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Abstract

The concentrations of various foliar chemicals can be estimated by analyzing the spectral reflectance of dried ground leaves. The

continuum-removal analysis of Kokaly and Clark [Remote Sens. Environ. 67 (1999) 267] has been an improvement on the standard derivative

analysis in such applications. Continuum-removal analysis enables the isolation of absorption features of interest, thus increasing the

coefficients of determination and facilitating the identification of more sensible absorption features. The purpose of this study was to test

Kokaly and Clark’s methodology with aircraft-acquired hyperspectral data of eucalypt tree canopies, which are more complex than are

spectra from many coniferous canopies and much more complex than the spectra from dried ground leaves. The results of the continuum-

removal analysis were most encouraging. It identified, in one experiment or another, almost all of the known nitrogen absorption features.

The coefficient of determination in one case increased from 0.65, using the standard derivative analysis, to 0.85 with the continuum-removal

analysis. It is recommended that continuum-removal analysis become at least a supplement to standard derivative analysis in estimating foliar

biochemical concentrations from remote sensing data. This study also reports several other findings: (1) the neural network method generally

achieved higher coefficients of determination and lower errors of estimation [root mean square error (RMSE) and standard error of cross

validation (SECV)] than did the modified partial least squares (PLS) or stepwise regression methods, probably indicating nonlinear

relationships between biochemical concentrations and canopy reflectance; (2) modified partial least squares (MPLS) proved a better statistical

method than conventional stepwise regression analysis in many cases in terms of both coefficient of determination and RMSE; and (3) the

maximum spectrum of a cluster of tree pixels represents canopy reflectance at least as well as the mean spectrum of the cluster, especially

when used in conjunction with the modified partial least squares method.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction can provide hundreds or thousands of bands within the
Chemical concentrations of foliage are important indica-

tors of ecosystem processes. Research in the past decades

has shown that remote sensing technology offers the only

practical alternative to the complicated, slow and expensive

chemical methods for estimating foliar chemical concen-

trations over large geographic areas (Curran, 1989). Studies

have focused on using data collected by spectrometers that
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visible to near-infrared wavelengths to aid the identification

of the many subtle absorption features attributable to a wide

range of chemicals. For example, Curran (1989) has listed

42 of these absorption features.

Among the many foliar chemicals, nitrogen is an impor-

tant indicator of photosynthetic rate and overall nutritional

status (Curran, 1989; Field & Mooney, 1986) and thus has

been the subject of many spectrometric studies. These have

been extended from measures on dried, ground leaves (e.g.,

Card et al., 1988; Dury et al., 2000; Dury & Turner, 2001;

Grossman et al., 1996; Martin & Aber, 1990; McLellan et

al., 1991; Peterson et al., 1988; Wessman et al., 1988a), to

whole fresh leaves (e.g., Curran et al., 1992; Dury et al.,

2000; Dury & Turner, 2001; Grossman et al., 1996; Johnson

& Billow, 1996; Martin & Aber, 1990; Peterson et al., 1988;
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Tsay et al., 1982; Yoder & Pettigrew-Crosby, 1995) and,

most recently, studies of entire canopies (Curran et al., 1997;

Dury & Jia, 2001; Dury et al., 2000; Johnson et al., 1994;

LaCapra et al., 1996; Martin & Aber, 1997; Matson et al.,

1994; Peterson et al., 1988; Wessman et al., 1988b; Yoder &

Pettigrew-Crosby, 1995). It should be noted that except for

our previous studies (Dury & Jia, 2001; Dury et al., 2000),

all these studies depended on extracting reflectance spectra

not from individual trees but either from averaging pixels of

study plots (Johnson et al., 1994; Martin & Aber, 1997;

Matson et al., 1994; Wessman et al., 1988b) or from

measuring reflectance over homogeneous areas (Curran et

al., 1997; LaCapra et al., 1996; Yoder & Pettigrew-Crosby,

1995; Zagolski et al., 1996). This is inappropriate for those

interested in the chemical concentrations of individual trees.

For example, eucalypts show considerable within-species

variation in their concentrations of certain chemicals, which

may in turn determine whether or not the foliage of an

individual tree is eaten by different folivorous marsupials

and invertebrate species (e.g., Wallis et al., 2002).

There are many complicating factors to consider when

extending reflectance measurements from dried ground

leaves to whole fresh leaves and to entire canopies. These

include the masking effect of leaf water absorption bands in

the infrared wavelengths, the complexity of canopy charac-

teristics, variation in leaf internal structure, and atmospheric

and background effects (e.g., Matson et al., 1994; Yoder &

Pettigrew-Crosby, 1995). The canopy reflectance is thought

to be a function of the optical properties of tissue (leaf,

woody stem and standing litter), canopy biophysical attrib-

utes (e.g., leaf and stem area, leaf and stem orientation and

foliage clumping), soil reflectance, illumination conditions

and viewing geometry (Asner, 1998). Among these many

factors, foliar chemicals contribute only a little to the leaf

optical properties.

The signal received by a remote sensor above a tree is a

complicated combination of the interactions between pho-

tons and atmosphere, canopy and background. Although

we have limited control over canopy characteristics, we

can still extract useful information from canopy reflectance

by developing methods that reduce atmospheric and back-

ground effects. After trying a number of alternatives, we

achieved satisfactory atmospheric correction using the

Hycorr program, essentially the ATREM model (CSES,

1992; Gao & Goetz, 1990) modified to accept data

collected by the HYMAP instrument. Several methods

have been suggested to reduce background effects, includ-

ing band ratios or difference indices, high order derivative

analysis and statistical methods like partial and modified

partial least squares (MPLS). Band ratios or vegetation

indices, such as NDVI, are often used to estimate leaf

chlorophyll concentration, because they can use the ‘‘red

edge’’ effect to minimize background reflectance (e.g.,

Chappelle et al., 1992; Curran et al., 1990, 1991, 1995;

Datt, 1998; Daughtry et al., 2000; Jago et al., 1999). These

methods use only the red and near-infrared bands and so
are sensitive only to leaf pigments that have strong

absorption differences at the two sides of the red edge.

This limits the values of the technique for estimating the

concentrations of many other chemicals, like those con-

taining nitrogen, which has many absorption bands lying

outside this region. Derivative analysis, according to some

researchers (Dixit & Ram, 1985; Shah et al., 1990; Tsai &

Philpot, 1998; Wessman, 1989), is less sensitive to illumi-

nation intensity and background effects and thus can be

used to enhance subtle absorption features of foliar bio-

chemicals and to resolve overlaying features. The first and

the second derivatives and their approximations are usually

combined with different smoothing transformations to

estimate foliar chemical concentrations. The WinISI pack-

age (Infrasoft International, 2000) we used has a variety of

‘‘math treatment’’ functions to chose from. For example, a

math treatment of ‘‘1,2,2,2’’ refers to using the first

derivative, leaving a gap of two wavebands between

calculated values, doing a first smoothing over two wave-

bands and then a second smoothing over two wavebands.

While conventional stepwise regression analysis is wide-

ly used in regressing reflectance measures against biochem-

ical concentrations, its drawbacks are also well known (e.g.,

Curran, 1989; Grossman et al., 1996). In contrast, the partial

least squares (PLS) regression method (Wold, 1982) works

in a manner similar to principal components analysis. It

combines the most useful information from hundreds of

bands into the first several factors, while the less important

factors may likely include background effects as suggested

by Bolster et al. (1996). In this way, the PLS method

reduces the effects of background and avoids the potential

overfitting problem typically associated with stepwise re-

gression analysis. Furthermore, different scattering effects

due to the intersample differences, such as the additive

offsets (baseline shifts) and the multiplicative effects (Datt,

1998) can be accounted for and corrected before any

statistical models are used. This helps also to reduce the

background effects. The WinISI package has ‘‘scatter cor-

rection’’ functions such as Standard Normal Variation

(SNV), which reduces scattering effects caused by variable

particle sizes, ‘‘detrending’’, which accounts for the varia-

tion in baseline shift and Multiplicative Scatter Correction

(MSC), which attempts to remove the effect of scattering by

linearising each spectrum to some ‘‘ideal’’ spectrum of the

sample.

The above methods usually reduce background effects,

but even after deriving a rather pure leaf spectrum, leaf

water absorption and the overlapping of other chemical

absorption features tend to mask subtle nitrogen absorption

features. Clark and Roush (1984) suggested using continu-

um-removal analysis to remove those absorption features of

no interest and thus to isolate individual absorption features

of interest. The continuum is a convex ‘‘hull’’ of straight-

line segments fitted over the top of a spectrum that connect

local spectral maxima and represents the ‘‘background

absorption’’ onto which other absorption features are super-



Fig. 2. A continuum removed tree reflectance spectrum.
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imposed (e.g., see Fig. 1). The local spectral maxima are

determined according to each specific application. The

continuum shown in Fig. 1 is only one of several possible

continuums for the reflectance spectrum and is shown here

for illustrative purpose. The continuum is removed by

dividing the reflectance value for each point in the absorp-

tion feature by the reflectance level of the continuum line

(convex hull) at the corresponding wavelength. Removing

the continuum standardises isolated absorption features for

comparison (Clark, 1999). For example, Fig. 2 is the

continuum-removed spectrum derived from Fig. 1 using

the ENVI image processing package (Research Systems Inc,

2000). This method was first used for mineral mapping

(e.g., Clark, 1999; Clark et al., 1990; Clark & Swayze,

1995), and was then extended to vegetation mapping (Clark

et al., 1995; Kokaly et al., 2003) and recently to the

estimation of chemical concentrations in dried ground

leaves (Curran et al., 2001; Kokaly, 2001; Kokaly & Clark,

1999).

Kokaly and Clark (1999) were the first to use the method

in vegetation studies when they estimated nitrogen, lignin

and cellulose concentrations in dried ground leaves from

seven sites using stepwise regression analysis. For example,

the R2 values for nitrogen varied from 0.90 to 0.97 (numbers

of samples varied from 31 to 193). In order to look at the

influence of site, the data set was then calibrated with one

site and validated with the others. Again, the results were

very encouraging, which may indicate a potential for estab-

lishing an equation applicable to all sites. Kokaly (2001)

further explored the physical basis of this kind of general

equation for estimating nitrogen concentrations using con-

tinuum-removal analysis. Two absorption features centred at

2054 and 2172 nm were shown to be closely associated with

nitrogen concentration. Later, the methodology was again

tested by Curran et al. (2001), who compared standard

derivative analysis and continuum-removal analysis. They

found that the two transformations derived from continuum-

removal analysis produced higher R2 values than did stan-

dard derivative analysis on both a training set and a test set.
Fig. 1. A tree reflectance spectrum and its continuum.
In addition, the wavelengths selected by the stepwise regres-

sion methods were closely related to the known absorption

features. Therefore, they concluded that estimating chemical

concentrations by stepwise regression was more accurate

when used with continuum-removed, band-normalized spec-

tra, rather than standard First Derivative Spectra (FDS).

Although continuum-removal analysis appears superior to

standard derivative analysis in estimating chemical concen-

trations in dried leaves, Kokaly and Clark (1999) point out

that interference from leaf water shall present the greatest

challenge to extending the method to the analysis of fresh

whole leaves and canopies. Curran et al. (2001) recommen-

ded that the Kokaly and Clark methodology be investigated

for estimation of foliar biochemical concentration from

airborne and spaceborne spectra, i.e., at the canopy level.

Recently, Mutanga et al. (2003) showed that continuum-

removal analysis could be used to better discriminate differ-

ences in foliar nitrogen concentrations in grass grown in the

greenhouse with different fertilization treatments.

The aim of this study was to apply Kokaly and Clark’s

(1999) method to spectral data of the canopies of individual

eucalypt trees and to compare the results with those

obtained by applying standard derivative analysis to the

same data set.
2. Methods

2.1. Data preparation

Leaf samples from the upper canopy of 60 Eucalyptus

melliodora trees were collected in April 1999 in open

woodland, approximately 20 km east of Canberra, Australia.

Trees were selected to be on the flightline of the HYMAP

mission and reasonably accessible for collecting foliage. All

samples were of fully expanded adult foliage from the mid

to upper canopy. Nitrogen concentrations were determined

on freeze-dried leaves using the semimicro Kjeldahl tech-

nique. They ranged from 9.8 to 17.8 mg/g dry matter (DM)



Fig. 3. Mean canopy spectrum and whole fresh leaf spectrum.
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with a mean and standard deviation of 14.35 and 1.52 mg/g

dry matter, respectively.

Airborne HYMAP data of the study area was obtained in

April 1999, 1 or 2 days before the foliage was sampled. The

HYMAP data originally comprises 128 wavebands (three

corrupted bands were excluded later) in the wavelength

range from 450 to 2500 nm. The spatial resolution of the

HYMAP data was about 3 m, which is adequate to identify

individual trees as most of the trees occupy several pixels on

the image. Data processing occurred in several steps. The

first of these was to convert the original Digital Number

(DN) to radiance using the DN-to-radiance conversion

factors that accompanied the HYMAP data (Integrated

Spectronics, http://www.intspec.com). The next step of

preprocessing was the atmospheric correction to convert

the radiance to surface reflectance. In earlier work on the

same data set, Dury et al. (2000) applied a flat field

atmospheric correction method. The drawback of this meth-

od is that the apparent radiance cannot be converted to the

real reflectance of canopy as it uses only data from the

image itself. We tried to overcome this problem first by

using a physical atmospheric model, 6S (Second Simulation

of the Satellite Signal in the Solar Spectrum) (Vermote et al.,

1997), to calibrate the atmospheric effects of the HYMAP

data. However, derived vegetation spectra were of a differ-

ent magnitude to that expected and were very noisy. This

may be due to the difficulty of converting radiance to

apparent reflectance or to the different canopy structures

of eucalypts compared with Northern Hemisphere forest

types at which the 6S model is aimed. We discarded the 6S

model in preference for Hycorr, which is a version of

ATREM (CSES, 1992; Gao & Goetz, 1990) for HYMAP

data combined with an Empirical Flat Field Optimal Re-

flectance Transformation (EFFORT) procedure (Boardman,

1998). The resulting vegetation spectra were acceptable

overall and the atmospheric effects, such as the atmospheric

water vapor absorption, were largely removed. A typical

mean reflectance spectrum (i.e., averaged spectrum of

several tree pixels of a single tree, as detailed in the next

section) for an E. melliodora tree canopy is compared with

its corresponding laboratory reflectance in Fig. 3. The shape

of the canopy spectrum is similar to that of the whole fresh

leaf spectrum for most of the wavelengths. One apparent

anomaly of the canopy spectrum is in the 750–950 nm

region. This may be due to some peculiarity of eucalypt

crown spectra or structure or to some idiosyncrasy of the

correction procedure. We believe this should not affect the

results much, as only one known nitrogen absorption feature

falls in that spectral range (910 nm).

2.2. Extraction of tree spectra

With the 3-m spatial resolution of HYMAP data, a

mature eucalypt tree usually occupies several pixels in the

image. The HYMAP sensor receives reflectance from the

vertical mixture of foreground canopy and the background.
These background effects come from soil, understorey and

shadow. We used the following procedure to minimize these

effects and to extract the relatively pure tree spectra (canopy

spectra) from the image. First, the 60 tree samples were

individually located on the false color HYMAP image

through a field inspection. Then tree pixels of each sample

tree were carefully identified by separating them from the

surrounding pixels. This is reasonably easy because the tree

pixels are a different colour to the background in the false

colour image. At least four tree pixels were extracted for

each tree. Subsequently, we obtained both the mean and

maximum spectrum of each tree by either averaging or

deriving the maximum spectra of the chosen tree pixels.

2.3. Spectral transformation methods

In this comparative study, two spectral transformation

methods were applied: standard derivatives and continuum

removal. For the standard derivative analysis, which is

widely used by researchers, the first or second derivatives

of the reflectances are used in the analysis rather than the

reflectances themselves.

The continuum removal employed in this study was

calculated as the band depth normalized to the band depth

at the centre of the absorption feature (BNC),

BNC ¼ 1� ðR=RiÞ
1� ðRc=RicÞ

ð1Þ

where R is the reflectance of the sample at the waveband of

interest, Ri is the reflectance of the continuum line at the

waveband of interest, Rc is the reflectance of the sample at the

absorption feature centre and Ric is the reflectance of the

continuum line at the absorption feature centre. We used two

approaches to extract continuum-removed spectra. The first

was to select several wavelength ranges according to the

known nitrogen absorption features, just as Kokaly and Clark

(1999) and Curran et al. (2001) did. The five such wavelength

ranges and known nitrogen absorption features in the band-

ranges are shown in Table 1. They were determined by taking

account of the locations of the local spectral maxima of a tree

 http:\\www.intspec.com 


Fig. 4. An example of intertree difference of the continuum-removed

spectra.
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spectrum and the known nitrogen absorption features so that

most of the known nitrogen absorption features were includ-

ed. Wavelengths considered to be known nitrogen absorption

features are: 460, 640, 660, 910, 1020, 1510, 1980, 2060,

2130–2180, 2240, 2300 and 2350 nm (derived from Curran,

1989), and 1645 nm (from Murray & Williams, 1987).

Among these nitrogen absorption features, 460, 640 and

660 nm are actually chlorophyll absorption features that are

closely related to those of nitrogen; all others except 1645 nm

are protein absorption features that are closely related to those

of nitrogen. None of these absorption features is close to a

known water absorption feature; thus, we believe we have

avoided potential overlay problems. Because there are large

differences in the canopy spectra of individual trees, the

locations of band depth centres are not necessarily consistent

for all trees (e.g., see Fig. 4). Therefore, we simply chose the

location of the largest band depth as the band centre of each

absorption feature (e.g., 1418 nm for tree 13 and 1460 nm for

tree 3 in Fig. 4).

The second approach to extract continuum-removed

spectra assumes that we do not know where the relevant

nitrogen absorption features are located across the whole

wavelength range. Thus, we applied continuum-removal

analysis to the whole spectrum (i.e., from 454 to 2500

nm) of each sample. For example, Figs. 1 and 2 show an

example of a tree reflectance spectrum and its continuum

and the same spectrum with the continuum removed using

the ENVI image processing package.

2.4. Statistical analysis

This study employed three statistical methods for devel-

oping models for estimating nitrogen concentrations from

the tree spectra, namely the stepwise regression, the mod-

ified partial least squares (MPLS), and the artificial neural

network methods. All three were implemented through the

WinISI package. Since there are limited samples, we did not

use independent test samples to measure the effectiveness of

the models but used a cross-validation method, which is

performed by dividing each sample population into groups.

For example, if the population is divided into four groups,

prediction occurs on every fourth sample with the calibra-

tion developed from the remaining three (Infrasoft Interna-

tional, 2000). The method, sometimes known as ‘‘leaving

one out’’ (Duda & Hart, 1973), has been used in similar
Table 1

Preselected wavelength ranges and their associated absorption features for

nitrogen

Selected wavelength

ranges (nm)

Known nitrogen absorption

features (nm)

583–750 640, 660

910–1081 910, 1020

1270–1666 1510, 1645

1796–2214 1980, 2060, 2130–2180

2230–2415 2240, 2300, 2350
studies (e.g., LaCapra et al., 1996; Martin & Aber, 1997).

The statistical results were assessed in terms of coefficient

of determination (R2), Standard Error of Cross-Validation

(SECV), Root Mean Square Error (RMSE) and the agree-

ment between wavelengths identified as important by sta-

tistical analysis and known nitrogen absorption features. For

all of the three statistical methods, the coefficient of deter-

mination (R2) was calculated on the whole 60 samples using

equations selected by the WinISI package. The best MPLS

equation was chosen on the basis of the lowest SECV; the

best neural network equation was chosen on the basis of the

lowest Standard Error of Validation (SEV); the best stepwise

regression equation was chosen on the basis of the param-

eters of maximum number of bands and F-value.

Stepwise regression analysis has been widely used to

regress leaf chemistry against some transformations of leaf

reflectance. For example, most of the studies mentioned

above used this approach. But it is also well recognized that

the stepwise regression method suffers from the potential of

overfitting and the selection of bands that fail to correspond

with known absorption bands (e.g., Curran, 1989). Further-

more, Grossman et al. (1996) also found that the R2 values

from stepwise linear regression were not significantly dif-

ferent from those obtained from a randomized baseline.

The MPLS method that we used previously (Dury & Jia,

2001; Dury et al., 2000; Dury & Turner, 2001) and which

has been used in several other studies (e.g., Bolster et al.,

1996; Zagolski et al., 1996) overcomes some of the diffi-

culties found with stepwise regression. It does this by

combining the most useful information from hundreds of

bands into a limited numbers of components, similar to the

principal components approach. This process largely avoids

the potential overfitting problem while using as much

information as possible. One problem with MPLS is that

identifying predictive bands is not straightforward and one

must use correlograms of reflectance and chemical concen-

tration to help identify optimal bands.

Both the stepwise regression and MPLS methods are

based on the assumption that linear relationships exist be-



Fig. 5. Correlogram on the maximum spectra using the standard derivative

analysis.
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tween biochemical concentrations and some transformation

of leaf reflectance. Since nonlinear relationships probably

occur too, especially in canopy measurements, it seems

appropriate to use nonlinear statistical models such as Arti-

ficial Neural Networks (ANNs). In this study, we applied a

modified back-propagation neural network (Rumelhart et al.,

1986). Instead of starting from randomized initial weights,

the neural network uses a partial least squares (PLS) method

to calculate the initial weights. This accelerates the running of

the network and minimizes the instability problem, typical of

neural networks. However, it is still a slow process to identify

the best combinations of network parameters. To avoid

overtraining, which may happen when there are too few test

samples, at least 10 out of the 60 samples were set aside as a

test set for each run.
3. Results

3.1. Results of the standard derivative analysis

Nitrogen concentration was estimated using the first and

second derivative transformation of the log(1/R) spectra

data. Almost all possible combinations of ‘‘math treat-

ments’’, scatter correction methods and neural network

parameters were tried to find optimal combinations for both

the maximum and mean spectra. For the MPLS method,

using the maximum spectra gave higher R2 and lower SECV

and RMSE (Table 2) than with the mean spectra. Fig. 5 is a

correlogram for the nitrogen concentration from the maxi-

mum spectra using the same ‘‘math treatment’’ as the MPLS

method (e.g., ‘‘1,2,2,2’’), and many of the absorption

features are known nitrogen absorption features (see Table

2). For example, 667 nm corresponds to a chlorophyll

absorption feature that is closely related to nitrogen and

1501 nm is a typical protein and nitrogen absorption band

corresponding to the N–H stretch, 1st overtone. The band at

1633 nm corresponds to the 1st overtone of N–H absorption

and the 3rd overtone of NH3 +NH deformation (Murray &

Williams, 1987), while that at 1988 nm is a protein
Table 2

Results of the standard derivative analysis

Spectra applied Statistical methods Math

treatment

Scatter correction R2

Mean spectra MPLS 2,1,1,1 Standard MSC 0.51

Stepwise regression 1,1,1,1 None 0.65

Neural network 2,1,1,1 Inverse MSC 0.90

Maximum

spectra

MPLS 1,2,2,2 SNV only 0.65

Stepwise regression 1,2,1,2 SNV only 0.64

Neural network 1,1,2,2 Detrend only 0.94

a Within 12 nm of known absorption features.
b Within 20 nm of known absorption features.
c Within 25 nm of known absorption features.
absorption band corresponding to N–H asymmetry. The

area of 2135–2187 nm covers another typical protein and

nitrogen absorption area, which corresponds to N–H

stretch, and to N–H bend, 2nd overtone. Curran (1989)

suggests that 2307 nm could be contributing to protein and

nitrogen absorption also. Fig. 6 is the correlogram for the

nitrogen concentration from the mean spectra (e.g., the math

treatment is ‘‘2,1,1,1’’). Among those absorption features

identified in Table 2, 483 nm may be related to chlorophyll

absorption, while 2170 nm falls in the absorption region

mentioned previously for nitrogen.

We set the maximum number of independent variables

(bands) in the models to six (default value recommended

by WinISI), to prevent the stepwise regression method from

potentially overfitting a model, and set the F-value for

accepting a variable to seven for the same purpose. Five

bands were selected from the mean spectra, which gave a

model with a slightly higher R2 and lower SECV and

RMSE than did the six bands selected from the maximum

spectra (Table 2). None of the wavelengths selected by

using either the maximum or the mean spectra corresponds

to the known nitrogen absorption features derived from

Curran (1989). However, the 1645 nm wavelength selected

by using the mean spectra does correspond to a nitrogen
SECV RMSE Wavelengths selected (nm) using correlograms

1.46 1.052 483c, 529, 576, 682c, 697, 774, 849, 879, 1043c,

1058, 1264, 1320, 1334, 1803, 1950, 2170a, 2223

1.0 0.892 948, 1645a, 1278, 880, 2223b

0.36 0.483 N/A

1.35 0.896 513, 560, 667a, 819, 865, 1073, 1403, 1501a,

1607–1633a,

1791, 1988a, 2135a–2187a, 2307a

1.02 0.906 1163, 499, 865, 1670c, 932c, 2204c

0.46 0.387 N/A



Fig. 7. Correlogram on the mean spectra of the preselected wavelength

ranges using the continuum removal analysis of BNC.

Fig. 6. Correlogram on the mean spectra using the standard derivative

analysis.
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absorption feature identified by Murray and Williams

(1987).

Results from the back-propagation neural network pro-

duced much higher R2 values and much lower SECVs and

RMSEs than those from both the stepwise regression

analysis and the MPLS method (Table 2). Similar results

were obtained with both maximum and mean spectra.

3.2. Results of continuum removal analysis

3.2.1. Correlations between nitrogen concentrations and

continuum-removed spectra from the five selected wave-

length ranges

The correlations between the continuum-removed maxi-

mum spectra and nitrogen concentrations for either BNC or

log(1/BNC) are very low and are not reported in this paper.

The results for the continuum-removed mean spectra are

listed in Table 3. Generally, using BNC yields higher R2

values and a larger number of sensible bands selected than

using log(1/BNC). Among the three different statistical

methods, the neural network achieved the highest R2 values,

followed by the MPLS and then the stepwise regression.

Both the correlogram and the stepwise regression method
Table 3

Results of correlations between continuum-removed mean spectra from the five s

Spectra

applied

Spectral

transformation

Statistical methods Math

treatment

Scatter

correction

Mean

spectra

Band-normalized

to centre (BNC)

MPLS 2,1,1,1 Detrend only

Stepwise regression 1,1,1,1 Standard MSC

Neural network 1,1,1,1 Inverse MSC

log(1/BNC) MPLS 2,1,1,1 Inverse MSC

Stepwise regression 2,1,1,2 Standard MSC

Neural network 1,1,1,1 Standard MSC

a Within 12 nm of known absorption features.
b Within 20 nm of known absorption features.
c Within 25 nm of known absorption features.
identified some known nitrogen absorption features. For

example, for the regression between BNC and nitrogen

using MPLS, six out of 19 wavebands selected using the

correlogram (Fig. 7) are within 12 nm of known nitrogen

absorption features, another two are within 20 nm, while

two others are within 25 nm. Moreover, the wavebands

selected by stepwise regression for both BNC and log(1/

BNC) were all from the last three wavelength ranges (i.e.,

short and medium wave infrared, see Table 1).

The neural network methods gave the lowest values of

SECVs followed by the stepwise regression methods, and

the MPLS methods produced the highest SECV values. In

terms of RMSE, the neural network methods were superior

to the MPLS methods which in turn were superior to the

stepwise regression methods.

3.2.2. Correlations between continuum-removed spectra

from the whole wavelength range and nitrogen

concentrations

The results from analyses of both the continuum-removed

mean and maximum spectra are shown in Table 4. In most

cases for the continuum-removed mean spectra, untrans-

formed BNC yielded higher R2, lower SECVs and lower
elected wavelength ranges and nitrogen concentrations

R2 SECV RMSE Wavelengths selected (nm)

using correlograms

0.751 1.416 0.75 652a, 697, 728, 932c, 981, 1011a, 1043c,

1058, 1320, 1334, 1432, 1460, 1555,

1969a, 1988a, 2063a, 2117b, 2170a, 2257b

(Fig. 7)

0.603 1.087 0.948 1528b, 1555, 1988a, 2026, 2153a, 2170a

0.839 0.6596 0.616 N/A

0.667 1.453 0.869 932c, 981–996c, 1043c, 1058, 1320,

1334, 1346, 1460, 1988a, 2170a, 2257b,

2291a

0.606 1.074 0.948 1446, 1460, 1542, 1645a, 2007, 2153a

0.821 0.5674 0.616 N/A



Table 4

Results of correlations between continuum-removed spectra from the whole wavelength range and nitrogen concentrations

Spectra

applied

Spectral

transformation

Statistical methods Math

treatment

Scatter correction R2 SECV RMSE Wavelengths selected (nm)

using correlograms

Mean spectra Band-normalized

to centre (BNC)

MPLS 2,1,1,1 None 0.505 1.355 1.059 529, 576, 652a, 697, 728, 849, 880,

996c, 1148, 1221, 1235, 1306, 1334,

1988c, 2170a, 2187a, 2307a

Stepwise regression 1,1,1,1 SNV and Detrend 0.663 0.991 0.873 545, 880, 918a, 1607, 1645a, 1950

Neural network 1,1,1,1 Detrend only 0.851 0.5047 0.584 N/A

log(1/BNC) MPLS 2,1,1,1 Weighted MSC 0.487 1.488 1.078 529, 576, 697, 743, 849, 996c, 1043c,

1221, 1264, 1306, 1320, 1501a, 1744,

1756, 1969a, 1988a, 2063a, 2170a,

2307a

Stepwise regression 1,1,2,2 Standard MSC 0.627 1.023 0.919 1043c, 1732, 1988a, 2187a, 2291a,

2324c

Neural network 1,1,1,1 SNV only 0.877 0.6701 0.587 N/A

Maximum

spectra

Band-normalized

to centre (BNC)

MPLS 2,1,1,1 Weighted MSC 0.677 1.524 0.856 529, 591, 667a, 743, 834, 996c, 1148,

1192, 1221, 1235, 1346, 1403, 1418,

1432, 1460, 1474, 1515a, 1581, 1950,

2324c

Stepwise regression 2,1,2,2 Inverse MSC 0.6 1.076 0.952 529, 682c, 1306, 1515a, 2044b, 2324c

Neural network 1,1,1,2 Standard MSC 0.856 0.6842 0.576 N/A

log(1/BNC) MPLS 2,1,1,1 Standard MSC 0.853 1.376 0.577 529, 591, 728, 898a, 1043c, 1221, 1306,

1320, 1346, 1403, 1418, 1432, 1474,

1515a, 1645a

Stepwise regression 2,1,1,1 Detrend only 0.624 1.044 0.922 1043c, 1306, 1460, 1645a, 1683, 1988a

Neural network 2,1,1,1 Inverse MSC 0.863 0.5361 0.56 N/A

a Within 12 nm of known absorption features.
b Within 20 nm of known absorption features.
c Within 25 nm of known absorption features.
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RMSEs than using log(1/BNC). One exception was that the

neural network achieved a higher R2 value when using log(1/

BNC) than when using BNC. In terms of selecting known

nitrogen absorption features, using log(1/BNC) resulted in

the selection of more sensible bands than did using BNC.

However, in contrast with the results of the correlations

between continuum-removed mean spectra from the five

preselected wavelength ranges and nitrogen concentrations

(see Table 3), the MPLS method resulted in much lower R2

values and higher RMSE values than when the stepwise

regression and neural network techniques were used.
Fig. 8. Scatter plot using MPLS on the maximum spectra of the whole

wavelength range using the continuum removal analysis of log(1/BNC).
For the continuum-removed maximum spectra derived

from the whole wavelength range and for all three statistical

methods, using log(1/BNC) gave superior statistical results

to the untransformed BNC in terms of R2, SECV and

RMSE. The high R2 (0.85) obtained by regressing log(1/

BNC) against nitrogen concentrations using the MPLS

method is most encouraging. The results are superior, in

terms of R2, SECV and RMSE, to those from using

continuum-removed mean spectra of the five preselected

wavelength ranges. One drawback, however, is that the

procedure selected fewer sensible bands than did the con-
Fig. 9. Scatter plot using stepwise regression on the mean spectra of the

whole wavelength range using the continuum removal analysis of BNC.



Fig. 10. Scatter plot using neural network on the mean spectra of the whole

wavelength range using continuum removal analysis of log(1/BNC).
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tinuum-removed mean spectra used in conjunction with the

five preselected wavelength ranges.

3.2.3. Comparison of results

The three statistical methods gave maximum R2 values

and the lowest RMSEs in different circumstances. For the

MPLS method, the highest R2 (0.85) and the lowest RMSE

(0.58) was obtained by using log(1/BNC) derived from the

whole wavelength range of maximum spectra (see Fig. 8 for

the scatter plot). For stepwise regression analysis, the high-

est R2 (0.66) and the lowest RMSE (0.87) came from using

BNC derived from the whole wavelength range of mean

spectra (see Fig. 9 for the scatter plot). Using log(1/BNC)

derived from the whole wavelength range of mean spectra

gave the highest R2 (0.88) for the neural network method

(see Fig. 10 for the scatter plot), but the lowest RMSE (0.56)

were obtained from using log(1/BNC) derived from the

whole wavelength range of maximum spectra. In terms of

selecting known nitrogen absorption features, using the

continuum-removed mean spectra is better than using the

continuum-removed maximum spectra for all three statisti-

cal methods.
4. Discussion

The high R2 values and the large number of sensible

bands selected make the results of this study most encour-

aging. This is especially true when using the MPLS method

and its associated correlograms in conjunction with contin-

uum-removed spectra rather than standard derivatives. For
Table 5

Number of times the known nitrogen absorption features were identified using th

Known nitrogen absorption

feature (nm)

460 640–660 910 1020 1510

Times identified

in this study

0 3 2 1 4

a Within 20nm of known absorption feature.
maximum spectra, continuum-removal analysis slightly in-

creased the R2 value from 0.65 to 0.68 using MPLS on BNC

of the whole wavelength range. However, there was a

noticeable increase to 0.85 when using log(1/BNC). For

mean spectra, the continuum-removal analysis has increased

the R2 from 0.51 to 0.67 when using MPLS on log(1/BNC)

and it is increased further to 0.75 using BNC. In addition,

continuum removal enables correlograms to identify more

known nitrogen absorption features using the mean spectra.

The MPLS associated correlograms however, identified

fewer known nitrogen absorption features using the contin-

uum-removed maximum spectra. Moreover, although using

continuum-removal analysis did not increase the resulting

R2 values for the stepwise regression method, it did identify

more wavebands that are within 12 nm of the known

nitrogen absorption features than the standard derivative

analysis. This finding is in partial agreement with that of

Curran et al. (2001).

Furthermore, although the neural network models are

unable to identify sensible bands due to the nature of the

method, they resulted in generally higher R2 values than

did either the MPLS or the stepwise regression methods.

This implies that the relationship between chemical con-

centrations and reflectance measures may indeed be non-

linear. The continuum-removal analysis did not improve

the regression results of the neural network method. This

may be explained by the fact that the resulting R2 values

are already very high, which leaves little room for further

improvement.

Almost all of the known nitrogen absorption features,

except the first (460 nm) and the last (2350 nm), were

identified by at least one experiment of the continuum-

removal analysis (Table 5). There are good explanations for

the unrecognized absorption features. The 460 nm band falls

on the lower limits of the HYMAP data and is effectively

out of range, while the small signal to noise ratio at the tail

of the MIR wavelength range probably explains why the

2350 nm absorption feature was missed. Other absorption

features proved difficult to detect for a variety of reasons.

For example, the difficulties in detecting the 910 and 2240

nm absorption features may be due to these bands respond-

ing strongly to the C–H stretch rather than the N–H stretch

(Curran, 1989) and perhaps the anomalies between 750 and

950 nm. The analysis failed to identify the 1020 nm as a

major nitrogen absorption feature but identified the 1043 nm

band six times. This study detected nitrogen absorption

features that other studies missed, for instance, that at

1645 nm. This was missed by Curran (1989) but the 1640
e continuum removal analysis (derived from Tables 3 and 4)

1645 1980 2060 2130–2180 2240 2300 2350

3 10 2 9 2a 4 0
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nm wavelength was described by Murray and Williams

(1987) as representing both the 1st overtone of an N–H

absorption and the 3rd overtone of a NH3 +NH deforma-

tion. This nitrogen absorption feature has been identified by

the studies of Dury et al. (2000), Lacaze and Joffre (1994),

Martin and Aber (1997) and Yoder and Pettigrew-Crosby

(1995).

Another important finding in this study concerning

absorption features is the prominence of two features at

1980 nm and in the range from 2130–2180 nm. This

suggests that it may be possible to establish a general

equation to estimate nitrogen concentrations using these

two absorption features. If so, this can alleviate the over-

fitting problem common to stepwise regression.

This study showed that continuum-removal analysis has

the potential to improve the estimation of nitrogen concen-

trations in remotely sensed tree canopies. Apart from

showing better modeling performance than standard deriv-

ative analysis, our study identified several other advantages

of continuum-removal analysis of canopy data. First, it

gives high coefficients of determination (and consequently

lower RMSEs) with MPLS. Second it allows the identifi-

cation of more known nitrogen absorption features using

stepwise regression analysis. Third, it provides the potential

for establishing a general equation for nitrogen based on the

commonly identified absorption features such as the 1980

nm wavelength and the 2130–2180 nm area.

The results of this study were inconclusive as to whether

the use of maximum spectra is superior to mean spectra.

However, using maximum spectra did give lower RMSE

results than using mean spectra when used with the MPLS

method. This held true both for the standard derivative

analysis and the continuum-removal analysis. We believe

deriving maximum spectra may be most useful when

estimating biochemical concentrations in canopies of indi-

vidual trees where large illumination differences exist within

a canopy because, under these conditions, the maximum

spectrum better represents the canopy spectrum.

Of the three statistical methods, the neural network

approach is clearly most satisfactory in terms of R2, SECV

and RMSE. Although there are theoretical advantages of

using MPLS over stepwise regression, the results of this

study were inconsistent. The stepwise regression approach

appears to be able to give quite stable results while the

results of the MPLS methods vary greatly.

The confounding factor of interference by leaf water

remains a problem when remotely sensing canopies, but it is

a difficulty that afflicts all methods and not just continuum-

removal analysis. On the contrary, if leaf water absorption is

the major source of confusion, then this study suggests that

continuum-removal analysis is less sensitive to the problem

than is standard derivative analysis.

This was the first attempt to measure the concentrations

of foliar biochemicals of a natural stand of eucalypts with

airborne hyperspectral remote sensing. The success of this

research prompts further work with larger sample sets and
more complex canopies, especially those containing a

mixture of species.
5. Conclusion

In this study, we demonstrated the potential of using

continuum-removal analysis to estimate nitrogen concentra-

tions in the canopies of individual eucalypts trees. The

method produced higher coefficients of determination and

lower RMSE and identified more sensible bands than did

the standard derivative analysis. These encouraging results

are not unexpected, because continuum-removal analysis is

able to remove irrelevant background reflectance and to

isolate and enhance absorption features of interest. In

summary, continuum removal based regression analysis

appears able to detect more useful causal relationships

between chemical absorption and leaf reflectance and to

aid the interpretation of the relationship. We suggest that

continuum-removal analysis is an effective method for the

estimation of chemical concentrations in leaves from remote

sensing data. Therefore, it should be considered at least as a

supplement to standard derivative analysis at this stage.

Most research, however, is needed to give a conclusive

result.
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