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We present a new leapfrog algorithm for the numerical solution of the generalized Langevin equation (GLE) in
the case where the friction kernel is exponentially decaying. Like other leapfrog and Verlet algorithms, our
algorithm is second order in velocity and third order in position. It is relatively easy to implement compared with
other available algorithms, and would therefore make a good candidate for exploring the effects of finite memory
time-scales in situations where modelling the precise functional form of the memory kernel was not important.
We have tested this algorithm on a one-dimensional barrier crossing model, and found good asymptotic
agreement with limits obtained using Brownian dynamics (BD) simulations, as well as with a theoretical
asymptotic limit. We have also used the algorithm to perform a more sophisticated simulation of ion conduction
through a KcsA channel. The results are a close match to corresponding results obtained using the Langevin
equation, thereby helping to justify the use of Brownian dynamics in KcsA and other similar ion channels.
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1. Introduction

The dynamics of systems involving macromolecules

surrounded by charged particles and water molecules

can be modelled using various degrees of approxima-

tion. In order of decreasing computational complexity,

we can use quantum mechanical/ab-initio methods,

classical molecular dynamics (MD), stochastic

dynamics (e.g., Brownian dynamics), and continuum

methods such as Poisson–Nernst–Planck (PNP) theory

[1]. Currently, and for the medium term future, the

quantum mechanical methods are only able to handle

small systems for short time-scales [1]. While MD can

often provide a much more efficient and relatively

reliable method to investigate mesoscopic systems, it

too is fairly computationally intensive and hence

impractical over longer simulation times [1,2]. For

example, it is currently unable to be used to statistically

calculate conduction rates through typical ion chan-

nels. In order to overcome this limitation, stochastic

dynamics (SD) may be employed, where only some

particles in the system are explicitly modelled, and the

rest are treated implicitly through their stochastic

influence on the explicitly modelled particles.
The simplest form of stochastic dynamics is

Brownian dynamics (BD), in which the stochastic

effects are modelled as white noise. This assumption

gives rise to the Langevin equation, which is usually

numerically solved using either one of two algorithms.
The first, due to van Gunsteren and Berendsen [3], is
a stochastic analogue of the well-known position
Verlet algorithm used in MD. The second, by the
same authors [4], is a stochastic analogue of
the leapfrog algorithm, also used in MD. Both are
third-order finite difference approximations in the
position variable.

In some systems, it may be more valid to consider a
frequency-dependent noise term. This gives rise to the
generalized Langevin equation (GLE), in which the
friction and noise terms depend on the history of
the system through a memory kernel for the friction.
Nilsson and Padró [5], among others [6], have
published a hybrid leapfrog/Verlet algorithm that is
applicable to a general functional form for the memory
kernel. However, the generality of this algorithm
requires that each time step must take into account
the state of the system at several points in the past.
In other words, the algorithm is non-local in time.

We may, as a first-order approximation, wish to
consider the effects of system memory by using an
exponential functional form for the friction kernel.
An exponential friction kernel is convenient because it
depends on only two parameters, and it can greatly
reduce the computational complexity of the algorithm.
In addition, it is a reasonable approximation to the
friction kernels of many real systems [7,8], especially
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when we are not concerned with the dynamics on very
short time-scales. If we try to specialize the algorithm
of Nilsson and Padró [5] to an exponential friction
kernel, then we find that the state of the system at the
current time step depends only on its state two time
steps ago, and so the algorithm becomes local in time.
The algorithm requires that the friction kernel be
symmetrical and smooth at t¼ 0; this assumption is
used in several steps that contain integrals involving
Taylor expansions of the kernel about t¼ 0. This is not
the case for an exponential friction kernel, and one
finds that the algorithm loses an order of accuracy
when an exponential friction kernel is used. Wan et al.
[9] have previously published a leapfrog-type algorithm
for the generalized Langevin equation, for the special
case of an exponential friction kernel. Their algorithm
is based on the Langevin dynamics leapfrog algorithm
of van Gunsteren and Berendsen [4]. Like other
leapfrog algorithms, it is second order in velocity
and third order in position. The addition of a finite
memory greatly increases the complexity of the
mathematical expressions occurring in the algorithm.
Therefore, great care must be taken in implementing
the algorithm, both in terms of coding accuracy and
in dealing with floating point errors.

The algorithm we present here is most influenced
by the work of Wan et al. [9]. However, it differs in one
important respect. At each time step, the algorithm
proposed by Wan et al. calculates the velocity at the
next time step by solving the Langevin equation: there
is a frictional contribution to the force that is
proportional to the instantaneous velocity. We show
that it is possible to instead use the value of the velocity
at the beginning of the time step, so that the frictional
force during each time step is constant. The result is
that we only have to solve Newton’s equations of
motion at each time step in order to calculate the
velocity at the next time step. In this respect, our
approach is more like that used by Nilsson and
Padró [5]. We show that, like all the other algorithms
discussed here, our algorithm is second order in
velocity and third order in position.

The advantages of our approach over the previous
version [9] are that it is significantly more concise,
easier to understand, and easier to implement, while
remaining at the same order of accuracy. For example,
the mathematical expressions occurring in [9] depend
on two time scales—the decay time of the friction
memory kernel, and the decay time of the velocity
due to the instantaneous component of the friction.
The equivalent expressions in our algorithm depend
only on the decay time of the friction memory kernel.
They are much simpler than the rather complicated
expressions occurring in [9], and therefore there should

be much less chance of transcription errors and the like

during implementation. Also, and perhaps more

importantly, because many of these expressions are

high order in �t, one needs to use Taylor expansions to

evaluate them in certain parameter regimes, and the

single variable functions that occur in our algorithm

require significantly less care and tuning in this regard.

2. The leapfrog algorithm

With v(t) denoting the velocity of the particle being

modelled and x(t) its position, the GLE is

_vðtÞ ¼ DðxðtÞÞ þ FðtÞ þ SðtÞ: ð1Þ

Here, D(x(t)) is the deterministic acceleration,

determined by a position-dependent potential, F(t) is

the frictional acceleration and S(t) is the stochastic

acceleration, related to F by the fluctuation dissipation

theorem [10]. We assume that F(t) is defined by an

exponential friction kernel:

FðtÞ ¼ �K0

Z t

�1

e�ðt�t
0Þ=�vðt0Þdt0: ð2Þ

This is in contrast to the standard Langevin equation,

where F(t)¼��v(t).
We shall use a discrete time variable n2 J to denote

the time tn :¼ n�t, and put, for example, vn :¼ v(tn), etc.

We integrate Equation (1) to obtain an equation for

vnþ1/2 in terms of vn�1/2:

vnþ1=2 � vn�1=2 ¼

Z �t=2

��t=20
ðDðxðtn þ tÞÞ

þ Fðtn þ tÞ þ Sðtn þ tÞÞdt: ð3Þ

To obtain an equation for xnþ1 in terms of xn, we write

vðtn þ tÞ � vðtnþ1=2Þ ¼

Z t

�t=2

ðDðxðtn þ t0ÞÞ þ Fðtn þ t0Þ

þ Sðtn þ t0ÞÞdt0, ð4Þ

and therefore

xnþ1� xn ¼

Z �t

0

vðtnþ t0Þdt0

¼

Z �t

0

dt0
�
vnþ1=2þ

Z t0

�t=2

ðDðxðtnþ t00ÞÞ

þFðtnþ t00Þ þSðtnþ t00ÞÞdt00
�

¼ vnþ1=2�tþ

Z �t

0

dt0
Z t0��t=2

0

ðDðxðtnþ1=2þ t00ÞÞ

þFðtnþ1=2þ t00Þ þSðtnþ1=2þ t00ÞÞdt00: ð5Þ
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In the following sections, we evaluate the integrals

of D,F and S that occur in Equations (3) and (5).

We aim to calculate v to second order in �t and x to

third order.

3. The deterministic acceleration

Expanding D to first order gives

Dðxðtn þ tÞÞ ¼ DðxnÞ þ vnD
0ðxnÞtþOðt2Þ, ð6Þ

and hence the deterministic integral occurring in the

expression (3) for v is

Z �t=2

��t=2

Dðxðtn þ tÞÞdt ¼ DðxnÞ�tþOð�t3Þ: ð7Þ

The integral occurring in the expression (5) for x is

Z �t

0

dt0
Z t0��t=2

0

Dðxðtnþ1=2 þ t00ÞÞdt00

¼
1

24
vnþ1=2D

0ðxnþ1=2Þ�t3 þOð�t4Þ: ð8Þ

However, if we write1

xnþ1 ¼ xn þ vnþ1=2�tþ�t3vnþ1=2D
0ðxnþ1=2Þ=24þ � � �

xn�1 ¼ xn � vn�1=2�t��t3vn�1=2D
0ðxn�1=2Þ=24þ � � �

¼ xn � vn�1=2�t��t3vnþ1=2D
0ðxnþ1=2Þ=24

þOð�t4Þ þ � � � ð9Þ

and add, we obtain

xnþ1 þ xn�1 ¼ 2xn þ ðvnþ1=2 � vn�1=2Þ�tþOð�t4Þ þ � � � ,

ð10Þ

i.e. the term involving D0 cancels to third order, and

thus we can neglect it and the algorithm will still be

at third order.

4. The frictional acceleration

Assume an exponential friction kernel:

FðtÞ ¼ �K0

Z t

�1

e�ðt�t
0Þ=�vðt0Þdt0: ð11Þ

We can make a connection to a known friction

coefficient � by taking the limit as �! 0; we find

that K0� �/�.
Assuming F(�) is analytic around tn, the Taylor

series for F gives

Fðtn þ t0Þ ¼ FðtnÞ þ _FðtnÞt
0 þOðt02Þ: ð12Þ

We can calculate (e.g. using the Leibniz integral

rule) that

_FðtÞ ¼ �K0vðtÞ �
1

�
FðtÞ, ð13Þ

and, therefore, we have

Fðtn þ tÞ ¼ Fn � ðK0vn þ Fn=�ÞtþOðt2Þ: ð14Þ

Thus the friction integral occurring in the expression

(3) for v is

Z �t=2

��t=2

Fðtn þ tÞdt ¼ Fn�tþOð�t3Þ: ð15Þ

Note that, to second order, this takes the form of

a frictional acceleration that is constant over the time

step. This is in contrast to [9], where the frictional

acceleration includes an instantaneous component

�v(t) (with � :¼K0�(1� exp(�t/�))), and at each time

step the Langevin equation is solved with this

expression as frictional term.
The integral occurring in the expression (5) for x is

Z �t

0

dt0
Z t0��t=2

0

Fðtnþ1=2 þ t00Þ dt00

¼ �
1

24
ðFnþ1=2=� þ K0vnþ1=2Þ�t3 þOð�t4Þ: ð16Þ

However, using the same argument as was used for D

above, we can neglect this term and still keep the

algorithm at third order in x.
We also need a way of calculating Fnþ1 from Fn

in order to propagate the algorithm. We start by

expressing F as a sum over intervals of a single

time step:

FðtÞ ¼ �K0

X1
k¼0

Z �t=2

��t=2

e�ððkþ1=2Þ�t�t0Þ=�

� vðt0 þ t� ðkþ 1=2Þ�tÞdt0: ð17Þ

Then

Fn�1 ¼ �K0

X1
k¼0

Z �t=2

��t=2

e�ððkþ1=2Þ�t�t0Þ=�

� vðtn�1 þ t0 � ðkþ 1=2Þ�tÞdt0

Fn ¼ �K0

X1
k¼0

Z �t=2

��t=2

e�ððkþ1=2Þ�t�t0Þ=�

� vðtn þ t0 � ðkþ 1=2Þ�tÞdt0

¼ �K0

X1
k¼1

Z �t=2

��t=2

e�ððkþ1=2Þ�t�t0Þ=�

� vðtn þ t0 � ðkþ 1=2Þ�tÞdt0
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� K0

Z �t=2

��t=2

e�ð�t=2�t0Þ=�vðtn þ t0 ��t=2Þdt0

¼ �K0

X1
k¼0

Z �t=2

��t=2

e�ððkþ3=2Þ�t�t0Þ=�

� vðtn þ t0 � ðkþ 3=2Þ�tÞdt0

� K0

Z �t=2

��t=2

e�ðð1=2Þ�t�t0Þ=�vðtn þ t0 þ�t=2Þdt0

¼ e��t=�Fðtn�1Þ � K0

Z �t=2

��t=2

e�ð�t=2�t0Þ=�

� vðtn�1=2 þ t0Þdt0,

so finally, we have

Fn ¼ e��t=�Fn�1 � K0�ð1� e��t=�Þvn�1=2 þOð�t2Þ,

ð18Þ

where we have expanded F to first order in �t, which is

enough keep the algorithm at second order for v and

third order for x.

5. The stochastic acceleration

We have, by the second fluctuation-dissipation

theorem [10], for t40,

hSð0ÞSðtÞi ¼
K0kT

m
e�t=�: ð19Þ

It can be shown [9,11] that S satisfies a Langevin

equation:

_SðtÞ ¼ �
1

�
SðtÞ þ RðtÞ: ð20Þ

Here, R is a continuous time white noise process with

hRð0ÞRðtÞi ¼
2K0kT

m�
�ðtÞ, ð21Þ

where �(t) denotes the Dirac delta function. We can

solve for S:

Sðtþ t0Þ ¼ SðtÞe�t
0=� þWðt, tþ t0Þ, ð22Þ

where

Wðta, tbÞ ¼

Z tb

ta

e�ðtb�tÞ=�RðtÞdt: ð23Þ

In the following, we shall make use of the

shorthand notation, for example Wn :¼W(tn, tnþ�t/2),

where the integral is understood to be over a half

time step.

The stochastic integral occurring in the

expression (3) for v is

Z �t=2

��t=2

Sðtnþ tÞdt

¼

Z �t=2

��t=2

ðSðtnÞe
�t=� þWðtn, tnþ tÞÞdt

¼ 2�Sn sinhð�t=ð2�ÞÞþ

Z �t=2

��t=2

Wðtn, tnþ tÞdt

¼ Sn�tþ

Z �t=2

��t=2

Wðtn, tnþ tÞdtþOð�t3Þ

¼ Sn�tþ

Z �t=2

��t=2

dte�t=�
Z tnþt

tn

e�ðtn�t
0Þ=�Rðt0Þdt0 þOð�t3Þ,

ð24Þ

and, integrating by parts,

Z �t=2

��t=2

Sðtn þ tÞdt ¼ Sn�tþ �ðVn�1=2 þ YnÞ þOð�t3Þ,

ð25Þ

where V and Y are random variables:

Vn�1=2 ¼

Z tn

tn�1=2

ð1� eðt�tn�1=2ÞÞ=�ÞRðtÞdt, ð26Þ

Yn ¼

Z tnþ1=2

tn

ð1� e�ðtnþ1=2�tÞÞ=�ÞRðtÞdt: ð27Þ

The integral occurring in the expression (5) for x can

also be obtained in a similar manner by integrating by

parts. It is

Z �t

0

dt0
Z t0��t=2

0

Sðtnþ1=2 þ t00Þ dt00

¼ Snþ1=2ð��t� 2�2 sinhð�t=ð2�ÞÞÞ þ �2ðXn þ Znþ1=2Þ

¼ �Snþ1=2�t3=ð24�Þ þ �2ðXn þ Znþ1=2Þ þOð�t5Þ,

ð28Þ

where the random variables X and Z are defined by

Xn ¼

Z tnþ1=2

tn

eðt�tnÞ=� � 1� ðt� tnÞ=�
� �

SðtÞdt,

Zn�1=2 ¼

Z tn

tn�1=2

e�ðtn�tÞ=� � 1þ ðtn � tÞ=�
� �

SðtÞdt:

ð29Þ

The variables Wn�1/2, Vn�1/2 and Zn�1/2 are all

correlated because they are all integrals of R over the

same interval [nþ 1/2, n]. The covariance matrix

elements are

hW2
�1=2i ¼

K0kT

m
f1ð��t=ð2�ÞÞ, ð30Þ
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hW�1=2V�1=2i ¼ �
2K0kT

m
f2ð�t=ð2�ÞÞ, ð31Þ

hW�1=2Z�1=2i ¼
2K0kT

m
e��t=ð2�Þf3ð�t=ð2�ÞÞ, ð32Þ

hV2
�1=2i ¼

K0kT

m
f4ð�t=ð2�ÞÞ, ð33Þ

hV�1=2Z�1=2i ¼ �
2K0kT

m
f5ð�t=ð2�ÞÞ, ð34Þ

hZ2
�1=2i ¼

K0kT

m
f6ð��t=ð2�ÞÞ, ð35Þ

where

f1ðxÞ ¼ 1� e2x, ð36Þ

f2ðxÞ ¼ coshðxÞ � 1, ð37Þ

f3ðxÞ ¼ sinhðxÞ � x, ð38Þ

f4ðxÞ ¼ e2x � 1� 2x� 4ðex � 1� xÞ, ð39Þ

f5ðxÞ ¼ coshðxÞ � 1�
1

2
x2, ð40Þ

f6ðxÞ ¼ 4x ex � 1� x�
1

2
x2

� �

� e2x � 1� ð2xÞ �
1

2
ð2xÞ2 �

1

6
ð2xÞ3

� �
: ð41Þ

Note that several of these functions are zero to high

order in x—for example, the leading term in f6 is O(x5).

Therefore, care must be taken when numerically

evaluating these expressions, and for x� 1 it may be

necessary to use Taylor series expansions.
Similarly, the variables Wn, Yn and Xn are all

correlated because they are all integrals of R over

[n, nþ 1/2]. The covariance matrix elements are

W 2
0

� �
¼

K0kT

m
f1ð��t=ð2�ÞÞ,

¼ W2
�1=2

D E ð42Þ

W0Y0h i ¼
2K0kT

m
e��t=ð2�Þf2ð�t=ð2�ÞÞ

¼ �e��t=ð2�ÞhW�1=2V�1=2i,

ð43Þ

hW0X0i ¼
2K0kT

m
f3ð�t=ð2�ÞÞ

¼ e�t=ð2�ÞhW�1=2Z�1=2i,

ð44Þ

Y2
0

� �
¼ �

K0kT

m
f4ð��t=2�Þ, ð45Þ

hY0X0i ¼
2K0kT

m
f5ð�t=ð2�ÞÞ

¼ �hV�1=2Z�1=2i,

ð46Þ

X2
0

� �
¼ �

K0kT

m
f6ð�t=ð2�ÞÞ: ð47Þ

At each half time step, the variables (W,Y,X) or

(W,V,Z ) may be sampled using the following

procedure. Let M be the covariance matrix for the

set of variables being sampled. Let L be the lower

triangular matrix that gives the Cholesky decomposi-

tion of M: LL>¼M. Let u be a vector of independent,

standard normal variables. Then, assuming that S(t)

is Gaussian, Lu samples from the required joint

distribution. Alternatively, samples could be generated

using Gibbs sampling [12].

6. Steps in the algorithm

Assume the current time is tn. Assume we already have

xn, vn�1/2, Fn, Sn and (W,V,Z )n�1/2:

(1) Sample the correlated variables (W,Y,X)n
(2) Sample the correlated variables (W,V,Z )nþ1/2
(3) Let vnþ1/2¼ vn�1/2þDn�tþFn�tþSn�tþ

�(Vn�1/2þYn), where Dn :¼D(xn)
(4) Let Snþ1/2¼Sn e

��t/(2�)
þWn

(5) Let xnþ1¼ xnþ vnþ1/2�t�Snþ1/2�t3/(24�)þ
�2(XnþZnþ1/2)

(6) Let Fnþ1¼ e��t/�Fn�K0�(1� e��t/�)vnþ1/2
(7) Let Snþ1¼Snþ1/2 e

��t/(2�)
þWnþ1/2

(8) Let n! nþ1, re-label variables accordingly,

and go to step 1.

6.1. Initialization of the algorithm

Suppose we know x and v at t¼ 0.
One strategy for simulation would be to simulate

the system for some prescribed time interval using

the Langevin equation, while keeping track of the

frictional force F and S, and then switch to the GLE.
In practice, it is simpler to set F0¼��v0 if

the system is over-damped i.e. �� 1/�, or to set

F0¼�K0�(1� e��t/�)v0 if the system is under-damped.

S0 is sampled from a Gaussian distribution with zero

mean, and variance given by Equation (19).

(W,V,Z )�1/2 are sampled as described above. v�1/2 is

calculated as follows:

v�1=2 ¼ v0 �D0�t=2� F0�t=2� S0�t=2þOð�t2Þ:

ð48Þ

The algorithm can then proceed as per normal.
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7. Numerical results

We present two examples motivated by modelling

the permeation of ions in biological membrane ion

channels.

7.1. Example 1: Conduction across a

potential barrier

In this example, we consider a particle moving in a

one-dimensional potential consisting of a Gaussian

potential barrier flanked by a Gaussian potential well

on either side. The particle will spend much of its time

in one or the other of the wells, but may occasionally

cross the barrier from one well to the other. We refer to

this as a crossing, and we refer to the moment that the

particle crosses the top of the barrier as a microscopic

crossing. We are interested in the rate of crossings.

This model could, for example, be used as a simplified

representation of the passage of ions though an ion

channel, from one binding site to another.
We can use statistical mechanics to calculate the

rate for the particle to cross the top of the barrier as a

function of the equilibrium linear density at a reference

position, say in one of the wells. It can be shown that

J1 ¼ �0

ffiffiffiffiffiffiffiffiffi
kBT

m

r
exp �

Uðz1Þ �Uðz0Þ

kBT

� �
, ð49Þ

where J1 is the average current across the top of the

barrier (at z1), �0 is the equilibrium linear density at

the reference position z0 (which is most conveniently

taken at the bottom of one of the wells), and U(z) is the

potential.
This is the microscopic rate of barrier crossings.

The actual observed barrier crossing rate may be less

than this value, because during each full crossing from

one one well to the other, the top of the barrier may be

traversed more than once. The rate is further reduced

(by a factor of 2, in the diffusive limit) by the fact that

the particle will end up on the same side of the barrier

that it came from if it happens to pass across the top of

the barrier an even number of times before falling back

into a well. This kind of behaviour is characteristic of

the particle diffusing across the barrier as opposed to

crossing it ballistically.
Increasing the decay time for the friction kernel will

increase the decay time for the velocity autocorrelation

function, and therefore should increase the mean free

path length at a given velocity. If we increase the decay

time enough, we might expect the particle to be able

to traverse the barrier in a nearly ballistic manner.

In this regime, the current across the barrier should

approach its theoretical maximum value.

As a test of our algorithm, we investigate this

argument by keeping the friction coefficient ��K0/�
constant while varying the memory time-scale �. The
results are presented in Figure 1. The parameters were
chosen to allow the full effect of the exponential

friction kernel to be illustrated over a reasonable
parameter range. The barrier is 7 kT high, with a 1 Å
standard deviation. The barrier sits at the bottom of

a deep (25 kT), flat-bottomed potential well of width
10 Å; this conveniently provides wells on either side of

the barrier, while preventing the particle from escaping
to infinity. The mass of the particle is 39 AMU. The

time step is 1 fs.
As expected, the average current across the barrier

approaches the result for the Langevin equation for
short memory decay times. As the decay time is

increased, the current increases, and for very long
decay times it appears to approach the theoretical

maximum value given above.
(A similar effect can be seen when we solve the

Langevin equation, varying �. As �! 0, the mean free
path length increases until each microscopic crossing

corresponds to a crossing proper—hence the current
should increase toward the theoretical maximum given

above. We have done this calculation, and found that
this is indeed the case.)

7.2. Example 2: Conduction of ions through the
KcsA channel

In the past, BD simulations have been widely used to
elucidate the mechanisms of ion permeation across

biological ion channels [13]. Here we compare some of
the salient properties of permeation dynamics deduced
by using BD with those obtained by using the GLE

with various memory decay times (�).
To make these comparisons, we select the KcsA

potassium channel, whose crystal structure has been

determined by Doyle et al. [14]. The radius of the pore
is expanded to 5 Å at the internal end of the channel
using a cylindrical repulsive potential in molecular

dynamics. The selectivity filter is also expanded
slightly such that the minimum radius is 1.4 Å, as

described previously by Chung et al. [15]. To carry out
stochastic dynamics simulations, we first place in
three-dimensional space all the atoms forming the

potassium channel at the centre of the assembly, and
assign the charge on each atom. Then, a large

cylindrical reservoir of 30 Å radius with a fixed
number of Kþ and Cl� ions is attached at each end

of the channel to mimic the extracellular and intracel-
lular space. The membrane potential is imposed by
applying a uniform electric field across the channel.

1358 D. Gordon et al.
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The diffusion coefficient we use for Kþ in the

reservoirs is 1.96� 10�9m2 s�1. The value is reduced

to 0.1 of the bulk value in the narrow selectivity filter

and 0.5 of the bulk value elsewhere in the channel, as
determined by molecular dynamics calculations [16].

For further details of stochastic dynamics simulations,

see Hoyles et al. [17].
To increase the efficiency of our simulations, ions

in the reservoirs are always modelled using Brownian

dynamics, with a long time step of 100 ns. In the bulk

solvent region of the reservoirs, the dynamics are

expected to be adequately described as a random walk

in position space, and hence there is no need to use the

GLE in these regions. Any difference in conduction

due to the use of the GLE rather than Brownian

dynamics will occur inside the pore region. In the pore

region, we use a 2 fs time step for the BD simulations,

and 1 fs is used for GLE. The 2 fs time step has been

found to be the best choice for BD, since inside

the channel the ions experience rapidly changing

potentials, and furthermore an accurate simulation of

the dynamics is more critical in this region. For the

GLE, we chose to use a smaller 1 fs time step, to take

into account the fact that a greater ‘clumpiness’ in the

temperature of the ions can lead to extended periods of

increased temperature.
The current–voltage–concentration profiles of the

KcsA potassium channel as constructed with BD are

a close match to those constructed with the GLE
algorithm outlined here. The three memory decay

times we use for GLE are 10�14, 10�13 and 10�12 s.

In Figure 2(a), the current–voltage curve obtained with

the decay memory time of 10�12 is superimposed on

that obtained with BD simulations. For clarity, the
curves obtained with �¼ 10�14 and 10�13 s are omitted

from the graph, as these graphs’ � are similar to the

curve for �¼ 10�12 s. Similarly, the conductance–

concentration curves derived from BD and GLE are

a close match, as illustrated in Figure 2(b). In the

conducting state, the channel is occupied by on average
three resident ions, two in the narrow selectivity filter

and one near the intracellular gate of the channel.

The distributions of ions in the channel determined

from the two different algorithms are also the same

(data not illustrated here).
We conclude that the permeation mechanisms

deduced from BD, in which random forces acting

on ions are assumed to be memory-less, do not differ

appreciably from those deduced from the GLE

algorithm. A potassium ion in the extra- or intracel-
lular space sees a deep energy well created by charged

residues and dipoles in the channel protein. The energy

well created by these moieties, reaching a depth of

nearly 30 kT, attracts three potassium ions. Once the

channel is occupied by the resident ions, the energy

barrier that an ion at a given binding site needs

Figure 1. The current across a barrier vs. the friction decay constant �. The top horizontal line marks the theoretical maximum
current as calculated from Equation (49), and the bottom horizontal line marks the measured value when the Langevin equation
is solved. The current appears to have two asymptotes: for �! 0, the current approaches the calculated result for the Langevin
equation, as one would expect, and at high �, the current approaches the theoretical maximum given in Equation (49). We have
also confirmed that this upper limit matches the current when the Langevin equation is solved with �! 0. Error bars in this and
the following figures have a length of 2 s.e.m.
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to surmount to move to the next binding site
becomes relatively small, only a few kT [18]. Thus,
the permeation dynamics gleaned from BD simulations
are shown to be reliable, and nearly the same as that
obtained using the more sophisticated algorithm.

8. Concluding remarks

We have presented a new algorithm for numerically
solving the generalized Langevin equation, in the
special case where the friction kernel is exponential.
Like other algorithms for solving the GLE, our
algorithm is second order in velocity and third order
in position. We believe that our algorithm is distin-
guished by its simplicity of implementation. It would
make a good choice in situations where it was desired
to investigate time-scale effects of a finite memory
kernel, without being too concerned about the precise
functional form of the kernel.

We have tested the algorithm on a one-dimensional
barrier crossing model. The results are asymptotically
consistent with results obtained using Brownian
dynamics, and also with a simple theoretical expression.

We have gone on to use the algorithm to
numerically solve the dynamics of a more sophisticated
three-dimensional model of the KcsA ion channel.
The resulting current versus voltage and current
versus concentration curves are a very close match to
those obtained using Brownian dynamics over a range

of time-scales for the memory kernel. These results
therefore help to justify the use of Brownian dynamics
in other similar cases.

Note

1. Here, we use the fact that the change in v over a time
step is O(�t). This is obvious in the case of the
contributions for the deterministic and frictional
acceleration. When we later consider the stochastic
acceleration, we need to consider that there is a
contribution from two uncorrelated random variables
(see Section 5). It turns out that both of these have
a variance that goes as O(�t2).
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