramicidin pore, Allen et al." also employed a
continuum model in the form of one-dimensional (1D)
Nernst—Planck theory using the PMF and diffusion coeffi-
cients calculated from MD simulations.

In this paper, we take as our point of departure the aim to
reproduce the distribution of ion trajectories implicit in a MD
simulation as closely as possible. Unlike other previous
work, this leads us to employ non-Markovian generalized
Langevin dynamics in three spatial dimensions rather than,
say, Langevin dynamics or BD. Strictly speaking, the Mar-
kovian assumption is valid only when the solvent particles
are much lighter than the Brownian particles being modeled;
obviously this is not true for, say, ions in water. In practice,
the assumption often works, but the interpretation of when
and why this is the case is open to question. It is known that
system memory may in some circumstances lead to different
barrier crossing rates and other dynamics,m17 and we aim to
develop a fairly general theory that will automatically take
such considerations into account. The aim of reproducing the
distribution of MD trajectories leads us to refer to this ap-
proach as “distributional MD.” We discuss various approxi-
mations and assumptions in the context of this aim.

We model the full three-dimensional channel/reservoir
system containing many anions and cations, so that the full
dynamics of ion entry and exit from the channel is taken into
account, and processes such as ion depletion under condi-
tions of high current will be correctly dealt with. Our model
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also allows certain aspects of the macroscopic electrostatic
calculations used in conventional BD simulations® to be in-
corporated, such as the voltage drop across the channel due
to the membrane potential or dielectric mediated ion-ion in-
teractions.

As a first test, we apply these methods to the gramicidin
channel. Gramicidin channels are a useful benchmark ex-
ample since, first, macroscopic approximations break down
in channels containing single-file water'® and second, grami-
cidin is a one, or at most two, ion channel, which simplifies
the analysis. Several simplifying assumptions are made—for
example, we assume that the ion obeys a generalized Lange-
vin equation with an exponential friction kernel. We find that
the PMF deduced using the CHARMM?27 parameters is too
high, and hence the conductance is much lower than that
seen in experiment. This is perhaps not surprising, given the
known difficulty in modeling the energetics of ions in grami-
cidin using MD and the fact that systematic errors have been
identified that artificially raise the PMF." By reverse engi-
neering, we modify the PMF so that experimental results are
reproduced. Note, however, that the resulting reverse engi-
neered PMF is not necessarily unique.

Il. THEORETICAL FORMULATION

The general procedure we follow comprises of three
steps:

(I) A stochastic physical model is derived or assumed for
the system, e.g., the generalized Langevin equation.

(2) The parameters governing the evolution of the system
variables are estimated from MD simulations.

(3) The stochastic simulation is then carried out by numeri-
cally solving a stochastic dynamics equation, making
use of the parameters derived in the previous step.

In the following sections, we describe each of these steps.

A. Derivation of a stochastic physical model

In this step, we choose a stochastic equation, such as the
Langevin equation or the nonlinear generalized Langevin
equation, to model the motion. We shall discuss the theoret-
ical basis for this choice in order to gain some understanding
of the validity and limits of the chosen approach.

Our system can be described by an indexed set of phase
variables I'={T";}={(Q;,P;)}. We shall use the following no-
tational conventions: for an indexed quantity, such as p;,
boldface will indicate a column vector, so, for example,
p=[p1,p2>....py]!. Similarly, for a quantity with two indi-
ces, the lack of indices will indicate the corresponding ma-
trix. V4 means the vector operator whose components are
g, =9/ 9q;. The pair (Q;,P;) denotes the ith generalized co-
ordinate and momentum, where i € [1, ...,3N] for three spa-
tial dimensions and N particles. For example, here I'" de-
scribes the positions and momenta of all the atoms in a MD
simulation of an ion channel, consisting of some ions of
interest, a background solution, a channel protein, and a lipid
membrane.

We are interested in a projection I'; that describes, for
the ion channel example, the positions and momenta of all
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ions of interest. The remaining phase space coordinates are
of interest only through their effect on I';; they can be con-
sidered to be a “heat bath.” Thus we partition the phase space
into variables of interest, or “system” variables and “bath”
variables,

r=r,xr,, (1)
where

Iy =A{ly;} ={(gip)}.
are the system phase variables and

sz{rb,i} Z{(Qi’Pi)}’ i=1,....,Ny, (3)

are the bath phase variables. Naturally, N +N,=3N.

We show that, under reasonable assumptions, the equa-
tions of motion can be expressed as a nonlinear (due to the
presence of a position dependent force) generalized Lange-
vin equation,lc)_21 obeying a generalized fluctuation-
dissipation theorem.”' Our starting point is the fact that MD
obeys Newton’s laws of motion, and therefore will obey cer-
tain physical constraints. We wish to build these constraints
into the model rather than simply hope that we have sampled
the MD distribution well enough to ensure that they are sat-
isfied. Using the partitioning into system and bath spaces, we
can write the Hamiltonian as

i=1,....N,, 2)

H=Hs+Hb+Hsb’ (4)

where H, describes terms arising purely from the system
variables, H, describes terms arising purely from the bath
variables, and H, describes the interaction between the sys-
tem and the bath.

c=5p'm7'p+ Uy(q), (5)
H,=3P™™M'P+U,Q), (6)
Hsb = Usb(q7 Q) (7)

Here we define m and M to be the system and bath mass
tensors; in Cartesian coordinates these are diagonal, with, for
example m;; being the mass of the ith particle.

Also we define the forces

Fi=-V.U(q). (8)
F;=-VoU,(Q). 9)
F},=-V,U(q.Q), (10)
F),=-VoUu(q.Q). (11)

These are, respectively, the force exerted on the system by
U,, the force exerted on the bath by U,, the force exerted on
the system by Uy, and the force exerted on the bath by Uy,.

1. The potential of mean force

At this point, we will reassign the force terms. Define the
PMF (Ref. 22) as the potential whose gradient Fpyp is the
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equilibrium average of F;, at a given value of q. As this is a
function only of q, we subtract it from F;, and add it onto F.
Thus,

Frr = F}, - Fpyp, (12)

Fp=TF+Fpyp, (13)

where the subscripts RF and D denote, respectively, “random
plus frictional” and “deterministic.” The total force on the
system variables can now be written as

Fioo=Fp+ Fgg. (14)

2. The generalized Langevin equation

In much of the literature,23 it is assumed that the evolu-
tion of the projection of the system plus bath onto the system
variables can adequately be described by the generalized
Langevin equation. It consists of (i) Newton’s laws of mo-
tion for the system variables, (ii) a frictional force, multilin-
ear in the velocity as a function of previous times, and (iii) a
random force, related to the frictional force through a
fluctuation-dissipation theorem. Often, one goes further and
assumes that the friction depends only on the velocity at the
present time, therefore giving the Langevin equation.

The existence of a nonlinear position dependent force
F;,(q) means that we require a nonlinear generalized Lange-
vin equation rather than the usual generalized Langevin
equation which does not adequately describe any significant
deviations from equilibrium. The nonlinear generalized
Langevin equation is

aq(H) =m"p(1),
(15)

ap(1) =Fp(q(1) - f dr'K(t")p(t—1') + F(t),
0

where the sum of the second and third terms in Eq. (15)
corresponds to Frp defined in Eq. (12) above. Apart from the
presence of the nonlinear force term Fp(q), this equation is
the same as the regular (linear) Langevin equation.24’25 The

following  fluctuation-dissipation ~ theorem is  also
assumed: "%
(FR(O)F (1)) =KTK(t)m. (16)

Here, the function K() denotes the friction kernel and is
intrinsic to the system. Finally, we assume that Fj is a
Gaussian random process.20 This can be empirically verified
from MD simulations using the Kolmogorov—Smirnov or
Andersen—Darling tests on the joint distribution over mul-
tiple time periods (see Sec. IV).

There is no theoretical guarantee that Eq. (15) is a rea-
sonable approximation to the system motion, although this
seems to be a reasonable assumption. Zwatlzigl9’20 shows
that this nonlinear generalized Langevin equation can be de-
rived from first principles if we assume a bath potential that
is quadratic and a linear system-bath coupling. Cicotti and
Ryckaert21 have analyzed the case of general (not necessarily
quadratic) system-bath coupling. They find that Eq. (15) and
associated fluctuation-dissipation results do not hold in gen-
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eral. Instead, they derive a more complicated nonlinear gen-
eralized Langevin equation and associated fluctuation-
dissipation theorems. We have applied this equation to MD
simulations but found it to be numerically less stable and
generally harder to interpret. In this paper, we use the sim-
pler nonlinear generalized Langevin equation Eq. (15).

3. Relationship between the friction kernel and the
momentum autocorrelation function

By multiplying Eq. (15) on the right by p”(0) and taking
an ensemble average [conditioned on q(r=0)], we can derive
an equation for the momentum autocorrelation function

C(n)=(p()p’(0)):
9,C=(Fp(1)p’(0)) - f K(t—1")C(¢")dt". (17)
0

Note that the correlation function on the right hand side of
this equation can be estimated from the simulation data pro-
vided the PMF is known.

If we approximate F, by a harmonic potential U(q)
=k(q—qo)?/2, as was done by Straub er al.,” then Eq. (17)
simplifies to

d,C=— f (K(t— t') + E)C(t’)dt’

0
=—flK'(t—t')C(t')dt', (18)
0

where K'=K+k/m. Because, in realistic systems, K(z)
should decay to zero as r— %, k/m can be estimated as the
limit of K'. Therefore, if we make this harmonic approxima-
tion, it is not necessary to have knowledge of the PMF in
order to derive K.

Equations (17) and (18) are Volterra equations. Given C,
they can be solved for the friction kernel K(#) by numerical
integration.26 Alternatively, an explicit expression for K(z)
can be derived using Laplace transform methods, ">’ but
this method, while being theoretically neater, tends to be
numerically unstable in practice.28

To summarize, using data derived from MD simulation,
we calculate C(¢). Solving Eq. (18) then yields the friction
kernel K(z). This, along with the PMF, enables us to fully
characterize the nonlinear generalized Langevin equation,
given the additional assumptions that fluctuation-dissipation
theorem equation (16) holds and that Fy is Gaussian.

lll. METHODS

A. Estimating the parameters of the generalized
Langevin equation using molecular dynamics
simulations

In this section, we will discuss estimation of the param-
eters of the generalized Langevin equation. As we have just
showed, these are as follows:

(1) Fp(q), the deterministic force (gradient of the PMF
+system force), and
(2) K(z), the friction kernel.
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It should be noted that the accuracy of the measured
parameters will depend, among other factors, on the degree
to which the system attains stationarity (ergodicity) over the
measurement time horizon. It is an interesting question what
the timescale of ergodicity is, especially for single-file water
channels such as the gramicidin channel considered later as a
numerical example.

1. Estimating the potential of mean force

The process of estimating the PMF has been extensively
discussed in the literature.”>* = Single particle PMFs can be
ID functions (e.g., the order parameter is z, the distance
along the axis of the channel), two-dimensional functions
[with order parameters (z,r)] for channels that are approxi-
mately radially symmetric, or three-dimensional functions
(z,7, 6). In addition, we may have to consider the joint PMF
for two or more particles—so, for example, we would have a
four-dimensional order parameter (q,,r;,q,,7,) for two par-
ticles where cylindrical symmetry is assumed.

So long as the nonlinearity is not too high, in the case
where there are more than two ions in the channel, we need
only calculate a two-ion PMF, since the force on one ion due
to all the others can be expressed as a sum of ion-ion inter-
actions. So at worst, we can expect to have to calculate a
six-dimensional PMF (three spatial dimensions and two
ions). However, even this can be computationally prohibi-
tive. In this paper, we use a three-dimensional, radially sym-
metric PMF for a single ion. This choice is reasonable for a
narrow channel such as gramicidin. Ion-ion interactions are
modeled via force calculations derived from macroscopic
electrostatics, although in future work, we intend to make
two-ion PMF measurements.

In order to calculate the gramicidin PMF, we employ
umbrella sampling techniques. For details see Sec. III C be-
low. An interesting alternative that may overcome some of
the problems of slow convergence and simulation artifacts of
MD combines data taken from MD simulations with macro-
scopic electrostatics.”!' "'

2. Estimating the frictional and random forces from
molecular dynamics simulation

As discussed above, the generalized Langevin equation
and the fluctuation-dissipation theorem imply that both the
frictional and random forces can be calculated from the fric-
tion kernel K(7). Our problem is then how to sample K(¢) in
cases where the starting point is far from (system) equilib-
rium. For example, for an ion channel, how do we sample
paths that start at or near the top of the potential barrier given
that the ion will rarely be observed in such a position?

We discuss two methods: “harmonic bias potential” and
“clamp and release.” The harmonic bias potential method is
computationally more efficient but relies on modifying the
system potential in a way that may lead to systematic error in
the results. The clamp and release method is computationally
more expensive and prone to methodological errors but is
more rigorous from a theoretical point of view. In the nu-
merical studies on the gramicidin channel presented in this
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paper, we used the harmonic bias potential method, although
we have also performed some tests using clamp and release.

3. Estimating the friction kernel K(t) using a
harmonic bias potential

In this method, a harmonic potential is applied to the ion,
centered at the point in the channel at which the friction
kernel is to be measured and using a spring constant strong
enough to prevent the ion from wandering too far from this
point. The trajectory is gathered and analyzed using the re-
sults of Sec. IIT A 2. Data gathered from the umbrella sam-
pling used to estimate the PMF can be used in place of a
separate simulation.

There is no guarantee that the presence of the harmonic
bias potential will not distort the friction kernel. This would
be a second order effect [since the first-order effect of any
quadratic potential is compensated for in our solution, see
Eq. (18)]. Furthermore, supposing the friction experienced
inside the channel did not depend strongly on the ion’s loca-
tion in the channel, we would have further grounds for con-
fidence in the results. Mamonov ef al."> and Allen er al."*
employed similar methods (that is, harmonically restraining
the particle inside the channel while conducting an analysis
based on the generalized Langevin equation) in order to de-
termine the position dependent diffusion coefficient in
gramicidin.

4. Estimating the friction kernel K(t) using clamp and
release

It can be shown using thermodynamics that we can
sample from the equilibrium distribution contingent on
q(0)=q, simply by sampling from the equilibrium distribu-
tion of the system where q(0) is fixed to q, and sampling
p(0) from a Boltzmann distribution. We thereby arrive at the
following clamp and release procedure. First we perform the
clamp phase: The system variables are clamped to q=gqq.
The initial value of p(r=1,) is sampled from a Boltzmann
distribution. The clamped system is then equilibrated. Alter-
natively, instead of fixing qg, we can restrain it with a tight
harmonic potential centered on g, in which case there will
be no need to sample p(¢=t,). Second, we perform the re-
lease phase. We remove the constraint on ¢ and evolve the
system while collecting the trajectory q(z).

At the end of the release phase, we decide whether to
stop collecting data. The condition for stopping can be de-
cided by testing disjoint subsets of the collected data; the
observed variation in the resulting friction kernel will give an
estimate of an upper bound on the statistical variation. If the
stopping criterion is not met, we repeat the clamp and release
cycle. The system is reverted back to its state immediately
after the clamped equilibration, some further equilibration is
performed, and a new release phase is started.

The procedure above is schematically illustrated in Fig.
1. This scheme is similar to that proposed by Adib,*? al-
though our aim is to measure the statistics of the ion by
measuring correlation functions rather than measuring the
PMF.

J. Chem. Phys. 131, 134102 (2009)

A — "Clamp" trajectory
- - — - "Release" trajectories

System Phase Variables

Time
FIG. 1. A schematic diagram showing the evolution of the system during
clamp and release. The solid line represents the trajectory of the system

during the clamp phases, and the dashed side branches represent the release
trajectories.

Now suppose we obtain a set of such trajectories, taken
from the equilibrium distribution subject to q(0)=q,. Using
the results of Sec. IIl A 3, we can use these trajectories to
compute K(f), contingent on the initial value of q, q(r=0)
=qo. However, microscopic reversibility ensures that the
same autocorrelation function will apply contingent on the
final value of q(r=t;)=qq. This suits our aim, which is to
propagate () forward in time, subject to its current position
q(r) and information about its previous trajectory, q(¢'),
t'<t.

Note also that Eq. (17) can be shown to apply, even
when the autocorrelation is taken contingent on the initial or
final value of q, as it is here. Because we know C(z), we can
now apply Eq. (18) to determine the friction kernel K(¢) con-
tingent on the final value of q(t=1)).

B. Carrying out the distributional MD simulation

In this step, the simulation is carried out by solving the
nonlinear generalized Langevin equation, as described in
other papers.”’33’34 However, there are several complica-
tions, for example, involving the boundary conditions for
simulation space, that also need to be dealt with.*

Our stochastic dynamics setup for ion channels is shown
schematically in Fig. 2. We divide the simulation space into
two regions: a region consisting of two reservoirs, represent-
ing the bulk solution, and a channel region.

A fixed dielectric boundary between the protein/lipid
system and the bulk/channel region is defined by embedding
a cylindrically symmetric idealization of the shape of the
channel within a dielectric slab that represents the lipid bi-
layer. In the bulk region, normal BD is carried out® with a
long timestep, typically 100 fs. Boundaries are either treated
as being perfectly elastic at the edges of the reservoirs, with
a stochastic boundary being used to maintain concentrations
in the top and bottom reservoirs or, where the protein/lipid
enters the bulk region, using the macroscopic electrostatics
that result from the solution of Poisson’s equation with the
dielectric boundary mentioned above. Ion-ion interactions
are given as the sum of Coulomb forces, short range van der
Waals forces, and two-body image forces resulting from the
solution to Poisson’s equation with the dielectric boundary.

In the channel region, the generalized Langevin equation
is solved'’¥*** using the PMF and friction kernel derived
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@ Bulk Region :
BD + macroscopic electrostatics

Channel Region :
GLE + measured PMF and
random / frictional forces

FIG. 2. A schematic diagram showing the setup used for stochastic dynam-
ics simulations. We assume cylindrical symmetry. The simulation space is
divided into a channel region and two reservoirs. In the channel region, the
generalized Langevin equation is applied with a short timestep (2 fs) using
a PMF and friction kernel derived from MD measurements. In the reservoir
regions, the Langevin equation is solved with a long timestep (100 fs) using
standard values for friction coefficients and with a force field derived from
macroscopic electrostatics.

from MD measurements and using a shorter timestep, typi-
cally 2 fs. The option exists to apply external forces using
macroscopic electrostatics, where the relevant data are not
available from the MD measurements. For example, if we
have not obtained a two-ion PMF, we can choose to treat
ion-ion interactions in the same way as they are treated in the
reservoir regions: using Coulomb and van der Waals forces
plus two-body image forces, calculated using the dielectric
boundary.

C. Details of the method used for the numerical
example

We apply the theory and techniques outlined above to
the gramicidin ion channel, an antibiotic polypeptide that has
been extensively studied previously.%f40 There are several
reasons for choosing this channel as a test case: first, chan-
nels containing single-file water are not amenable to macro-
scopic electrostatics modeling,18 and second, gramicidin is a
one, or at most two, ion channel, which simplifies the analy-
sis.

A three-dimensional, cylindrically symmetric single par-
ticle PMF is used for the single particle potential that is
applied to each ion. This is likely to be a good approximation
to the real non-cylindrically symmetric PMF.

Thf7f3r3icti0n kernel is approximated using an exponential
model: "

K(t) = yk exp(— «t). (20)

The statistics that determine the ion motion are therefore
governed by two parameters: 7y, the inverse velocity decay
time due to friction, and «, the inverse decay time of the
friction memory kernel. These parameters depend on the po-
sition of the ion in the channel. While this exponential model
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for the friction kernel ignores features seen in real measured
friction kernels, we use it in this proof-of-principle study first
because it provides the simplest possible way to estimate the
general effect of a decaying friction kernel using only two
parameters and second because it is guaranteed to be at least
as good a representation of the motion as the more com-
monly used BD, since it can be made to approach the effect
of a delta function as k— . More general models for the
friction kernel could be implemented using, e.g., the algo-
rithm of Nilsson and Padré.**

In this initial study, the ion-ion potential consists of three
terms: the usual Coulomb force, short range van der Waals
forces consisting of a 6-12 Lennard-Jones potential, and an
interaction, calculated by solving Poisson’s equation, that re-
sults from the interaction of one ion with the surface charges
induced by other ions on the fixed boundary of the protein-
lipid system. In single-file channels, such as gramicidin, it is
likely that this may not accurately capture some features of
the ion-ion potential. For example, the mutual interaction
between two ions separated by a single-file chain of water
molecules will probably not be well described by Poisson’s
equation as applied here. Therefore, in future studies, we
wish to model the ion-ion interaction using a two-ion PMF
that is measured directly from MD. Note, however, that,
since gramicidin is predominantly a one or two-ion channel,
the approximations used here may adequately capture the
dynamics of ion conduction, at least in cases where the con-
centration is not high enough to cause strong ion-ion inter-
actions to take place inside the channel.

Timesteps of 100 fs in the bulk region and 2 fs in the
channel region are used. We obtain the PMF and the friction
kernel for an ion located at various points in the channel
using the MD protocol outlined below: We begin with a
model of the gramicidin dimer obtained from the protein data
bank (PDB), PDB accession number 1JNO.*' Water is placed
inside the channel to speed up the equilibration process. A
dimyristoylphosphatidylcholine (DMPC) membrane is then
built around the hydrated channel using the “membrane
builder” procedure developed by Woolf and Roux** and
CHARMM, " and the membrane/protein system is then hy-
drated.

We run our simulations at zero concentration. This is
done primarily because the interactions between the ions in
solution will later be explicitly included in our generalized
Langevin simulations, and we wish to avoid any minor ef-
fects that may arise from double counting of interactions
between an ion in the channel and the bulk solution.

Various restraints are applied to the system. First, weak
restraints are applied to stop the protein from drifting or ro-
tating too far from its initial position: the z motion of the
center of mass is weakly constrained by applying equal
z-accelerations to each protein atom to avoid straining the
bonds in the protein, and the C, atoms are in addition weakly
constrained in the xy plane to prevent the protein from tilting
too much or drifting from the center of the simulation cell.
Second, the Trp-9 x; and y, dihedrals are constrained"® in
order to prevent slow timescale dynamics that otherwise
might occur as these residues drift to other metastable rota-
mers. Third, a cylindrical boundary of radius of 8 A is ap-
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plied to the test ion to prevent it from moving too far from
the central axis in cases where it is no longer restrained by
the channel.

The system, consisting of the gramicidin dimer, the
DMPC membrane, water inside the channel, bulk water, and
a test ion, is equilibrated using nanoscale molecular dynam-
ics (NAMD) (Ref. 44) for 2 ns. Various other preprocessing
steps are carried out with the help of NAMD and visual
molecular dynamics (VMD).* The three-dimensional cylin-
drically symmetric PMF is then calculated using the WHAM
procedure.46 A total of 101 windows are used, spaced at 0.5
A intervals, from z=-25 A to z=25 A. A harmonic con-
straining force with force constant of 12.5 kcal mol™' A2 is
applied for each window, centered at the location of the win-
dow. 1.5 ns of data are collected for each window. After
preprocessing the data to ensure a straight channel centered
on the z-axis, a two-dimensional free energy profile is then
calculated,47 with the coordinates being z and r. We idealize
the potential by symmetrizing it about the z=0 plane.

In order to produce starting configurations with the ion
located at the center of each weighted histogram analysis
method (WHAM) window, we employ a procedure, imple-
mented using NAMD’s free energy perturbation (FEP) fea-
ture, where an ion in the channel is gradually “turned
on”—in other words, its interactions with other atoms are
gradually increased from zero to their usual values. This al-
lows us to avoid the hysteresis effects that occur when an ion
is “pushed” through the channel. An alternative, which we
have also previously used, is to exchange the position of the
ion and a water molecule located near the desired position of
the ion. Further equilibration of 50 ps is carried out on each
such starting configuration.

The data collected for the WHAM analysis are then ana-
lyzed to determine the friction kernel using the harmonic
bias potential method explained previously. For each ion tra-
jectory, we calculate the momentum autocorrelation and de-
rive the kernel K(¢) using the methods detailed in Sec. II. The
reciprocal of the relaxation time constant, v, is then calcu-
lated as the time integral of K(¢) from =0 to t=0. In reality,
we examine the cumulative integral as a function of ¢ and
note that it saturates after about r=2 ps [see Fig. 5(b)]. We
then take the average value of the cumulative integral in the
plateau region. Given 7, we then find « in Eq. (20) by fitting
an exponential function to K(z).

IV. RESULTS FOR THE NUMERICAL EXAMPLE
A. Components of forces acting on the ions

The one- and three-dimensional PMF profiles con-
structed from the gramicidin pore using the CHARMM?27 force
field are shown in Figs. 3(a) and 3(b). The PMF profile we
calculated is broadly similar to that reported by Allen et
al."*'"** In our PMF, outer and inner energy binding sites,
each about 2kT (T=310 K) in depth, are visible at
z=*11 A and z= =9 A, respectively. In the center of the
pore is an energy barrier that rises about 17«7 higher than the
bottom of the wells. Several local minima are also visible
along the length of the channel. In the lower panel, we show
a two-dimensional slice through the three-dimensional, cy-
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FIG. 3. PMFs of a K* ion in the gramicidin channel. (a) 1D PMF is obtained
using CHARMM27 parameters from a gramicidin dimer (PDB No. 1JNO)
embedded in a DMPC bilayer. The dashed line is the unsymmetrized PMF,
and the solid line is the symmetrized PMF. (b) A two-dimensional cross
section through the radially symmetrized three-dimensional PMF for the
curve shown in (a). The energy is shown as a function of the ion’s position
along the channel axis and its coordinate along an axis perpendicular to the
channel axis, assuming a cylindrically symmetric PMF.

lindrically symmetric profile encountered by a K* ion in the
pore. As the ion moves away from the channel axis, the
central barrier increases. Thus, the ion will predominantly
dwell close to the axis of the pore.

Also shown in Fig. 3(a) is the unsymmetrized 1D PMF,
as calculated directly from the raw data. There is an asym-
metry in moving from one side of the membrane to the other
of about 2.5kT. This is consistent with the kind of error that
might be expected from simulations on the order of 1-2 ns
(Ref. 22) and gives some indication of the order of error that
might be present in our symmetrized profile. As this study is
primarily intended to test the theoretical techniques in this
paper and given the other more serious uncertainties due, for
example, to the force field parameters, we have limited our
calculation to 1.5 ns per WHAM data collection window.

In order to verify that our stochastic simulations really
are governed by the PMF shown in Figs. 3(a) and 3(b), we
present, in Fig. 4, a comparison between the 1D PMF as
derived from MD and a corresponding PMF calculated from
our stochastic simulation under similar conditions to the
original MD simulation. The match is excellent, except for a
small discrepancy of around 0.5k7T in the level of the bulk,
which could be due either to a simulation artifact or to the
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FIG. 4. A comparison between the 1D PMF seen in Fig. 3(a) and the cor-
responding PMF obtained for the stochastic simulation. There is a satisfac-
tory match, accurate to around 0.5k7, showing that our stochastic simulation
should mimic the MD statistical mechanics reasonably well at lower
concentrations.

difficulty of sampling the region around the transition to the
bulk. We have performed this comparison both with (shown)
and without background ions, finding more or less the same
result in either case, which shows that the background solu-
tion has little effect on the one-ion PMF for the case studied
here.

The friction kernels K () measured inside (z=1.5 A) and
outside (z=20 A) of the channel and their cumulative inte-
grals are illustrated in Fig. 5. From the cumulative integral of
K(r) versus t, we can see that, within the channel, 7 is in-
creased by the presence of a long tail on K. Thus the motion
of the ion in the channel is significantly retarded by an
“echo” effect that takes effect over a timescale some ten
times longer than that of the initial decay of the friction
kernel. Using an exponential friction kernel to represent

A
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FIG. 5. The measured friction kernel K(¢) and its cumulative integral. (a)
The friction kernel K(z) is measured by using the techniques discussed in the
text at z=20 A and at z=1.5 A. (b) The cumulative integral of K(7),
JOK(t")dt', converges at t— to .
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FIG. 6. (a) The diffusion coefficient and (b) the inverse decay time « as a
function of the ion’s position along the channel axis. The diffusion coeffi-
cient is calculated from the measured values of y using the relationship
D=kT/mv.

these dynamics will not be sufficient to fully represent the
subtle details of the motion of the ion but nonetheless should
be a reasonable approximation for most purposes.

Measured values of the diffusion coefficient D=kT/mvy
and « are shown at various positions along the channel in
Fig. 6. Note that the friction increases and the diffusion co-
efficient decreases from their bulk values as we move into
the channel. The bulk diffusion coefficient for potassium
ions, 1.96 X 10~ m? s7!, is indicated as a broken line in Fig.
6(a). On average, the diffusion coefficient inside the pore is
reduced to 54% that of the bulk value. In our generalized
Langevin equation simulations, we take account of the varia-
tion with z by dividing the channel up into nine regions and
use average values over each region. These values enter only
parametrically into the equation of motion. This parametric
dependence would not be expected to be valid if there was an
extreme variation of these parameters over a small distance:
in this case, a new equation of motion would need to be
derived in order to adequately represent the physical situa-
tion. Although a reasonably large variation can be seen in
Fig. 6, particularly for the case of k, we expect the general-
ized Langevin equation to be valid in the current case and do
not pursue this question further.

We test whether the distribution of the random force can
be approximated by a Gaussian distribution by applying the
Kolmogorov—Smirnov and Anderson-Darling tests for nor-
mality to the data. We find that, given several hundred force
samples, it is valid to assume a Gaussian random force.
While the question of non-Gaussian force is somewhat subtle
and quite interesting, we believe, based on these observa-
tions and other tests, that we are justified in modeling the
random force as a Gaussian random variable.
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FIG. 7. A dwell histogram (a) obtained with the original PMF illustrated in
Fig. 3(a) and reproduced in (b).

B. Current versus voltage curves

In order to obtain current versus voltage curves in this
numerical example, we apply a voltage drop that is linear
over the length of the channel. Simulations are carried out at
500 mM concentration.

We incorporate the PMF illustrated in Fig. 3, along with
the measured profiles for D and «, into our stochastic dy-
namics algorithm and measure the current flowing across the
pore. A simple estimate using the Boltzmann factor suggests
that a barrier of this magnitude would suppress the current
by more than six orders of magnitude. Clearly, we would not
expect to see any ion surmounting this barrier during a fea-
sible simulation period. With no applied potential, ions drift
in and out of both binding sites. To determine the region in
the channel where ions dwell preferentially, we divide the
channel into 100 thin sections and count the number of ions
in each slice during the simulation period of 0.8 us. A dwell
histogram shown in Fig. 7(a) reveals two sharp peaks, corre-
sponding to the binding sites in the PMF. We see a 36%
occupancy for each binding site (counting the inner and outer
binding sites as a single large binding site).

As we have noted, the central barrier in the PMF illus-
trated in Fig. 3(a) is much too high to replicate the experi-
mental ionic currents. There is a great deal of debate and
uncertainty regarding the effectiveness of various MD force
fields for describing processes such as ion conduction in
gramicidin and similar channels. For example, small changes
in the Lennard-Jones parameters describing the ion-protein
interaction can lead to very large changes in the PMF." De-
spite the many possible sources of uncertainty, attempts have
been made to elucidate some of the systematic sources of
error that may be present. Aqvist and Warshel® noted that
the central barrier of the gramicidin PMF for Na* is reduced
by 6kT—7kT due to the polarizability of the lipid and protein
environments, an effect that is neglected in the standard
CHARMM force field. They also correct for the artifacts intro-
duced when using a finite simulation cell by the use of a
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FIG. 8. Reverse engineered PMF. (a) A potential well of the form
E=A exp(=(z/0)*) is subtracted from the PMF seen in Fig. 3. A and o are
chosen to give the good agreement seen in the current-voltage curve:
A=11kT and =8 A. (b). The current-voltage curve. Superimposed on the
curve is the experimental current-voltage relationship obtained by Andersen
(Ref. 52). Both experimental and simulated currents are obtained with the
KCl concentration of 500 mM.

Born-type formula. These effects are discussed in detail by
Warshel et al.”® Allen et al.,'>" in a later study, performed
similar corrections on a MD system that is very similar to
ours. They noted that the height of the central barrier is re-
duced by approximately 6.6kT once contributions resulting
from various simulation artifacts are corrected for. Among
the factors that contribute to the high central barrier, in this
case, are the periodic boundary conditions used for MD
simulations and the nonpolarizability of the membrane and
protein hydrocarbon chains.

In order to obtain current-voltage curves under condi-
tions more representative of the experimental data for grami-
cidin, we systematically lower the barrier height and measure
the currents across the channel. From the original PMF, we
subtract a potential well of the form E=A exp(—(z/0)?*) so
that the central barrier is low enough to permit conduction to
take place. This modification to the potential is to a large
extent arbitrary. However, it may be able to adequately rep-
resent the situation in real gramicidin, since one might sup-
pose that, whatever the correct modification to the MD PMF
might be, it should act systematically over the whole length
of the channel and preserve features such as the outer bind-
ing sites and the central barrier.

The PMF that produced a close match to the experimen-
tal current-voltage relationship is shown in Fig. 8(a). The
height A and half-width o of the well subtracted from the
original PMF are, respectively, 11k7 and 8 A. The depth of
the well at each end of the pore is about 5k7 and a barrier of
about 9kT interposes between the two wells. In order to pro-
duce the best possible match to experimental data, we also
found it necessary to artificially narrow the pore somewhat
outside the channel mouth, at around z=14-16 A.
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The current-voltage curve illustrated in Fig. 8(b) is lin-
ear, with a conductance of 23 pS. Each point is determined
from a simulation period of 25.6 us. Superimposed on the
simulated data in open squares are the experimental measure-
ments obtained by Andersen. The match between the numeri-
cal and experimental results is seen to be excellent.

This may give an indication of what kind of PMF would
be needed in order to replicate experimental observations.
However, the simplifications made in our treatment of ion-
ion interactions here mean that more work will be needed in
order to come to a firmer conclusion.

V. CONCLUSIONS

In this paper we have given a framework for a distribu-
tional MD methodology: It uses MD simulations to inform
stochastic dynamics. The resulting algorithm enables simula-
tions that are two to three orders of magnitude faster than
MD simulations while still sampling from approximately the
same distribution of trajectories as does MD. For the ex-
ample discussed here, stochastic dynamics is 500 times faster
on a single processor. We have discussed the theory and as-
sumptions involved in going from a deterministic MD to a
stochastic dynamics simulation. We have then described de-
tails of how to estimate the parameters for the generalized
Langevin equation from MD simulations: namely, the PMF
and the friction kernel.

The new methodology presented here is then tested by
modeling the permeation of ions across the gramicidin pore.
Given the known difficulty of modeling ion conduction in
gramicidin using classical MD," it is perhaps not surprising
that the PMF we have calculated using the conventional
CHARMM?27 force field is unable to reproduce the experimen-
tally determined conductance. This may be due to artifacts in
the MD simulations or possibly the sensitivity of the energy
profile to small changes in the force field" or a combination
of these two factors. As real-life gramicidin is known to con-
duct ions, we systematically modify the potential in order to
match the experimental current-voltage relationship.

In the future, we will refine the technique, for example,
by implementing more accurate ion-ion interactions, a more
accurate modeling of the friction kernel in stochastic dynam-
ics simulations, and a more careful treatment of the bulk/
channel interface. The technique could then be fruitfully ap-
plied to more accurately measure macroscopic observables
such as conductances and selectivity sequences for various
ion channels under a range of conditions. Carbon or boron-
nitride nanotubes,”’ due to their simplicity and rigidity,
would be another particularly good candidate for study using
this technique. Ultimately, we hope to enable a direct link to
be made between aspects of channel structure and function, a
task that would be nearly intractable using, for example, con-
ventional MD modeling.
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