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Positronium states in three-dimensional QED
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Thee™ -e" bound state spectrum of three-dimensional QED is investigated in the quenched ladder approxi-
mation to the homogeneous Bethe-Salpeter equation with fermion propagators from a rainbow approximation
Schwinger-Dyson solution with a variable fermion mass. A detailed analysis of the analytic structure of the
fermion propagator is performed so as to test the appropriateness of the methods employed. The large fermion
mass limit of the Bethe-Salpeter equation is also considered, including a derivation of thdiSghrequa-
tion, and comparisons are made with existing nonrelativistic calculations.

PACS numbds): 12.20.Ds, 11.10.Kk, 36.10.Dr

[. INTRODUCTION formation properties in QEB is given in the Appendix.
These transformation properties are of vital importance for
The similarities between quantum electrodynamics inan understanding of the structure of the-e* vertex func-
three space-time dimensiof@ED;) and quantum chromo- tion and the classification of the bound states. Section Il
dynamics in four space-time dimensiof@CD,) and the describes the nonrelativistic limit and the connection be-
simplicity of the theory make QEPRattractive for the study tween the Bethe-Salpeter and Sdlirger equations for
of nonperturbative methods. QEDs an Abelian theory and QEDs3;.
provides a logarithmic confining™-e* potential[1]. In Sec. IV the approximation to the fermion propagator is
Our approach to positronium states in QEB via a so-  detailed. The structure of the propagators will be analyzed in
lution to the homogenous Bethe-Salpeter equation with fermthe complex plane where we attempt to locate the expected
ion propagator input from the Schwinger-Dyson equationmasslike singularities. In Sec. V the Bethe-Salpeter solutions
The full Schwinger-Dyson and Bethe-Salpeter equations argre reported and comparisons are made with nonrelativistic
intractable. Here we consider a solvable system of integrdimit calculations. The results are discussed and conclusions
equations within the quenched ladder approximation. Thigiven in Sec. VI.
crude truncation of the full equations does break gauge co-
variance but has very attractive features and has been em- |I. SOLVING THE BETHE-SALPETER EQUATION
ployed extensively in QCD spectrum calculationg2,3]. _ i i
This study continues on from a previous stydy which The Bethe-Salpete(BS) kernel for this work is a simple
uses a four-component fermion version of QEDIn this ~ One-photon exchangéadder approximation which is a
version, the massless case exhibits a chiral-likg) dymme- ~ commonly used starting point. For convenience we use the
try broken into a W1)x U(1) symmetry by the generation of duénched approximation, work in Feynman gauge and work
a dynamical fermion mass, resulting in a doublet of Gold-Only with the Euclidean metric. Figure 1 shows the Bethe-
stone bosons. This pionlike solution is important for drawingS2/Peter equation in the quenched ladder approximation. The
similarities between QEpand QCD,. The four-component corresponding integral equation is
version of QED,; is also preferred to the two-component ver-

3
_sion beca_usg the_Dirac action _in the two-component \_/ersion I'(p,P)= _e2f %D(p—q)yﬁ(%m—q)
is not parity invariant for massive fermions. QGx parity (2m)
invariant and we aim to have as much in common with that XT(q,P)S(—LP+q)y 2.1)
’ I(L! .

theory as possible.

The previous work was restricted to zero bare fermionyhereI'(p,P) is the one-fermion irreducible positronium-
mass, while in this study the bare mass is increased frofermjon-antifermion vertex with external legs amputated.

zero to large values in order to compare with results in therhe photon propagatoD(p—q) in Feynman gauge is
nonrelativistic limit. This study also takes a closer look at thej(y— )2, The fermion propagato$ is the solution to a

choice of fermion propagator input. Knowledge of the ana-
lytic properties of the fermion propagator is important for
determining the approximation’s ability to provide confine- ip+
ment and whether or not any singularities will interfere with P
a Bethe-Salpeter solution. Based on the work of ME&i§] =
the occurrence of masslike complex singularities is expected )
which have the potential to influence our calculations. -7P*P
In Sec. Il we look at the Bethe-Salpeter and Schwinger-
Dyson approximations used in this work and the method
used to find the bound state masses. A brief review of trans- FIG. 1. Diagrammatic representation of £g.1).
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truncated Schwinger-Dysdi®D) equation. A fermion propa- id;
gator has been chosen which supports spontaneous masgs(q,P):f(Q3,|Q|§M)—WU(Q3,|Q|;M)
generation necessary for the formation of the Goldstone
bosons. The truncated SD equation for a fermion of bare gy _
massm is +W745V(Q3,|CI|;M)+I73W(CI3,|0I|JM),
3(p)=S(p) - (ip+m) (2.5
d%q (74) iy Va
_ 2 _ AS(q,P)= f(ds,|q;M)— —2| " |U(gs,|ql;M
e f(zﬁ)aD(p DYuSe( @y (22 (@P)=| | f(@a.lalM) == JU(as[al:M)
gty
This approximation is the quenched, rainbow approximation M( & )V(q3,|q|;M)
named so because the photon propagator has been replaced lal =
by the bare photon propagator and the vertex fundiidmas y
been replaced by the bare vertgx resulting in a series of — 73( A)W(q3,|q|;M), (2.6)
Feynman diagrams which resemble rainbows. In the Vs

guenched approximation the SD and BS equations can be

recast in terms of a dimensionless momenfie? and bare Where the indexj takes on values 1 and 2 only,

—(n2 2\ 1/ —
fermion massn/e?. From here on we work in dimensionless |q|_—(ql+q2)12 and qf—(—qz,ql). _The pseudoscalar and
Units and set?=1 axipseudoscalar vertices are obtained from the scalar and

We use either of the two following equivalent representa—"’lx'scfalar vertices by multiplication by the matrmg,.'
tions of the fermion propagator: It is found th_at the same coupled mtggral equations result
when a vertex is multiplied by the matrix;s and so(scalar,
. ) ) pseudoscalar and (axiscalar, axipseudoscalaform two
S(p)=—ipov(p*) +os(p?) (23 pairs of degenerate states.
The four equations derived from the BSE, after some ma-
or nipulation including an angular integration, drg

3 o e 1
f(p)= Wj_wd%fo |Q|d|CI|(—az_—,82)ﬁ7

S(p)= (2.9

ipA(p?) +B(p®)
X[Teef () + TrgU(q) + Tey V(@) + TrwyW(a) ],

The generation of a dynamical fermion mass and the break- 1 . . (a?— g2)12_

ing of chiral symmetry is signalle@n the massless limitoy U(p)= _2j dq3f |Q|d|Q|%2£

nonzeroB(p?). The vector and scalar parts, andos of the (2m)°) = 0 B(a”— %)

propagator are related to the functioAsand B simply by

dividing these functions A,B) by a quantity p?A?(p?) X[Turf(@)+TyuU(a) + TyuyV(a) + TuwW(a) ],

+B?(p?). 1 = .

Note that a substitution of this fermion propagator into the v/(p)= _zf daz | |qld|q|
Ward-Takahashi identity shows that the bare vertex approxi- (2m)°) = 0
mation breaks gauge covariance. However, this model is
simple and does meet the requirement that the appropriate
Goldstone bosons are formgd]. It is not difficult to derive
a zero mass solution to our BS equati@BSE) analytically.

A vertex proportional to the matriy, or vs, defined in the
Appendix, will reduce the quenched ladder BSE to the
quenched ladddrainbow) SD equatior(SDE) in the case of X[Twef (@) FTwuU (@) + TwV(Q) + TwwW(a)],
zero bound state mass thus forming a doublet of massless 2.7
states. According to the terminology used in the Appendix

this is an axiscalar doublet. These solutions will be seen ifnere
Sec. V. _ 2 2 2 _

Once the photon and fermion propagators are supplied, a=(ps=a)"Flpl+[al,  £==2lplldl
the BS equation can be written as a set of numerically tracNow define the momentur@ by
table integral equations. To do this, we write the BS ampli-
tudeT in its most general form consistent with the parity and
charge conjugation of the required bound state, and then
project out the coefficient functions for the individual Dirac
components. It is convenient to work in the rest frame of theand use the abbreviations,= o(Q?) and os= o5(Q?) for
bound state by setting,=(0,0,iM). Then the scalar and use in the definition of the functiori&;, Ty, ... which are
axiscalar vertices given in the Appendix by E¢87) and  analytic functions ofgs,|q|, and M. The diagonalT’s are
(A9) can be written as given by

(aZ_B2)1/Z_a
X[Tyef(a)+TyoU(a) + TyyV(q) + TywW(a) ],

1 (= oo 1
W(p):(zT)zf,xdqe’fo IQId|Q|m

1o,
Q?=a3+[ql’~ ZM?+iMas, 2.8
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Ter=(2M2+g2+]q?)|ov|2F | og?, Tyw=Twy=—i(0yos—ogoy)|d], (2.10
and, for the axiscalar states,
Tuu=(iM2+ad—a?)|ov|’*|og?,
b , , Tiy=Tys=i(oyos— a5ay)|d],
Tw=(3M*+az+[q[%)|av|**|ad]?, 5
Tiv=—Ty=MIq||oV|?,
Tww=—(i M*+af=[d)|ov]*t|og® (29 . ..
Tiw=—Tws= —i(oyos—og0v)U3— 3 (oyost o500)M,
where the upper sign applies to the scalar equations and the
lower sign to the axiscalar equations. The off-diagohal P . N .
are, for the scalar positronium states, Tuv=Tvu=—|5(0vos—os0v)M—as(oyostosay)|,
— — * *
Tiu=Tuys=(0yostagoy)|d], Tow=—Twu=—20sd||o|2,
Tov=Tyi=—M 2,
v vt lallovi Tyvw=—Twyv=(0Vostogoy)al. (2.1

This is the same set of equations solved in R&fwith only
the fermion propagator input altered. The bare fermion mass
m only comes into the calculation through this input.

i
Tiw=Twi= — (0¥ ostosoy)ds+ E(O-:;O-S_ asoy)M,

Tov=Tvu=—[3 (0¥ o5t olay)M+iqs(ayos—aay)], The solution to the BSE involves iteration of the coupled
integral equations in Eq2.7). These equations may be re-
Tuw=Twu=203/al[av|?, written as
|
f(lpl.ps:M)=f dq3f d{alK(|pl.ps:lal.as:M)f(lal.as;:M), (2.12

where f=(f,U,V,W)T. For each symmetry case and eachmass renormalisatio@mIn(n/). The logarithmic diver-
fermion mass this is solved as an eigenvalue problem of thgences in the photon potential and the fermion self-energy
form then conspire to cancel leaving a finite positronium mass.
The first numerical treatment of the ScHilnger equation
. _ for QED3 using this line of argument was carried out by
f daK(p.a;M)f(a)=AM)T(p), 213 Yung and Hamef8]. In a subsequent, improved calculation
by Tam, Hamer, and Yunfg], the formalism was shown to
for a given test masdl. This is repeated for different test pe consistent with an analysis of QEBrom the point of
bound state masses until an eigenvalueM)=1 is ob-  yiew of discrete light cone quantization. Their resulting ex-
tained. pression for the bound state energy, obtained as a solution to
the differential equation
IIl. NONRELATIVISTIC LIMIT

1 1
We consider now the nonrelativistic limih—o of our - EVZ+ E[Cﬂn(mr)]} d(r)=(E=2m)¢(r),
BS formalism in order to enable comparisons with existing (3.1)
numerical calculation§8,9] of the Schrdinger equation for
QED;, and with the largan solution of Eq.(2.7) where C is Euler’s constant, is given in terms of the bare

The Schirdinger equation with a confining logarithmic fermion massn as
potential is an interesting problem in its own right. Initially
one is faced with the problem of setting the scale of the E=2m+ilnm+i()\—lln3) 32
potential, or equivalently, setting the zero of energy of the At 2 2wl :
confined bound states. A solution to this problem was pro-
posed by Senl0] and Cornwal[11] in terms of cancellation The lightests-wave positronium state and first exited state
of infrared divergences in perturbation theory. They intro-are given byhy=1.7969 and\;=2.9316, respectively. The
duce a regulating photon magsin order to set the potential first five states are provided [9].
as the two-dimensional Fourier transform of the photon Here we present a treatment of the nonrelativistic limit of
propagator 12+ 1?), leading to a potential proportional to the QED; positronium spectrum in terms of our SD-BS
In(ur). They further interpret the sum of the bare fermionequation formalism. We begin with the fermion propagator in
mass and the fermion self-energy evaluated at the bare fernthe limit m—o. For large fermion mass we expect the re-
ion mass shell as a renormalized fermion mass, leading to sidual effect of the chiral symmetry-breaking contribution to
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the fermion self-energy to be small compared with contribu-

tion from the perturbative loop expansion. We shall therefore (@)
assume to begin with that the self-energy is reasonably well 1
approximated by the one-loop result. The validity of this
approximation for spacelike momenta will be demonstrated
numerically in the next section. 3
The one-loop fermion self energy, with the functioAs g,
andB defined in Eq(2.4), is given by @
<
£
3 A(p?/m?)
Amq4 =AM (3.3
m , N
) 1 1—x2 1—x2 -1 -0.8 -0.6 -0.4 -o.é\ 2}) Ag.z 04 06 08 1
— a m
2 a(X y—. o quCO% 152 | (3.9
and °r ' Q)
E 2 2 7 |
g(p“/m9)
B= (1 - ) (3.5 6 [
» 5
where @
g 4
S0P = = 1= 36 £ o
g(X%) = BxTCCos T 2] (3.6
This result is valid for (Euclidean spacelike momenta (——-.Q,_,_Q\
p2>0. An analytic continuation of th& functions valid for 1
[p?|<m?, or|x|<1,is b o
, ) -1 -08-06-04-02 0 02 04 06 08 1
S () 1 [x°-1 [1+ix +| 2 pr2 [ mA2
A= gaix| 2@ M 1ok T X @7
FIG. 2. (@) and (b) show one-loop approximations using Egs.
) 1+ix (2.3), (2.4), and(3.3—(3.6) for m?>a, andmog, respectively(solid
2p(x9)= 87X n 1—ix/ (3.8 lines). These are compared with the vector and scalar parts of the

approximation Eq(3.14) (dashed lines The curves are drawn for
Note that this representation exposes a logarithmic infinity irfermion masse¢from bottom to top 1, 2, 4, 8, and».

the self-energy at the bare fermion mass ppfe= —m?.

This is the infrared divergence in the renormalized fermionin the propagator functionsy, and o defined in Eq.(2.3),
self-energy as defined by Séh0] referred to above. How- which would signal the propagation of a free fermidi2],
ever, in our formalism, this singularity does not lead to abut a logarithmic zero.

pole Using Egs.(3.3) and(3.5) we obtain

, 1 1+3,/m 3.9
V)= 12 (T4 S A M)+ 2[1+ (St Se)/2m](Sa—Spim’ 39
. 1 1+25/m 3.1
TSP (L S A2+ 217 (Spt Sg)/2m](Sp—Sim’ (310
where we have defined
p2+m2
=7 (3.11

The functionso, andog are plotted in Figs. @) and 2b) for m= 1, 2, 4, 8, and, the final curve being the bare propagator.
From these plots we see that for lamge the deviation from the bare propagator due to the one-loop self-energy is dominated
by the logarithmic contribution near the bare fermion mass skell). With this in mind, we shall use the approximation

) 1 €
EA(X )%— g'ﬂz, (312
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) 3 €
2p(x )~—g-Inz. (3.13

Taking € to be of order Ith for the purposes of the BS equatifgsee Eq(3.16 below] these approximations give
(Inm)
1+0(—]|.
m

The vector and scalar parts of this approximate propadafitnout theO(Inm/m) correction$ are also plotted in Figs.(8) and
2(b) for comparison.

—ip+m 1
m  me—(1/27)In(eld)

S(p)= (3.19

Turning now to the BS equation, we set the bound state momentum if2Eky.equal toP,=(2m+ d)iv,, where
v,=(0,0,1) and— ¢ is a “binding energy.” This givegaccording to the momentum distribution in Fig. 1
d3q S5\ o).
F(p)=—fWD(p—q)yM — m+§ iv,+q,|/I'(@)S m+§ v, T, V- (3.195
Setting
2(_1, g o) L 3.1
€= | T50+1qst 5 -]+ 0| o (3.1
in Eq. (3.19 gives
s S\, 1ty 1 o Inm a1
Mt S et O | = T [ (U2 6+iqs+ g/ %2m]— (Udm)in(eld) T O\ m (319
Similarly
S S\, 1-y3 1 o Inm a1
Mt S 0wt Q| = 5 (12 6-iqs+ [a|Z2m]— (Udm)in(e*/d) O\ m |- (318

The|qg|?/2m term has been retained here to ensure convergence fif|tirdegral in the BS equation below. Since the vertex
I' is defined with the fermion legs truncated, aBd(1/2)(1+ y3), the only relevant part of" is the projection (1/2)
X(1—7y3)'(1/2)(1+ y3). With this in mind, the general forms in EgR.5) and(2.6) become

1 1 1 qiy
2 (1= %S5 (14 79)=5 (1= va)1 e a(aa fa).
1 1 1 Y
>(1- 73)FAS§(1+ ¥3)= 5(1_7’3)( 4)9(Q3,|Q|)- (3.19
Vs

Substituting Eqs(3.17), (3.18, and(3.19 into Eq. (3.15 one obtains, for the scalar states the single integral equation

( )”j g 1 pg 9(a) (3.20
9P ] @m)® (p=a)? Iplldl [—(L/2) 5+ iqs+[ql272m— (LAm)In(1/2m)[ - (L/2) 5+ igs+qZ2m] >
and, for the axiscalar states the single equation,
o~ [ Fa 1 9(a) (3.21
9= | 273 (p=q)2 [~ (12) 6+ iqs+|q2/2m— (Ldm)In(L/2m)[ — (1/2) 6+ iqe+ |q|22m] 2" '

Note that, without theq|?/2m term in the denominator, translation invariance of the integrand implieggtimtndependent

of |g|. In reality, g is a slowly varying function ofq|, and this extraD(1/m?) term must be retained ia to account for the

fact that the relevant region of integration in E¢8.20 and (3.21) extends out taO(/m) in the |qg| direction, but only

O(1) in theq; direction. Numerical solutions of Eq&3.20 and(3.21) will be given in Sec. V. The functiog is an even or

odd function ofg; corresponding to positronium states which are even or odd, respectively, under charge conjugation.
In order to obtain a Schdinger equation, we now rewrite the axiscalar equation in the form
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d’q (> dgg 1
g(p): —ZJ By _ 2 _ A2
(2m)?) —w2m (P3—03)*+|p—q

g(a)

- - , 3.2
X (12 6+ 105+ [alP2m+3 1 (G, ]aD ]l — (U2 6—1qa+ [l 772+ (qa.]a])] (3.2
where
1 1 1 ) |q|2
24;((]3,'(:”) ——In 2m —Eéil(.‘]3+% . (323

Assuming the integrand dies off sufficiently rapidly gs— —ic, we deform the contour of integration around the pole at

ole__ : q2 ole
a5"e= (_§5+u+2 (95° ,|q|>), (3.24

to obtain

( )_f 1 g(a5*|al)
9= | 2m)? (ps— o™ 7+ [p—ql? — 6+ |qm+2 RE (g5, [q])”

(3.29

(We could equally well deform the contour around the poleqé?'f)* if the integrand decays in the opposite direction, without
affecting our final resul}.

Defining
B 9(ps,Ipl)
gives
|p|2 d2q 1 pole
=0+ - +2 R& _(ps,|p|) { P (ps,[p]) = f(271_)2(ps_qgole)2+|p_q|2q)(Q3 Jal). (3.2

In order to isolate the logarthmic infrared divergence we set

P3= P+ u, (3.28

with « small and real, an@5® defined by analogy with Eq3.24). The right-hand sidéRHS) of Eq. (3.27) then becomes

1 ur
RHS=J FT of -— C+In ” ry as u—0, 3.2
(2m)? w?+ Olu(pl—JanT+Ip-aP? *' 9~ o(r) as (329
|
where ¢(q)=®(q5%,|q|), FT denotes the Fourier trans- |p|?
form, andC is Euler's constant. 2 (palph=—z-Inj5-| =5 0-ipst 5 -

Following the reasoning of10,11], this logarithmic di-
vergence should be cancelled by the fermion self-energy
contribution 2R& _(ps3,|p|). However, from Eq(3.23, we
see that the logarithmic divergence in the self-energy occurs
at the bare fermion mass po§®®= —i(— &/2+|p|?/2m),  which provides a rainbow SD equation fBr_ in the nonrel-
and not the dressed pg§°®. The problem lies in the use of ativistic limit. Then using Eqs(3.27), (3.24), (3.28), (3.29,
the one-loop approximation. If instead the fermion self-and(3.30 and Fourier transforming we finally obtain
energy is calculated to all orders in rainbow approximation,
the self-energy feeds back into the loop integral via the
propagator to replace E¢3.23 by

+2(p3,|pl)) , (3.30

1 1
- EV2+ Z[Cﬂn(mr)]} d(r)=384(r), (3.3)
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agreeing with Eq(3.1). Had we started from the scalar equa- to be available over a region in the compleiplane defined
tion (3.20 in place of the axiscalar equation, the same resulby Eq. (2.8 for g5 and|q| real. This is the regiof13,3]
would have been obtained at E®.29, leading to an iden-
tical Schralinger equation.

The important point to notice in this derivation is the sig-

nificance of a non-perturbative solution to the SD equationin , . . . .
canceling the infrared divergences. In the massless fermiolft this section we investigate ways of obtaining a solution to
limit, it is well known that chiral symmetry breaking plays a the SDE ove). The fermion propagator, and thus the func-
pivotal role in determining the bound state spectrum. It apfions oy andos, must be well behaved over this region.
pears also that, even in the nonrelativistic limit, the remnant The solution to the SDE2.2) is quite simple along the

Q= 2—x+'Yx>Y2 1|v|2 4.1
=1 Q =X+i M2 2 : 4.7

solution to the SD equation, have a role to play. expression for the fermion propagat(.4) into the SDE
gives an integral equation involving and B functions
IV. THE FERMION PROPAGATOR which can be split into two coupled integral equations by

simple projections. Angular integrations can be performed to
The BSE described in Sec. Il requires a fermion propagaleave one-dimensional integralsver the modulus of the
tor input in the form of Eq(2.3) or Eq.(2.4) and this needs vectoy:

1 (- qA(g?)
2y _ =
A(p9)—1 4772pzfo dqquz(q2)+Bz(q2)

pP+q
n
pP—q

p’+q?
4p

L

2

2
aB(g°) (p+q @2

3 0
2\ _m=—
B(pT)—m Swzpfodqq2A2<q2>+Bz<q2>'” p—q

The integrations range from 0 to some UV cutoff along theseen that these singularities can lie a fair way frém /2
positive real axis. This theory is superrenormalizable andind convergence problems can occur gonot much more
thus has no ultraviolet divergences and so this cutoff ighan w/4 (i.e., barely reaching into the second quadrant of
merely a numerical limit made large enough so that it has n®?). For the casen=0 to be considered shortly, no solution
bearing on the results. could be found forwb greater than 0.90 ra@vith a reasonable

For a set of pointg corresponding to the set gf points ~ convergence criteriod B/B<0.001). For this solution to be
in the integration, the equations are iterated until converapplied to the BSE we need to know the value of the fermion
gence to leave the solution along the positive real axis. HowPropagator for¢ from 0 to 7/2 and so this method is not
ever, the solution is required for compl@?. We see three Practical. However, although a slowing of convergence as
possibilities. The first is to use the converged functions? INcreases prevents a solution being attained in afd pit
A(9?) and B(g?) in the integrals over the same contour does provide an accurate solution in alarge portloﬁpWe
(positive realg?) and supply the complex point desired. thergfore have a test for ay andB functions we wish to
The integrals should provide the solution at that pgnt US€ in the BSE. _
However the analytic structure of the integrands in @) The third possibility, and the one employed here and in
will not allow an analytic continuation by this method, be- [4], is to find a good analytic fit along the positive rqz
cause a pinch singularity in the integrand forces us to inte-
grate through the poin [6].

The second possibility is to rotate the contour through an .
angle 2 in thep? plane so that it passes through the desired p = B&l?
point p [13]. In this way a cancellation of the complex parts
within the logarithms occurs. Figure 3 shows the first and singularity X
second contours@; and C,, respectively. It can be seen z M
from Eq. (4.2) that the logarithms will have real arguments
along the radial portion of,, while the arc portion contrib-
utes nothing to the integral because the integrand falls off x
sufficiently quickly in the ultraviolef6].

Based on the Landau gauge calculations of M&j6] we
expect conjugate singularities to occur in the second and
third quadrants of th@? plane away from the negative real
(timelike) axis. Thus, as & increases towards from zero
(and the negative reg)® axis is approachéda singularity FIG. 3. The first and seconaeformed contours of integration
interferes and we may have convergence problems. It will b&, andC, for solution to Eq.(4.2).

N

Nm(p?)

Re(p?)

N
N

G
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TABLE I. Conjugate singularities for fermion propagator fit and

0.6 I ' ' ' (@ 1 corresponding limits on bound state mass for fermion masses from
A 0 to 5.0.
m pz Mmax
- 0.000 —0.0034*i 0.0057 0.142
é 0.001 —0.0041=i 0.0064 0.153
< 0.004 —0.0060*i 0.0086 0.182
0.009 —0.0081*i 0.0140 0.206
0.016 —0.0121+i 0.0192 0.247
0.025 —0.0216=*i 0.0260 0.325
0.036 —0.0314*i 0.0345 0.386
0 0 01 0.2 03 0.4 05 0.049 —0.0468t? 0.0387 0.464
Ipl 0.064 —0.0618+i 0.0417 0.522
0.081 —0.0815=*i 0.0440 0.590
0.25 | ' ' ' ' (b) 0.1 —0.0647 =i 0.0000 0.509
0.5 —0.4894+i 0.0000 1.399
1 —1.4260*i 0.0000 2.388
2 —4.8925+i 0.0000 4.424
c 3 —10.3776=i 0.0000 6.443
. 4 —17.9613=i 0.0000 8.476
%‘ 5 —27.3616=i 0.0000 10.462
Note that it is theo functions that are important in Eq.
(2.1) and notA andB, and thus the effect of the fit on the
denominatorp?A2+B? relating these must be considered.

0 0.1 02 .03 04 05 Conjugate poles exist where the facfiA?+ B2 appearing
Ip! in the denominator of the BSE integrand is zero. Table | lists
the conjugate poles arising from the fits for each fermion
FIG. 4. (a) compares the SDE solutions and fitting functions for mass and the Corresponding maximum bound state masses
A~ 1 for fermion massegfrom top to bottomm=0, 0.025, 0.1, 1, gjlowed. The maximunM allowed is the value for which the
and 5.(b) showsB—m for fermion massegfrom bottom to top boundary ofQ in Eq. (4.1) coincides with the conjugate
m=0, 0.025, 0.1, 1, and 5. poles. No comment about the viability of our model BSE can

) o be made until solutions are attempted because the integration
axis and extend the solution into the complex plane by andregion depends on the solution mads

lytic continuation. These fits may be fér andB or for the The location of the conjugate singularities for tie=0
functionsoy andas. The work of Maris[6] suggests that it case in Table | is slightly different to that reported in R,
is not necessary far, andos to be entire functions for the \ynere it is —0.004 06-10.006 66. This is because of the
fermions to be confined, only that there be no poles on thgexibility of the fitting functions. The fit in this work and
timelike p? axis. Fits to functions andB used in previous  that in Ref.[4] for the zero-fermion mass case had similar
work [4] based on the known asymptotic infrared and U'”""'accuracy along the positive repf axis but had the freedom
violet behavior of these functions were tested by comparing, take on slightly different forms throughout the complex
them with the direct solution for various anglgs The fits,  pjane. This is because along the positive rpalaxis the
adjusted to allow variable fermion mass are given by nonasymptotic form fixing parametera,(andb,) are only
loosely determined. Despite the difference in the two results,

A (p2)= a +ase 8PPy ] the BSE calculation for bound state masses should show
(P = (aZ+p?)1? az€ ' close agreement as each fit adequately models the direct so-
lution throughout the complex plane.
b The singularities in ther fits for fermion masses greater
Bi(p?) = ——— +bge P4P°+ m. (4.3  than or equal to 0.1 lie on the negative rggl axis. This
b,+p suggests that free propagation occurs at these masses and the

model is not confining. An accurate location of the singulari-
The parameters,,,b,, are functions of fermion mass. The ties in the SDE solution would be needed before it can be
numerical solution to which these functions were fitted is arsaid whether this result is due to the fits or the rainbow
iterative solution to the SDE using a nonuniform 51-pointapproximation used in the SDE solution. According to Ref.
grid along the positive real axis up to a momentum cutoff[6] the rainbow approximation SDE solution is expected to
p=1000 using a 0.1% tolerance in the integration routinebe confining even for large fermion mass. Thus we assume
Plots of the numerical solutions and function fits for variousour result is due to the lack of accuracy in our fits near the
m values are given in Fig. 4. negative reap? axis and that it is likely that the singularities
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180 , , _ , approached. It is important that both the direct solution to the

(a) SDE and the fits used in this work have this feature. This
1 spike was not seen in any other fits which we attempted.
Based on Fig. 5 it seems clear that the direct solution to the
SDE must have singularities close to those in the fitting func-
tions.

Because the spikes are not in exactly the same places
some error will be introduced in the contributions from the
large ¢ part of 0. When the bound state mass becomes
large, the largeb contributions will become more important
and thus we expect the error in the position of the spikes to
result in some noise in the solutions to the BS equation for
) ) , , large fermion mass.

0 0.05 0.1 0.15 0.2 The o functions were studied for all fermion masses used

Ip! in this work in the same fashion. The results were similar to
the m=0 case and need not be shown here. In each case,
when ¢ was increased far enough, a spike was observed in
both the fit and solution, after which lack of convergence
prevented an SDE solution.

However, for very large fermion masses, the accuracy of
the fits decreases asincreases, and with good reason.As
tends to infinity, the functiong& andB approach constants
(1 and m, respectively. For moderately large fermion
masses experienced in this work, these functions become al-
most constant along the positive rgel axis while having a
singularity near the negative repf axis. It is too much to
ask for simple four parameter fits along the positive &al
. . ) axis to reproduce accurately complex behavior deep into the
0 0.05 0.1 0.15 0.2 real timelike p? axis. The one-loop propagators, Fig. 2 de-

Ipl scribed in Sec. Il illustrate this well. There one can see how
smooth and level the functions are along the positive real

FIG. 5. (a) and (b) show SDE solutions and function fits for p2 axis and also how steep the functions become back along
oy and og respectively for fermion mass 0 with angles=0 the negative regh? axis.

(©), /8 (+), and=/4 (00). Before moving on to the next section, we return briefly to
the one-loop approximation to the fermion propagator neces-

move close to that axis am increases but never actually lie sary for the non-relativistic approximations described in Sec.

on that axis. lll. Figure 6(a) compares our rainbow approximation solu-

Figures %a) and 5b) show plots ofoy and os moduli,  tion A to the one-loop result given in Eqé3.3) and (3.4).
respectively, for zero-fermion mass and angles=0, Figure Gb) comparesB from our rainbow approximation
¢= /8, and¢ = 7/4 against thep modulus(with a range far  solution and the result in Eq§3.5) and(3.6). Both of these
smaller than the UV cutoff used in our calculatipnhe  comparisons were made at a large fermion mass §). It
direct solutions to the SDE and the fits are compared. It cagan be seen that the curves in each case are in reasonable
be seen that the functions are very good fits along the posiagreement, at least for spacelike momenta.
tive real axis ¢p=0), where bothr, andog are real. The fit
is also good for¢=/8. Real and imaginary cOmponents , \meRICAL SOLUTION OF THE BETHE-SALPETER
have not been given separately as they show similar agree- EQUATION
ment. In the casep= w/4 the fitting function has begun to
deviate from the SDE solution. This is mostly due to the The fits given by Eq(4.3) to the fermion propagator for a
apparent difference in the location of a spike. Based on theange of fermion masses were used in the solution of the
largest bound state mass fior=0 reported in the next sec- Bethe-Salpeter coupled integral equations E2}7). This
tion, the BSE integration regiof) extends along the direc- problem was restated in E.13 as an eigenvalue problem.
tion ¢= /4 out to a modulus of approximately 0.083. In A grid of 25X 25 (|q|,q5) tiles were used for the iterative
this range the small angle solutions are very accurate but fgerocedure with linear interpolation on each of those tiles
larger ¢, much of the error due to the difference in the lo- used for the sumsI(; f;) which are supplied at the corners of
cation of the spike will be experienced. As the angle is in-the tiles from the previous iteration. The tiles were nonuni-
creased further convergence problems occur until eventuallform in size and an upper limit to the momentum compo-
no solution can be found at aliyt>0.90). nents (g and g;) of between 3.0 and 9.0 was used. The

The spike forming in these plots signals that, @sis  equations were iterated to convergence each time to deter-
increased, the contour of integration approaches a singulamine eigenvalues for a given test bound state mMassThe
ity. In fact, the conjugate poles which lie just @¢fir on asis bound state masses were located by repetitive linear interpo-
the case for largem) the negative regh? axis (¢=/2) are lation or extrapolation to search for the point where the ei-
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FIG. 6. (a) compares the functioA(p?) from the rainbow SDE FIG. 7. (a) shows bound state massé8) against fermion mass

calculation(solid curve and the one-loop resultiashed curveand  0—0.1.(b) is a plot of M —2m for m=0-5. In each plot the scalar
(b) comparesB(p?) results along the positive replaxis for ferm- o= 41 (0), scalarZ=—1 (+), axiscalarZ’=+1 (O), and
ion massm=5.0. axiscalarz’=—1 (X) states are drawn with solid curves. The non-
relativistic predictions of Eq(3.20 and Eq.(3.21) are the scalar
genvalueA of Eq.(2.13 is 1. This was repeated for each of #=+1 (<) and axiscalaz=+1 (L) states, respectively, and
the fermion masses ranging from 0 to 5.0. This procedur@re drawn with dashed lines. Equati¢®.2) with A=\, (lower
was used for each of the four nondegenerate bound staf®lid curve with no symbojsand withx, (upper solid curve with
symmetries described in the Appendix. no symbol are also plotted irtb).
Table 1l shows the bound state masses for each of the four

symmetries (scalar #=+1, scalar Z=—1, axiscalar the bound state mass to the eigenvalu@ Eq. (2.13.] For
#=+1, and axiscalaZ’ = —1) for all fermion masses con- |arge fermion masses, the bound state mass rises predomi-
sidered. Figure (&) displays the solutiond/ for fermion  nantly as twice the fermion mass plus possible logarithmic
mass 0-0.1. Figure() shows M —2m over the greater corrections. However, there appears to be a good deal of
range of 0—5. The axiscalaf= +1 solution is a degenerate noise in the largem solutions, reflecting the difficulty in
axiscalar-axipseudoscalar pair of Goldstone bosons for thgccurately modeling the fermion propagator deep into the
casem=0, as seen in previous wofk]. Minor differences  timelike region from spacelike fits. No solutions correspond-
between Ref[4] and the current work at=0 are due to ing to states of negative charge parity were found for
small differences in the propagator fits, as explained in Segn>1.0.

V. Numerical solutions to the integral equatiori8.20),

For smallm the bound state masses rise rapidly with with (3.21) arising from our non-relativistic treatment are listed in
increasing fermion mass. The mass of the “Goldstone” axi-Table 11l and plotted in Fig. (b). Solutions with positives
scalarz’=+1 state scales roughly with the square root ofwere found for fermion masses=1.0 in the positive charge
the fermion mass, in agreement with the Gell-Mann—-Okubgarity sector. We were unable to locate any solutions to Egs.
mass formulg[14]. In fact, for fermion masses 0 to 0.1 a (3.20 and (3.21) corresponding to negative charge parity
linear regression againstm has correlation coefficient states over a broad range &f Also given in Table Il and
0.9964 with the mass growing as approximately X2/m. Fig. 7(b) are the two lowest lyings-wave solutions to the
[The accuracy of the solution at=0.001, which comes out Schralinger equation from the numerical work of Tarhal.
with an anomalously low bound state mass, is severely aft9], given by Eq.(3.2.
fected by numerical inaccuracy arising from the sensitivity ~The lack of exact agreement between the nonrelativistic,
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one-loop approximations Eq$3.20 and (3.21), and the gion. This requirement is equivalent to demanding that
Schringer equation result Eq3.2) is to be expected. As g5 should not cross the real axis as agq| ranges from
pointed out in Sec. Ill, a complete cancellation of infraredQ to «. Interestingly, such a crossing would entail a more
divergences can only occur if the fermion self-energy is calcareful evaluation of residues than that carried out in Sec. Il
culated nonperturbatively to all orders. From Table Ill, weleading to the Schidinger equation.
see that at very high fermion masses, the accuracy of the We note that the Schdinger equation results of Re©]
one-loop approximation is significantly affected as the condinclude the first fives-wave states. It would certainly be of
jugate poles in the propagator, measured in momenta scalégterest to locate the excited states within the framework of
by the fermion mass, move closer to the bare fermion masgur BS treatment of QER. We have searched for solutions
pole (see Fig. 2 At more moderate fermion masse@s=5, to the eigenvalue equatiof2.13 corresponding to excited
the one-loop approximation is more respectable. states, and find in general no solutions within the mass
We see no clear agreement between the numerical resultanges allowed by the valuds,,, in Table I. Since there is
of Eq. (2.7), and either nonrelativistic approximation Egs. no reason to assume that tsevave spectrum should be
(3.20, (3.21), or the Schrdinger equation result Eq3.2.  bounded above, it seems likely that there will be solutions to
Our analysis of the nonrelativistic limit of the BS equation the BS equation for which the region of integratindoes
exposes the importance of the analytic structure of the ferminclude the conjugate propagator poles discussed in Sec. IV.
ion propagator in the vicinity of the bare fermion mass polet follows that the functiond, U, V, andW in the BS am-
p?=—m?. The uneven nature of the lower two curves in plitudes of these states should have compensating zeros, in
Fig. 7(b) indicates that the determination of the timelike order that the right-hand side of the BS equation be inte-
fermion propagator by an analytic fit to the spacelike propagrable. We conjecture that, if the fermion propagator has an
gator is inadequate for fermion masses 1. It is clear that infinite set of poles, there will be a sequence of excited
a more careful analysis of the timelike nature of the fermionstates, theath excited state having pairs of zeros in its BS
propagator, possibly involving a fully nonperturbative treat-amplitude. This conjecture is consistent with the the first
ment of the SD equation to include remnant chiral symmetryexcited state of the Schdinger equation, also listed in Table
breaking, is necessary for determining the bound state speqi, for which the wave function has a single zero.
trum for even moderately large fermion masses. Although we are unable to determine accurately the spec-
It is important to note that the poles in the fermion propa-trum in the large fermion mass limit, our calculations
gator fits listed in Table I lie outside the BS integration re-strongly suggest that there are no scalar or axiscalar states
gion O for all solutions obtained. This can be verified by with negative charge parity in this limit. This is consistent
observing that all masses in Table Il are lower than the valwith the nonrelativistic quark model in four dimensions in
uesM o listed in Table I. A similar situation arises for the which negative charge parity scalar and pseudoscalar states
non-relativistic limit calculations. Listed in Table Il are are forbidden by the generalized Pauli exclusion principle
maximum allowed5 values if the integration region sampled [14]. We note, however, that there is nothing to exclude such
by Egs.(3.20 and(3.21) is not to impinge on the conjugate states in a fully relativistic BS treatmefit5], and indeed,
propagator poleg” and @5”9* defined in Eq(3.24. In  negative charge parity scalar and axiscalar states are found
all cases the numerical results lie within the permitted re-within the current model for light fermions.

TABLE Il. Bound state masses for fermion masses from 0 to BD.masses=* 0.001 unless otherwise
stated). The axiscalaiz’= +1 solution withm=0 stated here is an analytic result.

m Scalarz=+1 Scalarc=-1 Axiscalarz=+1 Axiscalarz=—1
0 (Ref.[4]) 0.080+ 0.001 0.123+ 0.002 0 0.111+ 0.002
0 0.077 0.118 0 0.108
0.001 0.087 0.126 0.004 0.116
0.004 0.110 0.151 0.054 0.140
0.009 0.140 0.178 0.090 0.167
0.016 0.175 0.217 0.127 0.204
0.025 0.215 0.269 0.167 0.254
0.036 0.256 0.316 0.208 0.300
0.049 0.298 0.367 0.248 0.350
0.064 0.343 0.411 0.293 0.390
0.081 0.389 0.456 0.340 0.431
0.1 0.439 0.496 0.391 0.479
0.5 1.311 1.388 1.261 1.352

1 2.297 2.387 2.243 2.336

2 4.330 - 4,233 -

3 6.348 — 6.227 -

4 8.379 — 8.243 -

5 10.365 - 10.219 -
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VI. CONCLUSIONS TABLE Ill. Nonrelativistic § solutions for positive charge par-
ity, from Egs.(3.20, and(3.21) and the two lightess-wave Schre

In this paper we have solved the combination of ralnbowdlnger equation results of Tanetal. [9], Eq. (3.2 using

Schwinger-Dyson and homogeneous Bethe-Salpeter equa-_ 1 7969 and\,=2.9316. The first column contains the maxi-
tions in the quenched ladder approximation for three- mum values of5 allowed before conjugate singularities arise in the

dlmenS|0n_aI QED W'.th.maSS'yPT fermlon§ QEWvas Chose.n fermion propagator used in our nonrelativistic calculations.
because, like QCD, it is confining but without the complica-

tions of being non-Abelian. A four-component version of | S Scalar Axiscalar Eq(3.2) with Ed.(3.2) with
this theory is used because, also like QCD, it provides a max 432 432

parity invariant action with a spontaneously broken chiral- Eq.(3.20 Ea.B2)  A=Xo A
like symmetry in the massless limit. The approximation is1 0.332 0.285 0.262 0.322 0.503
amenable to numerical solution, and should help assess tlle  0.421 0.371 0.338 0.377 0.558
limitations of a technique frequently employed in models of3 0.473 0.419 0.381 0.409 0.590
QCD [2]. 4 0511 0.452 0.410 0.432 0.613
The work in this paper carries on from a previous study ofg 0540 0.476 0.433 0.450 0.631
the same subje¢#], but with the following extensions. First, 100 0947 0.792 0.734 0.688 0.869
nonzero fermion mass is considered. Second, an analysis @fo0 1272  1.030 0.968 0.872 1.052

the fermion propagator in the complex plane is carried out in
order to assess the appropriateness of the approximations in-

volved. Thirdly, an analysis of the nonrelativistic limit, i.e., masses rise as twice the bare fermion mass, plus a possible
large bare fermion mass, is made in an attempt to comparegarithmic correction. However, an unacceptable level of
with existing Schrdinger equation studies of QED noise was found to develop in our results for these larger

The rainbow SD equation was solved in Euclidean spacenasses, which we attribute to inaccuracies in the analytically
to give a fermion propagator for spacelike momenta, Euclidcontinued fermion propagators in the important region near
eanp2>0. The propagator is chirally asymmetric, and in thethe bare fermion mass pole. No negative charge parity
massless fermion limit, gives rise to a doublet of massles§z’=—1) solutions were found for bare fermion masses
Goldstone positronium states analogous to the pion. Solutioabovem/e?~1.0, consistent with the generalized Pauli ex-
of the BS equation for massive positronium states requireslusion principle of nonrelativistic QCE
knowledge of the fermion propagat&p) in the complex The conjugate poles in the fermion propagators were
p? plane extending away from the spacelike axis, and a finitéound to keep clear of the integration regions required for the
distance into the timelike axjg?<0. By rotating the contour BS solutions for the lowest state in each of the four space-
of integration we were able to extend the spacelike solutiorparity—charge-parity sectors considered. However, it ap-
into part of the complex plane. However, the occurrence opeared that this would not be so for any excited states. We
complex conjugate poles in the fermion propagator pretherefore conjecture that the excited positronium states have
vented a numerical solution to the SD equation throughouteros in their BS amplitudes positioned so as to cancel the
the complete region of the complex plane sampled by the B$oles in the propagators encountered within the integral in
equation. This forced us to apply analytic fits to the propathe BS equatiori2.1). This requirement of compensating ze-
gator along the positive reaf axis for use over the required ros was too demanding on our current numerical code, and as
part of the complex plane. a result, no excited states were found.

Our propagator fits were found to have conjugate poles In vector calculations under way at present, where the
located close to those of the direct solution for small to mod-bound state masses are expected to be larger, the conjugate
erate fermion masses. This, combined with the accuracy gfoles in the fermion propagator seen in this work may inter-
the fits throughout much the complg¥¢ plane, made our fere. Since the fits used in this work appear to have their
choice of propagator very attractive. The singularities in thesingularities close to those in the actual Schwinger-Dyson
fits were found to move onto the negative rpalaxis as the  solution, we may find that the rainbow approximation and
fermion mass increased. This was not interpreted as a loss tfe resulting propagator fits will be inadequate for a study of
confinement but instead attributed to a lack of accuracy irvector states in QEB. This is a very challenging problem
the fits deep into the timelike region as the fermion massnd we hope to report on our results in the near future.
became large. This reduction in accuracy of the fits for large A nonrelativistic analysis of the BS equation was also
m was due to the nature of the functions along the positivecarried out assuming, in the first instance, a one-loop ap-
real p2 axis where the fits were made, and the presence of proximation to the fermion propagator. However it was
singularity near the negative reaf axis in the vicinity of the  shown that, in order to cancel infrared divergences com-
bare fermion mass pole?= —m?, but off the timelike axis. pletely between the photon propagator and fermion self en-

BS solutions were found for four pairs of parity degener-ergy, as proposed by S¢h0] and Cornwall[11], it is nec-
ate states. These pairs were the scalar-pseudostaiar 1 essary to evaluate the fermion self-energy nonperturbatively.
and z=—1 and the axiscalar-axipseudoscatar+1 and  Only if this is done can the Schimger equation be rigor-
%=—1 states. For small to moderate fermion mass theusly obtained in the large fermion mass limit. In spite of
bound state mass was found to increase smoothly mith this, numerical solutions of the one-loop equations give rea-
The axiscala”=+1 doublet, analogous to the pion, was the sonable agreement with the Scdmnger equation for moder-
lowest in energy, with a mass rising roughly with the squareately large fermion masses/e*~5.
root of the bare fermion mass. For moderately large bare In summary, we were able tO carry out an acceptable
fermion massesni/e? greater than unitythe positronium analysis of the bound state spectrum of QFi2ar the chiral
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limit m—0 by using analytic fits to the spacelike fermion  The threey,, andy, and ys are five mutually anticom-
propagators in the BS Bethe-Salpeter equation, and in theuting matrices. This is unlike the four-dimensional case
nonrelativistic limitm—o by expanding to lowest order in where no analogue of, exists.

inverse powers of the fermion mass to obtain a Sdimger The action Eq(Al) in the massless case=0 exhibits
equation. However, there remains an intermediate masglobal U2) symmetry with generatord, y,, s, vast which
rangem/e?~1 for which neither of these techniques is ad-is broken by the generation of a dynamical fermion mass
equate. It is clear that a more careful non-perturbative analy-17,16| to a U(1) <X U(1) symmetry{l, y.s}. The action is also
sis of the fermion propagator in the vicinity of the bare ferm-invariant with respect to discrete parity and charge conjuga-
ion mass pole is necessary before an accurate determinatition symmetries, which for the fermion fields are given by
of the QED; positronium spectrum at intermediate fermion _ _ _

masses can be made. If a direct analogy with QCD models #(X)— ¢’ (X' )=I1(X), ¢ (X)—¢ (X" )=4¢ (I,
based on the Bethe-Salpeter equations is made, we conclude (A2)
that particular care must be taken in modeling quark propa- — — —

gators for quarks whose mass is close to the mass scale of the?(X)—#' (X)=Ci¢ ()T, ¢ () —¢ ' (x)=—¢(x)"C",
theory, namely charm quarks. (A3)

where x’ = (x% —x!,x?). The matricesl] and C are each
determined only up to an arbitrary phase by the condition
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where part of this work was completed. are defined by the following transformation properties under
parity transformations:

APPENDIX: TRANSFORMATION PROPERTIES IN QED ; q)S(X)H(DS'(X'):q)S(X),
The four-component QEP action in Minkowski space
[16] DPI )= PP (x')=—DPYx),
S[A.f¢]=f d3X[ — ZF , F*" DAYX) = DAY (x') =Rp®*(x),
+y yuioteA) gt my gl (Al PAPIX) — AP (x') = —Rp®*PXx), (A5)

involves 4x4 matricesy, which satisty{y,,v,}=27,,  where®*sand®"PSare doublet state®=(P,,Pz)", and
where 7,,,=diag(1,-1,—1) with u = 0, 1, and 2. These .

three matrices belong to a complete set of 16 ma- R._ —C0S2pp —SiN2¢p
trices {yal={1,74, 75,745, Y+ YusrYus:Yuasy satisfying P\ —sin2¢p  cos2pp |-
(LB tr(7ay®) = 5

(AB)

Similar transformation properties exist for charge conjuga-

g3 0 012 0 tion.
Y= o — oy’ Y12= 7| 0 —0y4’ The most general forms of the Bethe-Salpeter amplitudes
. [15] for bound scalar and pseudoscalar states are
S L I'S(q,P)=If +dg+Ph+e,,, P a"y**%k, (A7)
4= | ol
[Pa,P)=yaslq,P), (A8)
o —il
'}/52')/5:(_ ) wheref, g, h, andk are functions only ofg®>, P?, and
im0 g-P. BS amplitudes corresponding to the componehts
and ®¢ of axiscalars and axipseudoscalars take the general
— A5
Yas= 7Y "= 717475, form
7M4:|7,u74’ (F(4)(qlp))AS: Ya +( yluA)(q”“g—l—P”“h)
) r®(q,P) Ys Yus
7#5: | ’yM’YS! 5
_ P D (A9)
Yuas= —1YuYaVs, €uvpQ VAL

4,15 orud5__ v
yHOE O = Yy b4 15 or vas - and



r'“(q,P)

(F“”(q,P)
r®(q,P)

I'®(q,P)

APS
) = ?’45(

Furthermore, the charge parit¢y==1 of the bound
states is determined by the parity of the functidnsg, h,
andk under the transformatioq- P— —q-P. The quantity

AS
) . (A10)
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Our conventions for Euclidean space quantities are sum-

marised in Appendix A of Refl4]. In particular Euclidean
momenta and Dirac matrices are defined by

g- P is the only Lorentz invariant which changes sign under

charge conjugation and thus determines the charge parity of

those functions.

E)__ : M E)__ M E)__ M
PE=—IPM, PE=PI, D=,
E . M
G
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