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Positronium states in three-dimensional QED

T. W. Allen and C. J. Burden
Department of Theoretical Physics, Research School of Physical Sciences and Engineering, Australian National Un

Canberra, Australian Capital Territory 0200, Australia
~Received 21 September 1995!

Thee2-e1 bound state spectrum of three-dimensional QED is investigated in the quenched ladder approxi-
mation to the homogeneous Bethe-Salpeter equation with fermion propagators from a rainbow approximation
Schwinger-Dyson solution with a variable fermion mass. A detailed analysis of the analytic structure of the
fermion propagator is performed so as to test the appropriateness of the methods employed. The large fermion
mass limit of the Bethe-Salpeter equation is also considered, including a derivation of the Schro¨dinger equa-
tion, and comparisons are made with existing nonrelativistic calculations.

PACS number~s!: 12.20.Ds, 11.10.Kk, 36.10.Dr
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I. INTRODUCTION

The similarities between quantum electrodynamics
three space-time dimensions~QED3) and quantum chromo-
dynamics in four space-time dimensions~QCD4) and the
simplicity of the theory make QED3 attractive for the study
of nonperturbative methods. QED3 is an Abelian theory and
provides a logarithmic confininge2-e1 potential@1#.

Our approach to positronium states in QED3 is via a so-
lution to the homogenous Bethe-Salpeter equation with fer
ion propagator input from the Schwinger-Dyson equatio
The full Schwinger-Dyson and Bethe-Salpeter equations
intractable. Here we consider a solvable system of integ
equations within the quenched ladder approximation. T
crude truncation of the full equations does break gauge
variance but has very attractive features and has been
ployed extensively in QCD4 spectrum calculations@2,3#.

This study continues on from a previous study@4# which
uses a four-component fermion version of QED3. In this
version, the massless case exhibits a chiral-like U~2! symme-
try broken into a U~1!3U~1! symmetry by the generation of
a dynamical fermion mass, resulting in a doublet of Gol
stone bosons. This pionlike solution is important for drawin
similarities between QED3 and QCD4. The four-component
version of QED3 is also preferred to the two-component ve
sion because the Dirac action in the two-component vers
is not parity invariant for massive fermions. QCD4 is parity
invariant and we aim to have as much in common with th
theory as possible.

The previous work was restricted to zero bare fermio
mass, while in this study the bare mass is increased fr
zero to large values in order to compare with results in t
nonrelativistic limit. This study also takes a closer look at th
choice of fermion propagator input. Knowledge of the an
lytic properties of the fermion propagator is important fo
determining the approximation’s ability to provide confine
ment and whether or not any singularities will interfere wit
a Bethe-Salpeter solution. Based on the work of Maris@5,6#
the occurrence of masslike complex singularities is expec
which have the potential to influence our calculations.

In Sec. II we look at the Bethe-Salpeter and Schwinge
Dyson approximations used in this work and the meth
used to find the bound state masses. A brief review of tra
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formation properties in QED3 is given in the Appendix.
These transformation properties are of vital importance f
an understanding of the structure of thee2-e1 vertex func-
tion and the classification of the bound states. Section
describes the nonrelativistic limit and the connection b
tween the Bethe-Salpeter and Schro¨dinger equations for
QED3.

In Sec. IV the approximation to the fermion propagator
detailed. The structure of the propagators will be analyzed
the complex plane where we attempt to locate the expec
masslike singularities. In Sec. V the Bethe-Salpeter solutio
are reported and comparisons are made with nonrelativis
limit calculations. The results are discussed and conclusio
given in Sec. VI.

II. SOLVING THE BETHE-SALPETER EQUATION

The Bethe-Salpeter~BS! kernel for this work is a simple
one-photon exchange~ladder approximation! which is a
commonly used starting point. For convenience we use t
quenched approximation, work in Feynman gauge and wo
only with the Euclidean metric. Figure 1 shows the Beth
Salpeter equation in the quenched ladder approximation. T
corresponding integral equation is

G~p,P!52e2E d3q

~2p!3
D~p2q!gmS~ 1

2P1q!

3G~q,P!S~2 1
2P1q!gm , ~2.1!

whereG(p,P) is the one-fermion irreducible positronium-
fermion-antifermion vertex with external legs amputate
The photon propagatorD(p2q) in Feynman gauge is
1/(p2q)2. The fermion propagatorS is the solution to a

FIG. 1. Diagrammatic representation of Eq.~2.1!.
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53 5843POSITRONIUM STATES IN THREE-DIMENSIONAL QED
truncated Schwinger-Dyson~SD! equation. A fermion propa-
gator has been chosen which supports spontaneous m
generation necessary for the formation of the Goldsto
bosons. The truncated SD equation for a fermion of ba
massm is

S~p!5S~p!212~ ip”1m!

5e2E d3q

~2p!3
D~p2q!gmSF~q!gm . ~2.2!

This approximation is the quenched, rainbow approximati
named so because the photon propagator has been rep
by the bare photon propagator and the vertex functionG has
been replaced by the bare vertexg, resulting in a series of
Feynman diagrams which resemble rainbows. In t
quenched approximation the SD and BS equations can
recast in terms of a dimensionless momentump/e2 and bare
fermion massm/e2. From here on we work in dimensionles
units and sete251.

We use either of the two following equivalent represent
tions of the fermion propagator:

S~p!52 ip”sV~p2!1sS~p
2! ~2.3!

or

S~p!5
1

ip”A~p2!1B~p2!
. ~2.4!

The generation of a dynamical fermion mass and the bre
ing of chiral symmetry is signalled~in the massless limit! by
nonzeroB(p2). The vector and scalar partssV andsS of the
propagator are related to the functionsA andB simply by
dividing these functions (A,B) by a quantity p2A2(p2)
1B2(p2).

Note that a substitution of this fermion propagator into th
Ward-Takahashi identity shows that the bare vertex appro
mation breaks gauge covariance. However, this model
simple and does meet the requirement that the appropr
Goldstone bosons are formed@7#. It is not difficult to derive
a zero mass solution to our BS equation~BSE! analytically.
A vertex proportional to the matrixg4 or g5 , defined in the
Appendix, will reduce the quenched ladder BSE to th
quenched ladder~rainbow! SD equation~SDE! in the case of
zero bound state mass thus forming a doublet of mass
states. According to the terminology used in the Append
this is an axiscalar doublet. These solutions will be seen
Sec. V.

Once the photon and fermion propagators are suppli
the BS equation can be written as a set of numerically tra
table integral equations. To do this, we write the BS amp
tudeG in its most general form consistent with the parity an
charge conjugation of the required bound state, and th
project out the coefficient functions for the individual Dira
components. It is convenient to work in the rest frame of t
bound state by settingPm5(0,0,iM ). Then the scalar and
axiscalar vertices given in the Appendix by Eqs.~A7! and
~A9! can be written as
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GS~q,P!5 f ~q3 ,uqu;M !2
iq jg j

uqu
U~q3 ,uqu;M !

1
iq j

'g j

uqu
g45V~q3 ,uqu;M !1 ig3W~q3 ,uqu;M !,

~2.5!

GAS~q,P!5S g4

g5
D f ~q3 ,uqu;M !2

iq jg j

uqu S g4

g5
DU~q3 ,uqu;M !

1
iq j

'g j

uqu S g5

2g4
DV~q3 ,uqu;M !

2g3S g4

g5
DW~q3 ,uqu;M !, ~2.6!

where the index j takes on values 1 and 2 only,
uqu5(q1

21q2
2)1/2 andq'5(2q2 ,q1). The pseudoscalar and

axipseudoscalar vertices are obtained from the scalar a
axiscalar vertices by multiplication by the matrixg45.

It is found that the same coupled integral equations resu
when a vertex is multiplied by the matrixg45 and so~scalar,
pseudoscalar! and ~axiscalar, axipseudoscalar! form two
pairs of degenerate states.

The four equations derived from the BSE, after some m
nipulation including an angular integration, are@4#

f ~p!5
3

~2p!2
E

2`

`

dq3E
0

`

uquduqu
1

~a22b2!1/2

3@Tf f f ~q!1TfUU~q!1TfVV~q!1TfWW~q!#,

U~p!5
1

~2p!2
E

2`

`

dq3E
0

`

uquduqu
~a22b2!1/22a

b~a22b2!1/2

3@TUf f ~q!1TUUU~q!1TUVV~q!1TUWW~q!#,

V~p!5
1

~2p!2
E

2`

`

dq3E
0

`

uquduqu
~a22b2!1/22a

b~a22b2!1/2

3@TVf f ~q!1TVUU~q!1TVVV~q!1TVWW~q!#,

W~p!5
1

~2p!2
E

2`

`

dq3E
0

`

uquduqu
1

~a22b2!1/2

3@TWff ~q!1TWUU~q!1TWVV~q!1TWWW~q!#,

~2.7!

where

a5~p32q3!
21upu21uqu2, b522upuuqu.

Now define the momentumQ by

Q25q3
21uqu22

1

4
M21 iMq3 , ~2.8!

and use the abbreviationssV5sV(Q
2) andsS5sS(Q

2) for
use in the definition of the functionsTf f ,TfU , . . . which are
analytic functions ofq3 ,uqu, andM . The diagonalT’s are
given by
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Tf f5~ 1
4M

21q3
21uqu2!usVu27usSu2,

TUU5~ 1
4M

21q3
22uqu2!usVu26usSu2,

TVV5~ 1
4M

21q3
21uqu2!usVu26usSu2,

TWW52~ 1
4 M

21q3
22uqu2!usVu26usSu2, ~2.9!

where the upper sign applies to the scalar equations and
lower sign to the axiscalar equations. The off-diagonalT’s
are, for the scalar positronium states,

TfU5TUf5~sV*sS1sS*sV!uqu,

TfV5TVf52M uquusVu2,

TfW5TWf52~sV*sS1sS*sV!q31
i

2
~sV*sS2sS*sV!M ,

TUV5TVU52@ 1
2 ~sV*sS1sS*sV!M1 iq3~sV*sS2sS*sV!#,

TUW5TWU52q3uquusVu2,
the

TVW5TWV52 i ~sV*sS2sS*sV!uqu, ~2.10!

and, for the axiscalar states,

TfU5TUf5 i ~sV*sS2sS*sV!uqu,

TfV52TVf5M uquusVu2,

TfW52TWf52 i ~sV*sS2sS*sV!q32
1
2 ~sV*sS1sS*sV!M ,

TUV5TVU52F i2 ~sV*sS2sS*sV!M2q3~sV*sS1sS*sV!G ,
TUW52TWU522q3uquusVu2,

TVW52TWV5~sV*sS1sS*sV!uqu. ~2.11!

This is the same set of equations solved in Ref.@4# with only
the fermion propagator input altered. The bare fermion ma
m only comes into the calculation through this input.

The solution to the BSE involves iteration of the couple
integral equations in Eq.~2.7!. These equations may be re
written as
f~ upu,p3 ;M !5E dq3E duquK~ upu,p3 ;uqu,q3 ;M !f~ uqu,q3 ;M !, ~2.12!
gy

-
to

e

f

n
-

where f5( f ,U,V,W)T. For each symmetry case and eac
fermion mass this is solved as an eigenvalue problem of
form

E dqK~p,q;M !f~q!5L~M !f~p!, ~2.13!

for a given test massM . This is repeated for different tes
bound state masses until an eigenvalueL(M )51 is ob-
tained.

III. NONRELATIVISTIC LIMIT

We consider now the nonrelativistic limitm→` of our
BS formalism in order to enable comparisons with existin
numerical calculations@8,9# of the Schro¨dinger equation for
QED3, and with the largem solution of Eq.~2.7!

The Schro¨dinger equation with a confining logarithmic
potential is an interesting problem in its own right. Initiall
one is faced with the problem of setting the scale of t
potential, or equivalently, setting the zero of energy of th
confined bound states. A solution to this problem was p
posed by Sen@10# and Cornwall@11# in terms of cancellation
of infrared divergences in perturbation theory. They intr
duce a regulating photon massm in order to set the potential
as the two-dimensional Fourier transform of the photo
propagator 1/(k21m2), leading to a potential proportional to
ln(mr). They further interpret the sum of the bare fermio
mass and the fermion self-energy evaluated at the bare fe
ion mass shell as a renormalized fermion mass, leading t
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mass renormalisationdm} ln(m/m). The logarithmic diver-
gences in the photon potential and the fermion self-ener
then conspire to cancel leaving a finite positronium mass.

The first numerical treatment of the Schro¨dinger equation
for QED3 using this line of argument was carried out by
Yung and Hamer@8#. In a subsequent, improved calculation
by Tam, Hamer, and Yung@9#, the formalism was shown to
be consistent with an analysis of QED3 from the point of
view of discrete light cone quantization. Their resulting ex
pression for the bound state energy, obtained as a solution
the differential equation

H 2
1

m
¹21

1

2p
@C1 ln~mr!#J f~r !5~E22m!f~r !,

~3.1!

whereC is Euler’s constant, is given in terms of the bare
fermion massm as

E52m1
1

4p
lnm1

1

2p S l2
1

2
ln
2

p D . ~3.2!

The lightests-wave positronium state and first exited stat
are given byl051.7969 andl152.9316, respectively. The
first five states are provided in@9#.

Here we present a treatment of the nonrelativistic limit o
the QED3 positronium spectrum in terms of our SD-BS
equation formalism. We begin with the fermion propagator i
the limit m→`. For large fermion mass we expect the re
sidual effect of the chiral symmetry-breaking contribution to
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the fermion self-energy to be small compared with contrib
tion from the perturbative loop expansion. We shall therefo
assume to begin with that the self-energy is reasonably w
approximated by the one-loop result. The validity of th
approximation for spacelike momenta will be demonstrat
numerically in the next section.

The one-loop fermion self energy, with the functionsA
andB defined in Eq.~2.4!, is given by

A511
SA~p2/m2!

m
, ~3.3!

where

SA~x2!5
1

8px2 F12
12x2

2x
arccosS 12x2

11x2D G , ~3.4!

and

B5mS 11
SB~p2/m2!

m D , ~3.5!

where

SB~x2!5
3

8px
arccosS 12x2

11x2D . ~3.6!

This result is valid for ~Euclidean! spacelike momenta
p2.0. An analytic continuation of theS functions valid for
up2u,m2, or uxu,1, is

SA~x2!5
1

8p ix Fx221

2x2
lnS 11 ix

12 ix D1
i

xG , ~3.7!

SB~x2!5
3

8p ix
lnS 11 ix

12 ix D . ~3.8!

Note that this representation exposes a logarithmic infinity
the self-energy at the bare fermion mass polep252m2.
This is the infrared divergence in the renormalized fermio
self-energy as defined by Sen@10# referred to above. How-
ever, in our formalism, this singularity does not lead to
pole
u-
re
ell
is
ed

in

n

a

in the propagator functionssV andsS defined in Eq.~2.3!,
which would signal the propagation of a free fermion@12#,
but a logarithmic zero.

Using Eqs.~3.3! and ~3.5! we obtain

FIG. 2. ~a! and ~b! show one-loop approximations using Eq
~2.3!, ~2.4!, and~3.3!–~3.6! for m2sV andmsS , respectively~solid
lines!. These are compared with the vector and scalar parts of
approximation Eq.~3.14! ~dashed lines!. The curves are drawn for
fermion masses~from bottom to top! 1, 2, 4, 8, and̀ .
r.
nated
sV~p2!5
1

m2

11SA /m

e~11SA /m!212@11~SA1SB!/2m#~SB2SA!/m
, ~3.9!

sS~p
2!5

1

m

11SB /m

e~11SA /m!212@11~SA1SB!/2m#~SB2SA!/m
, ~3.10!

where we have defined

e5
p21m2

m2 . ~3.11!

The functionssV andsS are plotted in Figs. 2~a! and 2~b! for m5 1, 2, 4, 8, and̀ , the final curve being the bare propagato
From these plots we see that for largem, the deviation from the bare propagator due to the one-loop self-energy is domi
by the logarithmic contribution near the bare fermion mass shell,e50. With this in mind, we shall use the approximation

SA~x2!'2
1

8p
ln

e

4
, ~3.12!
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SB~x2!'2
3

8p
ln

e

4
. ~3.13!

Taking e to be of order 1/m for the purposes of the BS equation@see Eq.~3.16! below# these approximations give

S~p!5
2 ip”1m

m

1

me2~1/2p!ln~e/4! F11OS lnmm D G . ~3.14!

The vector and scalar parts of this approximate propagator@without theO(lnm/m) corrections# are also plotted in Figs. 2~a! and
2~b! for comparison.

Turning now to the BS equation, we set the bound state momentum in Eq.~2.1! equal toPm5(2m1d) ivm , where
vm5(0,0,1) and2d is a ‘‘binding energy.’’ This gives~according to the momentum distribution in Fig. 1!

G~p!52E d3q

~2p!3
D~p2q!gmSF2Sm1

d

2D ivm1qmGG~q!SF Sm1
d

2D ivm1qmGgm . ~3.15!

Setting

e5
2

m S 2
1

2
d1 iq31

uqu2

2m D1OS 1

m2D ~3.16!

in Eq. ~3.14! gives

SF Sm1
d

2D ivm1qmG5
11g3

2

1

@2~1/2!d1 iq31uqu2/2m#2~1/4p!ln~e/4!
1OS lnmm D . ~3.17!

Similarly

SF2Sm1
d

2D ivm1qmG5
12g3

2

1

@2~1/2!d2 iq31uqu2/2m#2~1/4p!ln~e* /4!
1OS lnmm D . ~3.18!

The uqu2/2m term has been retained here to ensure convergence of theuqu integral in the BS equation below. Since the verte
G is defined with the fermion legs truncated, andS}(1/2)(16g3), the only relevant part ofG is the projection (1/2)
3(12g3)G(1/2)(11g3). With this in mind, the general forms in Eqs.~2.5! and ~2.6! become

1

2
~12g3!G

S
1

2
~11g3!5

1

2
~12g3!

qjg j

uqu
g~q3 ,uqu!,

1

2
~12g3!G

AS
1

2
~11g3!5

1

2
~12g3!S g4

g5
D g~q3 ,uqu!. ~3.19!

Substituting Eqs.~3.17!, ~3.18!, and~3.19! into Eq. ~3.15! one obtains, for the scalar states the single integral equation

g~p!'E d3q

~2p!3
1

~p2q!2
p•q

upuuqu
g~q!

u2~1/2!d1 iq31uqu2/2m2~1/4p!ln~1/2m!@2~1/2!d1 iq31uqu2/2m#u2
, ~3.20!

and, for the axiscalar states the single equation,

g~p!'E d3q

~2p!3
1

~p2q!2
g~q!

u2~1/2!d1 iq31uqu2/2m2~1/4p!ln~1/2m!@2~1/2!d1 iq31uqu2/2m#u2
. ~3.21!

Note that, without theuqu2/2m term in the denominator, translation invariance of the integrand implies thatg is independent
of uqu. In reality,g is a slowly varying function ofuqu, and this extraO(1/m2) term must be retained ine to account for the
fact that the relevant region of integration in Eqs.~3.20! and ~3.21! extends out toO(Am) in the uqu direction, but only
O(1) in theq3 direction. Numerical solutions of Eqs.~3.20! and~3.21! will be given in Sec. V. The functiong is an even or
odd function ofq3 corresponding to positronium states which are even or odd, respectively, under charge conjugation

In order to obtain a Schro¨dinger equation, we now rewrite the axiscalar equation in the form
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g~p!5E d2q

~2p!2
E

2`

` dq3
2p

1

~p32q3!
21up2qu2

3
g~q!

@2~1/2!d1 iq31uqu2/2m1S1~q3 ,uqu!#@2~1/2!d2 iq31uqu2/2m1S2~q3 ,uqu!#
, ~3.22!

where

S6~q3 ,uqu!52
1

4p
lnF 1

2m S 2
1

2
d6 iq31

uqu2

2m D G . ~3.23!

Assuming the integrand dies off sufficiently rapidly asq3→2 i`, we deform the contour of integration around the pole at

q3
pole52 i S 2

1

2
d1

uqu2

2m
1S2~q3

pole,uqu! D , ~3.24!

to obtain

g~p!5E d2q

~2p!2
1

~p32q3
pole!21up2qu2

g~q3
pole,uqu!

2d1uqu2/m12 ReS2~q3
pole,uqu!

. ~3.25!

~We could equally well deform the contour around the pole at (q3
pole)* if the integrand decays in the opposite direction, withou

affecting our final result.!
Defining

F~p3 ,upu!5
g~p3 ,upu!

2d1upu2/m12 ReS2~p3 ,upu!
, ~3.26!

gives

H 2d1
upu2

m
12 ReS2~p3 ,upu!J F~p3 ,upu!5E d2q

~2p!2
1

~p32q3
pole!21up2qu2

F~q3
pole,uqu!. ~3.27!

In order to isolate the logarthmic infrared divergence we set

p35p3
pole1m, ~3.28!

with m small and real, andp3
pole defined by analogy with Eq.~3.24!. The right-hand side~RHS! of Eq. ~3.27! then becomes

RHS5E d2q

~2p!2
1

m21O@m~ upu2uqu!#1up2qu2
f~q!5FT of

21

2p FC1 lnS mr

2 D Gf~r ! as m→0, ~3.29!
where f(q)5F(q3
pole,uqu), FT denotes the Fourier trans

form, andC is Euler’s constant.
Following the reasoning of@10,11#, this logarithmic di-

vergence should be cancelled by the fermion self-ene
contribution 2ReS2(p3 ,upu). However, from Eq.~3.23!, we
see that the logarithmic divergence in the self-energy occ
at the bare fermion mass polep3

bare52 i (2d/21upu2/2m),
and not the dressed polep3

pole. The problem lies in the use of
the one-loop approximation. If instead the fermion se
energy is calculated to all orders in rainbow approximatio
the self-energy feeds back into the loop integral via t
propagator to replace Eq.~3.23! by
-

rgy
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lf-
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he

S2~p3 ,upu!52
1

4p
lnF 1

2m S 2
1

2
d2 ip31

upu2

2m

1S2~p3 ,upu! D G , ~3.30!

which provides a rainbow SD equation forS2 in the nonrel-
ativistic limit. Then using Eqs.~3.27!, ~3.24!, ~3.28!, ~3.29!,
and ~3.30! and Fourier transforming we finally obtain

H 2
1

m
¹21

1

2p
@C1 ln~mr!#J f~r !5df~r !, ~3.31!
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agreeing with Eq.~3.1!. Had we started from the scalar equa
tion ~3.20! in place of the axiscalar equation, the same res
would have been obtained at Eq.~3.29!, leading to an iden-
tical Schrödinger equation.

The important point to notice in this derivation is the sig
nificance of a non-perturbative solution to the SD equation
canceling the infrared divergences. In the massless ferm
limit, it is well known that chiral symmetry breaking plays
pivotal role in determining the bound state spectrum. It a
pears also that, even in the nonrelativistic limit, the remna
effects of chiral symmetry breaking, via a non-perturbati
solution to the SD equation, have a role to play.

IV. THE FERMION PROPAGATOR

The BSE described in Sec. II requires a fermion propag
tor input in the form of Eq.~2.3! or Eq. ~2.4! and this needs
-
ult

-
in
ion
a
p-
nt
ve

a-

to be available over a region in the complexp2 plane defined
by Eq. ~2.8! for q3 and uqu real. This is the region@13,3#

V5HQ25X1 iYUX.
Y2

M2 2
1

4
M2J . ~4.1!

In this section we investigate ways of obtaining a solution
the SDE overV. The fermion propagator, and thus the func
tionssV andsS , must be well behaved over this region.

The solution to the SDE~2.2! is quite simple along the
positive real~spacelike! p2 axis. Substitution of the general
expression for the fermion propagator~2.4! into the SDE
gives an integral equation involvingA and B functions
which can be split into two coupled integral equations b
simple projections. Angular integrations can be performed
leave one-dimensional integrals~over the modulus of theq
vector!:
A~p2!215
1

4p2p2E0
`

dq
qA~q2!

q2A2~q2!1B2~q2! S p
21q2

4p
lnS p1q

p2qD
2

2qD ,
B~p2!2m5

3

8p2pE0
`

dq
qB~q2!

q2A2~q2!1B2~q2!
lnS p1q

p2qD
2

. ~4.2!
of
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The integrations range from 0 to some UV cutoff along th
positive real axis. This theory is superrenormalizable a
thus has no ultraviolet divergences and so this cutoff
merely a numerical limit made large enough so that it has
bearing on the results.

For a set of pointsp corresponding to the set ofq points
in the integration, the equations are iterated until conv
gence to leave the solution along the positive real axis. Ho
ever, the solution is required for complexp2. We see three
possibilities. The first is to use the converged functio
A(q2) and B(q2) in the integrals over the same contou
~positive realq2) and supply the complex pointp desired.
The integrals should provide the solution at that pointp.
However the analytic structure of the integrands in Eq.~4.2!
will not allow an analytic continuation by this method, be
cause a pinch singularity in the integrand forces us to in
grate through the pointp @6#.

The second possibility is to rotate the contour through
angle 2f in thep2 plane so that it passes through the desir
point p @13#. In this way a cancellation of the complex part
within the logarithms occurs. Figure 3 shows the first a
second contours (C1 andC2 , respectively!. It can be seen
from Eq. ~4.2! that the logarithms will have real argument
along the radial portion ofC2 , while the arc portion contrib-
utes nothing to the integral because the integrand falls
sufficiently quickly in the ultraviolet@6#.

Based on the Landau gauge calculations of Maris@5,6# we
expect conjugate singularities to occur in the second a
third quadrants of thep2 plane away from the negative rea
~timelike! axis. Thus, as 2f increases towardsp from zero
~and the negative realp2 axis is approached! a singularity
interferes and we may have convergence problems. It will
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seen that these singularities can lie a fair way fromf5p/2
and convergence problems can occur forf not much more
thanp/4 ~i.e., barely reaching into the second quadrant
p2). For the casem50 to be considered shortly, no solution
could be found forf greater than 0.90 rad~with a reasonable
convergence criterionDB/B,0.001). For this solution to be
applied to the BSE we need to know the value of the fermio
propagator forf from 0 to p/2 and so this method is not
practical. However, although a slowing of convergence
f increases prevents a solution being attained in all ofV, it
does provide an accurate solution in a large portion ofV. We
therefore have a test for anyA andB functions we wish to
use in the BSE.

The third possibility, and the one employed here and
@4#, is to find a good analytic fit along the positive realp2

FIG. 3. The first and second~deformed! contours of integration
C1 andC2 for solution to Eq.~4.2!.
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axis and extend the solution into the complex plane by a
lytic continuation. These fits may be forA andB or for the
functionssV andsS . The work of Maris@6# suggests that it
is not necessary forsV andsS to be entire functions for the
fermions to be confined, only that there be no poles on
timelike p2 axis. Fits to functionsA andB used in previous
work @4# based on the known asymptotic infrared and ultr
violet behavior of these functions were tested by compar
them with the direct solution for various anglesf. The fits,
adjusted to allow variable fermion massm, are given by

Afit~p
2!5

a1
~a2

21p2!1/2
1a3e

2a4p
2
11,

Bfit~p
2!5

b1
b21p2

1b3e
2b4p

2
1m. ~4.3!

The parametersan ,bn are functions of fermion mass. The
numerical solution to which these functions were fitted is
iterative solution to the SDE using a nonuniform 51-poi
grid along the positive real axis up to a momentum cuto
p51000 using a 0.1% tolerance in the integration routin
Plots of the numerical solutions and function fits for variou
m values are given in Fig. 4.

FIG. 4. ~a! compares the SDE solutions and fitting functions fo
A21 for fermion masses~from top to bottom! m50, 0.025, 0.1, 1,
and 5.~b! showsB2m for fermion masses~from bottom to top!
m50, 0.025, 0.1, 1, and 5.
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Note that it is thes functions that are important in Eq.
~2.1! and notA andB, and thus the effect of the fit on the
denominatorp2A21B2 relating these must be considered
Conjugate poles exist where the factorp2A21B2 appearing
in the denominator of the BSE integrand is zero. Table I lis
the conjugate poles arising from the fits for each fermio
mass and the corresponding maximum bound state mas
allowed. The maximumM allowed is the value for which the
boundary ofV in Eq. ~4.1! coincides with the conjugate
poles. No comment about the viability of our model BSE ca
be made until solutions are attempted because the integrat
region depends on the solution massM .

The location of the conjugate singularities for them50
case in Table I is slightly different to that reported in Ref.@4#
where it is20.004 006 i0.006 66. This is because of the
flexibility of the fitting functions. The fit in this work and
that in Ref.@4# for the zero-fermion mass case had simila
accuracy along the positive realp2 axis but had the freedom
to take on slightly different forms throughout the complex
plane. This is because along the positive realp2 axis the
nonasymptotic form fixing parameters (a4 andb4) are only
loosely determined. Despite the difference in the two result
the BSE calculation for bound state masses should sho
close agreement as each fit adequately models the direct
lution throughout the complex plane.

The singularities in thes fits for fermion masses greater
than or equal to 0.1 lie on the negative realp2 axis. This
suggests that free propagation occurs at these masses and
model is not confining. An accurate location of the singular
ties in the SDE solution would be needed before it can b
said whether this result is due to the fits or the rainbo
approximation used in the SDE solution. According to Re
@6# the rainbow approximation SDE solution is expected t
be confining even for large fermion mass. Thus we assum
our result is due to the lack of accuracy in our fits near th
negative realp2 axis and that it is likely that the singularities

r

TABLE I. Conjugate singularities for fermion propagator fit and
corresponding limits on bound state mass for fermion masses fro
0 to 5.0.

m p2 Mmax

0.000 20.00346 i 0.0057 0.142
0.001 20.00416 i 0.0064 0.153
0.004 20.00606 i 0.0086 0.182
0.009 20.00816 i 0.0140 0.206
0.016 20.01216 i 0.0192 0.247
0.025 20.02166 i 0.0260 0.325
0.036 20.03146 i 0.0345 0.386
0.049 20.04686 i 0.0387 0.464
0.064 20.06186 i 0.0417 0.522
0.081 20.08156 i 0.0440 0.590
0.1 20.06476 i 0.0000 0.509
0.5 20.48946 i 0.0000 1.399
1 21.42606 i 0.0000 2.388
2 24.89256 i 0.0000 4.424
3 210.37766 i 0.0000 6.443
4 217.96136 i 0.0000 8.476
5 227.36166 i 0.0000 10.462
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move close to that axis asm increases but never actually lie
on that axis.

Figures 5~a! and 5~b! show plots ofsV andsS moduli,
respectively, for zero-fermion mass and anglesf50,
f5p/8, andf5p/4 against thep modulus~with a range far
smaller than the UV cutoff used in our calculations!. The
direct solutions to the SDE and the fits are compared. It c
be seen that the functions are very good fits along the po
tive real axis (f50), where bothsV andsS are real. The fit
is also good forf5p/8. Real and imaginary component
have not been given separately as they show similar agr
ment. In the casef5p/4 the fitting function has begun to
deviate from the SDE solution. This is mostly due to th
apparent difference in the location of a spike. Based on
largest bound state mass form50 reported in the next sec-
tion, the BSE integration regionV extends along the direc-
tion f5p/4 out to a modulus of approximately 0.083. I
this range the small angle solutions are very accurate but
largerf, much of the error due to the difference in the lo
cation of the spike will be experienced. As the angle is i
creased further convergence problems occur until eventu
no solution can be found at all (f.0.90).

The spike forming in these plots signals that, asf is
increased, the contour of integration approaches a singu
ity. In fact, the conjugate poles which lie just off~or on as is
the case for largerm) the negative realp2 axis (f5p/2) are

FIG. 5. ~a! and ~b! show SDE solutions and function fits for
sV and sS respectively for fermion mass 0 with anglesf50
(L), p/8 (1), andp/4 (h).
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approached. It is important that both the direct solution to th
SDE and the fits used in this work have this feature. Th
spike was not seen in any other fits which we attempte
Based on Fig. 5 it seems clear that the direct solution to th
SDE must have singularities close to those in the fitting fun
tions.

Because the spikes are not in exactly the same plac
some error will be introduced in the contributions from the
large f part of V. When the bound state mass become
large, the largef contributions will become more important
and thus we expect the error in the position of the spikes
result in some noise in the solutions to the BS equation f
large fermion mass.

Thes functions were studied for all fermion masses use
in this work in the same fashion. The results were similar t
them50 case and need not be shown here. In each ca
whenf was increased far enough, a spike was observed
both the fit and solution, after which lack of convergenc
prevented an SDE solution.

However, for very large fermion masses, the accuracy
the fits decreases asm increases, and with good reason. Asm
tends to infinity, the functionsA andB approach constants
(1 and m, respectively!. For moderately large fermion
masses experienced in this work, these functions become
most constant along the positive realp2 axis while having a
singularity near the negative realp2 axis. It is too much to
ask for simple four parameter fits along the positive realp2

axis to reproduce accurately complex behavior deep into t
real timelikep2 axis. The one-loop propagators, Fig. 2 de
scribed in Sec. III illustrate this well. There one can see ho
smooth and level thes functions are along the positive real
p2 axis and also how steep the functions become back alo
the negative realp2 axis.

Before moving on to the next section, we return briefly to
the one-loop approximation to the fermion propagator nece
sary for the non-relativistic approximations described in Se
III. Figure 6~a! compares our rainbow approximation solu
tion A to the one-loop result given in Eqs.~3.3! and ~3.4!.
Figure 6~b! comparesB from our rainbow approximation
solution and the result in Eqs.~3.5! and ~3.6!. Both of these
comparisons were made at a large fermion mass (m55). It
can be seen that the curves in each case are in reason
agreement, at least for spacelike momenta.

V. NUMERICAL SOLUTION OF THE BETHE-SALPETER
EQUATION

The fits given by Eq.~4.3! to the fermion propagator for a
range of fermion masses were used in the solution of th
Bethe-Salpeter coupled integral equations Eq.~2.7!. This
problem was restated in Eq.~2.13! as an eigenvalue problem.

A grid of 25325 (uqu,q3) tiles were used for the iterative
procedure with linear interpolation on each of those tile
used for the sums (Ti j f j ) which are supplied at the corners of
the tiles from the previous iteration. The tiles were nonun
form in size and an upper limit to the momentum compo
nents (uqu and q3) of between 3.0 and 9.0 was used. The
equations were iterated to convergence each time to det
mine eigenvalues for a given test bound state massM . The
bound state masses were located by repetitive linear interp
lation or extrapolation to search for the point where the e
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53 5851POSITRONIUM STATES IN THREE-DIMENSIONAL QED
genvalueL of Eq. ~2.13! is 1. This was repeated for each o
the fermion masses ranging from 0 to 5.0. This procedu
was used for each of the four nondegenerate bound s
symmetries described in the Appendix.

Table II shows the bound state masses for each of the f
symmetries ~scalar C511, scalar C521, axiscalar
C511, and axiscalarC521) for all fermion masses con-
sidered. Figure 7~a! displays the solutionsM for fermion
mass 0–0.1. Figure 7~b! showsM22m over the greater
range of 0–5. The axiscalarC511 solution is a degenerate
axiscalar-axipseudoscalar pair of Goldstone bosons for
casem50, as seen in previous work@4#. Minor differences
between Ref.@4# and the current work atm50 are due to
small differences in the propagator fits, as explained in S
IV.

For smallm the bound state masses rise rapidly with wi
increasing fermion mass. The mass of the ‘‘Goldstone’’ ax
scalarC511 state scales roughly with the square root
the fermion mass, in agreement with the Gell-Mann–Oku
mass formula@14#. In fact, for fermion masses 0 to 0.1 a
linear regression againstAm has correlation coefficient
0.9964 with the mass growing as approximately 1.273Am.
@The accuracy of the solution atm50.001, which comes out
with an anomalously low bound state mass, is severely
fected by numerical inaccuracy arising from the sensitivi

FIG. 6. ~a! compares the functionA(p2) from the rainbow SDE
calculation~solid curve! and the one-loop result~dashed curve! and
~b! comparesB(p2) results along the positive realp axis for ferm-
ion massm55.0.
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the bound state mass to the eigenvalueL in Eq. ~2.13!.# For
large fermion masses, the bound state mass rises predo
nantly as twice the fermion mass plus possible logarithm
corrections. However, there appears to be a good deal
noise in the largem solutions, reflecting the difficulty in
accurately modeling the fermion propagator deep into th
timelike region from spacelike fits. No solutions correspond
ing to states of negative charge parity were found fo
m.1.0.

Numerical solutions to the integral equations~3.20!,
~3.21! arising from our non-relativistic treatment are listed in
Table III and plotted in Fig. 7~b!. Solutions with positived
were found for fermion massesm>1.0 in the positive charge
parity sector. We were unable to locate any solutions to Eq
~3.20! and ~3.21! corresponding to negative charge parity
states over a broad range ofd. Also given in Table III and
Fig. 7~b! are the two lowest lyings-wave solutions to the
Schrödinger equation from the numerical work of Tamet al.
@9#, given by Eq.~3.2!.

The lack of exact agreement between the nonrelativist

FIG. 7. ~a! shows bound state masses (M ) against fermion mass
0–0.1.~b! is a plot ofM22m for m50–5. In each plot the scalar
C511 (L), scalarC521 (1), axiscalarC511 (h), and
axiscalarC521 (3) states are drawn with solid curves. The non
relativistic predictions of Eq.~3.20! and Eq.~3.21! are the scalar
C511 (L) and axiscalarC511 (h) states, respectively, and
are drawn with dashed lines. Equation~3.2! with l5l0 ~lower
solid curve with no symbols! and withl1 ~upper solid curve with
no symbols! are also plotted in~b!.
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5852 53T. W. ALLEN AND C. J. BURDEN
one-loop approximations Eqs.~3.20! and ~3.21!, and the
Schrödinger equation result Eq.~3.2! is to be expected. As
pointed out in Sec. III, a complete cancellation of infrare
divergences can only occur if the fermion self-energy is c
culated nonperturbatively to all orders. From Table III, w
see that at very high fermion masses, the accuracy of
one-loop approximation is significantly affected as the co
jugate poles in the propagator, measured in momenta sc
by the fermion mass, move closer to the bare fermion m
pole ~see Fig. 2!. At more moderate fermion masses,m'5,
the one-loop approximation is more respectable.

We see no clear agreement between the numerical res
of Eq. ~2.7!, and either nonrelativistic approximation Eqs
~3.20!, ~3.21!, or the Schro¨dinger equation result Eq.~3.2!.
Our analysis of the nonrelativistic limit of the BS equatio
exposes the importance of the analytic structure of the fer
ion propagator in the vicinity of the bare fermion mass po
p252m2. The uneven nature of the lower two curves
Fig. 7~b! indicates that the determination of the timelik
fermion propagator by an analytic fit to the spacelike prop
gator is inadequate for fermion massesm>1. It is clear that
a more careful analysis of the timelike nature of the fermio
propagator, possibly involving a fully nonperturbative trea
ment of the SD equation to include remnant chiral symme
breaking, is necessary for determining the bound state sp
trum for even moderately large fermion masses.

It is important to note that the poles in the fermion prop
gator fits listed in Table I lie outside the BS integration re
gion V for all solutions obtained. This can be verified b
observing that all masses in Table II are lower than the v
uesMmax listed in Table I. A similar situation arises for the
non-relativistic limit calculations. Listed in Table III are
maximum allowedd values if the integration region sample
by Eqs.~3.20! and~3.21! is not to impinge on the conjugate
propagator polesq3

pole and (q3
pole)* defined in Eq.~3.24!. In

all cases the numerical results lie within the permitted r
d
al-
e
the
n-
aled
ass

ults
.

n
m-
le
in
e
a-

n
t-
try
ec-

a-
-
y
al-

d

e-

gion. This requirement is equivalent to demanding tha
q3
pole should not cross the realq3 axis as asuqu ranges from
0 to `. Interestingly, such a crossing would entail a mor
careful evaluation of residues than that carried out in Sec.
leading to the Schro¨dinger equation.

We note that the Schro¨dinger equation results of Ref.@9#
include the first fives-wave states. It would certainly be of
interest to locate the excited states within the framework
our BS treatment of QED3. We have searched for solutions
to the eigenvalue equation~2.13! corresponding to excited
states, and find in general no solutions within the mas
ranges allowed by the valuesMmax in Table I. Since there is
no reason to assume that thes-wave spectrum should be
bounded above, it seems likely that there will be solutions
the BS equation for which the region of integrationV does
include the conjugate propagator poles discussed in Sec.
It follows that the functionsf , U, V, andW in the BS am-
plitudes of these states should have compensating zeros
order that the right-hand side of the BS equation be int
grable. We conjecture that, if the fermion propagator has a
infinite set of poles, there will be a sequence of excite
states, thenth excited state havingn pairs of zeros in its BS
amplitude. This conjecture is consistent with the the firs
excited state of the Schro¨dinger equation, also listed in Table
III, for which the wave function has a single zero.

Although we are unable to determine accurately the spe
trum in the large fermion mass limit, our calculations
strongly suggest that there are no scalar or axiscalar sta
with negative charge parity in this limit. This is consisten
with the nonrelativistic quark model in four dimensions in
which negative charge parity scalar and pseudoscalar sta
are forbidden by the generalized Pauli exclusion princip
@14#. We note, however, that there is nothing to exclude suc
states in a fully relativistic BS treatment@15#, and indeed,
negative charge parity scalar and axiscalar states are fou
within the current model for light fermions.
TABLE II. Bound state masses for fermion masses from 0 to 5.0.~All masses60.001 unless otherwise
stated.! The axiscalarC511 solution withm50 stated here is an analytic result.

m ScalarC511 ScalarC521 AxiscalarC511 AxiscalarC521

0 ~Ref. @4#! 0.0806 0.001 0.1236 0.002 0 0.1116 0.002
0 0.077 0.118 0 0.108
0.001 0.087 0.126 0.004 0.116
0.004 0.110 0.151 0.054 0.140
0.009 0.140 0.178 0.090 0.167
0.016 0.175 0.217 0.127 0.204
0.025 0.215 0.269 0.167 0.254
0.036 0.256 0.316 0.208 0.300
0.049 0.298 0.367 0.248 0.350
0.064 0.343 0.411 0.293 0.390
0.081 0.389 0.456 0.340 0.431
0.1 0.439 0.496 0.391 0.479
0.5 1.311 1.388 1.261 1.352
1 2.297 2.387 2.243 2.336
2 4.330 2 4.233 2

3 6.348 2 6.227 2

4 8.379 2 8.243 2

5 10.365 2 10.219 2
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VI. CONCLUSIONS

In this paper we have solved the combination of rainbo
Schwinger-Dyson and homogeneous Bethe-Salpeter eq
tions in the quenched ladder approximation for thre
dimensional QED with massive fermions. QED3 was chosen
because, like QCD, it is confining but without the complica
tions of being non-Abelian. A four-component version o
this theory is used because, also like QCD, it provides
parity invariant action with a spontaneously broken chira
like symmetry in the massless limit. The approximation
amenable to numerical solution, and should help assess
limitations of a technique frequently employed in models
QCD @2#.

The work in this paper carries on from a previous study
the same subject@4#, but with the following extensions. First,
nonzero fermion mass is considered. Second, an analysi
the fermion propagator in the complex plane is carried out
order to assess the appropriateness of the approximation
volved. Thirdly, an analysis of the nonrelativistic limit, i.e.
large bare fermion mass, is made in an attempt to comp
with existing Schro¨dinger equation studies of QED3.

The rainbow SD equation was solved in Euclidean spa
to give a fermion propagator for spacelike momenta, Eucl
eanp2.0. The propagator is chirally asymmetric, and in th
massless fermion limit, gives rise to a doublet of massle
Goldstone positronium states analogous to the pion. Solut
of the BS equation for massive positronium states requi
knowledge of the fermion propagatorS(p) in the complex
p2 plane extending away from the spacelike axis, and a fin
distance into the timelike axisp2,0. By rotating the contour
of integration we were able to extend the spacelike soluti
into part of the complex plane. However, the occurrence
complex conjugate poles in the fermion propagator p
vented a numerical solution to the SD equation througho
the complete region of the complex plane sampled by the
equation. This forced us to apply analytic fits to the prop
gator along the positive realp2 axis for use over the required
part of the complex plane.

Our propagator fits were found to have conjugate po
located close to those of the direct solution for small to mo
erate fermion masses. This, combined with the accuracy
the fits throughout much the complexp2 plane, made our
choice of propagator very attractive. The singularities in t
fits were found to move onto the negative realp2 axis as the
fermion mass increased. This was not interpreted as a los
confinement but instead attributed to a lack of accuracy
the fits deep into the timelike region as the fermion ma
became large. This reduction in accuracy of the fits for lar
m was due to the nature of the functions along the positi
real p2 axis where the fits were made, and the presence o
singularity near the negative realp2 axis in the vicinity of the
bare fermion mass polep252m2, but off the timelike axis.

BS solutions were found for four pairs of parity degene
ate states. These pairs were the scalar-pseudoscalarC511
andC521 and the axiscalar-axipseudoscalarC511 and
C521 states. For small to moderate fermion mass t
bound state mass was found to increase smoothly withm.
The axiscalarC511 doublet, analogous to the pion, was th
lowest in energy, with a mass rising roughly with the squa
root of the bare fermion mass. For moderately large ba
fermion masses (m/e2 greater than unity! the positronium
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masses rise as twice the bare fermion mass, plus a poss
logarithmic correction. However, an unacceptable level o
noise was found to develop in our results for these larg
masses, which we attribute to inaccuracies in the analytica
continued fermion propagators in the important region ne
the bare fermion mass pole. No negative charge pari
(C521) solutions were found for bare fermion masse
abovem/e2'1.0, consistent with the generalized Pauli ex
clusion principle of nonrelativistic QCD4.

The conjugate poles in the fermion propagators we
found to keep clear of the integration regions required for th
BS solutions for the lowest state in each of the four spac
parity–charge-parity sectors considered. However, it a
peared that this would not be so for any excited states. W
therefore conjecture that the excited positronium states ha
zeros in their BS amplitudes positioned so as to cancel t
poles in the propagators encountered within the integral
the BS equation~2.1!. This requirement of compensating ze-
ros was too demanding on our current numerical code, and
a result, no excited states were found.

In vector calculations under way at present, where th
bound state masses are expected to be larger, the conjug
poles in the fermion propagator seen in this work may inte
fere. Since the fits used in this work appear to have the
singularities close to those in the actual Schwinger-Dyso
solution, we may find that the rainbow approximation an
the resulting propagator fits will be inadequate for a study o
vector states in QED3. This is a very challenging problem
and we hope to report on our results in the near future.

A nonrelativistic analysis of the BS equation was als
carried out assuming, in the first instance, a one-loop a
proximation to the fermion propagator. However it was
shown that, in order to cancel infrared divergences com
pletely between the photon propagator and fermion self e
ergy, as proposed by Sen@10# and Cornwall@11#, it is nec-
essary to evaluate the fermion self-energy nonperturbative
Only if this is done can the Schro¨dinger equation be rigor-
ously obtained in the large fermion mass limit. In spite o
this, numerical solutions of the one-loop equations give re
sonable agreement with the Schro¨dinger equation for moder-
ately large fermion massesm/e2'5.

In summary, we were able to carry out an acceptab
analysis of the bound state spectrum of QED3 near the chiral

TABLE III. Nonrelativistic d solutions for positive charge par-
ity, from Eqs.~3.20!, and~3.21! and the two lightests-wave Schro¨-
dinger equation results of Tamet al. @9#, Eq. ~3.2! using
l051.7969 andl152.9316. The first column contains the maxi-
mum values ofd allowed before conjugate singularities arise in the
fermion propagator used in our nonrelativistic calculations.

m dmax Scalar Axiscalar Eq.~3.2! with Eq. ~3.2! with
Eq. ~3.20! Eq. ~3.21! l5l0 l5l1

1 0.332 0.285 0.262 0.322 0.503
2 0.421 0.371 0.338 0.377 0.558
3 0.473 0.419 0.381 0.409 0.590
4 0.511 0.452 0.410 0.432 0.613
5 0.540 0.476 0.433 0.450 0.631
100 0.947 0.792 0.734 0.688 0.869
1000 1.272 1.030 0.968 0.872 1.052
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limit m→0 by using analytic fits to the spacelike fermion
propagators in the BS Bethe-Salpeter equation, and in t
nonrelativistic limitm→` by expanding to lowest order in
inverse powers of the fermion mass to obtain a Schro¨dinger
equation. However, there remains an intermediate ma
rangem/e2'1 for which neither of these techniques is ad
equate. It is clear that a more careful non-perturbative ana
sis of the fermion propagator in the vicinity of the bare ferm
ion mass pole is necessary before an accurate determina
of the QED3 positronium spectrum at intermediate fermion
masses can be made. If a direct analogy with QCD mode
based on the Bethe-Salpeter equations is made, we concl
that particular care must be taken in modeling quark prop
gators for quarks whose mass is close to the mass scale of
theory, namely charm quarks.
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APPENDIX: TRANSFORMATION PROPERTIES IN QED 3

The four-component QED3 action in Minkowski space
@16#

S@A,c̄ ,c#5E d3x@2 1
4FmnF

mn

1c̄ gm~ i ]m1eAm!c1mc̄ c#, ~A1!

involves 434 matricesgm which satisfy $gm ,gn%52hmn

wherehmn5diag(1,21,21) with m 5 0, 1, and 2. These
three matrices belong to a complete set of 16 m
trices $gA%5$I ,g4 ,g5 ,g45,gm ,gm4 ,gm5 ,gm45% satisfying
(1/4)tr(gAgB)5dA

B:

g05S s3 0

0 2s3
D , g1,252 i S s1,2 0

0 2s1,2
D ,

g45g45S 0 I

I 0D ,
g55g55S 0 2 i I

i I 0 D ,
g455g4552 ig4g5 ,

gm45 igmg4 ,

gm55 igmg5 ,

gm4552 igmg4g5 ,

gm4,m5 orm455hmngn4,n5 or n45.
he

ss
-
ly-
-
tion

ls
ude
a-
the

r
al
e
y

a-

The threegm , andg4 andg5 are five mutually anticom-
muting matrices. This is unlike the four-dimensional case
where no analogue ofg4 exists.

The action Eq.~A1! in the massless casem50 exhibits
global U~2! symmetry with generators$I ,g4 ,g5 ,g45% which
is broken by the generation of a dynamical fermion mas
@17,16# to a U~1!3U~1! symmetry$I ,g45%. The action is also
invariant with respect to discrete parity and charge conjuga
tion symmetries, which for the fermion fields are given by

c~x!→c8~x8!5Pc~x!, c̄ ~x!→c̄ 8~x8!5c̄ ~x!P21,
~A2!

c~x!→c8~x!5Cc̄ ~x!T, c̄ ~x!→c̄ 8~x!52c~x!TC†,
~A3!

where x85(x0,2x1,x2). The matricesP and C are each
determined only up to an arbitrary phase by the condition
that the action Eq.~A1! be invariant@4#:

P5g14e
ifPg45, C5g2e

ifCg45 ~0<fP ,fC,2p!.
~A4!

Scalars, pseudoscalars, axiscalars, and axipseudosca
are defined by the following transformation properties unde
parity transformations:

FS~x!→FS8~x8!5FS~x!,

FPS~x!→FPS8~x8!52FPS~x!,

FAS~x!→FAS8~x8!5RPFAS~x!,

FAPS~x!→FAPS8~x8!52RPFAPS~x!, ~A5!

whereFAS andFAPS are doublet statesF5(F4 ,F5)
T, and

RP5S 2cos2fP 2sin2fP

2sin2fP cos2fP
D . ~A6!

Similar transformation properties exist for charge conjuga
tion.

The most general forms of the Bethe-Salpeter amplitude
@15# for bound scalar and pseudoscalar states are

GS~q,P!5I f1q”g1P” h1emnrP
mqngr45k, ~A7!

GPS~q,P!5g45G
S~q,P!, ~A8!

where f , g, h, and k are functions only ofq2, P2, and
q•P. BS amplitudes corresponding to the componentsF4
andF5 of axiscalars and axipseudoscalars take the gener
form

S G~4!~q,P!

G~5!~q,P!
D AS5S g4

g5
D f1S gm4

gm5
D ~qmg1Pmh!

1emnrP
mqnS gr5

2gr4D k, ~A9!

and
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S G~4!~q,P!

G~5!~q,P!
D APS5g45S G~4!~q,P!

G~5!~q,P!
D AS. ~A10!

Furthermore, the charge parityC561 of the bound
states is determined by the parity of the functionsf , g, h,
andk under the transformationq•P→2q•P. The quantity
q•P is the only Lorentz invariant which changes sign und
charge conjugation and thus determines the charge parit
those functions.
er
y of

Our conventions for Euclidean space quantities are su
marised in Appendix A of Ref.@4#. In particular Euclidean
momenta and Dirac matrices are defined by

P3
~E!52 iP0

~M ! , P1,2
~E!5P1,2

~M ! , g3
~E!5g0

~M ! ,

g1,2
~E!5 ig1,2

~M ! .
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