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Abstract

A powerful methodology for analyzing post-synaptic currents recorded from central

neurons is presented. An unknown quantity of transmitter molecules released from

presynaptic terminals by electrical stimulation of nerve ®bers generates a post-synaptic

response at the synaptic site. The current induced at the synaptic junction is assumed to

rise rapidly and decay slowly with its peak amplitude being proportional to the number

of released transmitter molecules. The signal so generated is then distorted by the cable

properties of the dendrite, modeled as a time-invariant, linear ®lter with unknown pa-

rameters. The response recorded from the cell body of the neuron following the elec-

trical stimulation is contaminated by zero-mean, white, Gaussian noise. The parameters

of the signal are then evaluated from the observation sequence using a quasi-pro®le

likelihood estimation procedure. These parameter values are then employed to decon-

volve each measured post-synaptic response to produce an optimal estimate of the

transmembrane current ¯ux. From these estimates we derive the amplitude of the

synaptic current and the relative amount of transmitter molecules that elicited each

response. The underlying amplitude ¯uctuations in the entire data sequence are inves-

tigated using a non-parametric technique based on kernel smoothing procedures. The

e�ectiveness of the new methodology is illustrated in various simulation exam-

ples. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

The analysis of post-synaptic currents recorded from neurons has, hitherto,
commonly proceeded along the following lines. Because of the physical di-
mensions of the dendrite the measurement of the current that ¯ows through the
ion channels in the membrane is generally made at the cell body. The amplitude
of each evoked response is estimated from the observed current by examining
the magnitude of the evoked response, relative to a baseline, in a small
neighborhood of the peak current. In essence a narrow width time averaging
window is applied. From the amplitude estimates so obtained an amplitude
histogram is constructed. This histogram is assumed to be generated from a
realization of independent and identically distributed data values taken from
a ®nite mixture distribution and so the histogram is then deconvolved into a
number of underlying component parts [1±7]. The primary aim of such an
analysis has been to infer the number and structure of the underlying distri-
butions that give rise to the observed amplitude histogram. 1

Unfortunately, the application of this conventional technique to currents
recorded from neurons in the central nervous system can be severely hampered
by low signal-to-noise ratios. Since the measurements are made some distance
away from the synaptic site it seems likely that the original signal will be at-
tenuated, having had its shape distorted by the cable properties of the dendrite,
and the recording will obviously be contaminated by various sources of noise.
Thus it is desirable to have an alternative data processing scheme which allows
the magnitude of the noise obscuring the observed signal to be drastically in-
creased whilst still enabling accurate estimates of the signal pro®le and the peak
amplitude to be evaluated. Once reliable estimates of these are obtained, many
questions of fundamental theoretical importance relating to the mechanism
underlying synaptic transmission can then be more readily resolved. For ex-
ample, whether or not the release of transmitter molecules occurs in quanta,
the magnitude of the quantal variation, if any, and determination of the
number of release sites on the dendritic segments. Such an analysis might also
reveal if the magnitude of the neurotransmitter release increases following
the induction of long-term potentiation [9]. Also, from the estimated shape of
the signals of di�ering amplitudes, it may be possible to deduce the location
of the synaptic sites relative to the cell body from which the recording is made.

We present here a novel method of analyzing post-synaptic currents whose
realization is embedded in noise. The current generated by the released ne-
urotransmitter at the synaptic site is assumed to rise rapidly and then decay
monotonically. The response recorded at the cell body will, however, be dis-
torted by the ®ltering properties of the dendritic segment. Thus, the observed

1 Note that not all procedures are based on an examination of the histogram, see [8] for example.
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process is construed as being the output from a time-invariant linear ®lter
driven by an impulse, representing the evoked release of neurotransmitter, to
which zero-mean, white Gaussian noise is added. We further assume that the
signal arriving at the neuronal cell body can be delayed for various durations
after stimulation of the a�erent ®ber. Our model allows us to estimate the
unknown parameters that characterize the ®lter as well as the amplitude of the
post-synaptic current embedded in each segment of the record. From these
estimates, other relevant statistics, such as the amplitude histogram, the
number of release sites, quantal content and coe�cient of variation, can be
deduced. First we describe the methodology at an intuitive level and then, using
simulated data designed to mimic post-synaptic currents embedded in noise, we
demonstrate that the analytical scheme we propose can identify the process
parameters with acceptable accuracy.

2. Theoretical background

2.1. Signal model

Consider a discrete-time stochastic process fy�k�g,
y�k� � s�k� � g�k�; k � 0; 1; . . . ; T ÿ 1; �1�

which represents the observed measurements, consisting of the underlying
signal fs�k�g at the recording site and the measurement noise fg�k�g, made on
the evoked post-synaptic current records over the interval �0; T ÿ 1�. The af-
ferent nerve ®bers are assumed to be stimulated at regular intervals L time
periods apart and, after a brief conduction delay, packets of neurotransmitter
molecules are released from axonal terminals generating a pulse. We model the
observations as the noise corrupted output of a linear time-invariant system
that is being driven by an input u�k� composed of a periodic pulse train where
the time interval between pulses, L, is given but the amplitude of each pulse,
fa�i�g, is an independent and identically distributed sequence of random
variables drawn from a probability distribution PA with a�i�P 0. This is il-
lustrated schematically in Fig. 1. Here the pulse height a�i�, which is not di-
rectly observable, represents the quantity of released transmitter molecules.
Each of these pulses is then assumed to be transformed into a post-synaptic
current according to some transfer function P �z� but the shape of the current
becomes distorted by the cable properties of the dendrite, which we represent
as a low-pass ®lter F �z�. Thus, the measurements fy�k�g in our model are
related to the impulse response sequence fc�i�; i P 0g of the overall trans-
fer function C�z� �Pi P 0 c�i�zÿi and the input sequence fu�k�g via y�k� �
c � u�k� � n�k� where c � u�k� denotes the convolution of the impulse response
sequence and the input process at time point k and n�k� denotes the residual.
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The residual process fn�k�g captures such features as the measurement error
and the discrepancy between c � u�k� and the true s�k�, the modeling error. In
technical parlance, C�z� is given by a stable and causal system of the form

Ca�z� � a0

Ypÿ1

i�0

1� ÿ ni z�ÿ1 �2a�

� a0 1

"
�
Xp

i�1

ai zi

#ÿ1

�2b�

where the order p is constant and the numerator is such that maxi P 0 ca�i� � 1.
The assumption of causality has the simple physical interpretation that the
nerve cell is passive. The stability assumption restricts Ca�z� to the region where
0 < jnij < 1; i � 0; . . . ; p ÿ 1, and ensures that the energy ¯owing through the
system is dissipative.

As with any model, the above idealization is likely to present a simpli®cation
of the true mechanism giving rise to measured excitatory post-synaptic currents
from neuronal cell bodies. For example, in reality the amount of neurotrans-
mitter released may not be strictly proportional to the peak inward current at
the synaptic junction [10,11] and the cable properties of the dendrite may only
be approximately represented by a time invariant linear ®lter [12]. Moreover,

Fig. 1. The signal model. Transmitter molecules u�k� released from presynaptic terminals, indi-

cated here as vertical lines whose heights are proportional to the number of released molecules,

evoke post-synaptic currents recorded from the cell body. The currents at the synaptic site are

assumed to rise instantaneously and decay exponentially, as indicated by the ®rst transfer function,

P�z�. As the signal is spread down electrotonically to the cell body its shape becomes distorted by

the cable properties of the dendrite and this distortion is characterized by the second transfer

function, F �z�. To this signal is added the zero-mean, white Gaussian noise n�k� to give the mea-

sured response y�k�.
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there is emerging evidence to suggest that post-synaptic responses may not
necessarily be passively relayed to the recording site [13]. Behavioral charac-
teristics of this kind, that call into question the real world authenticity of the
assumptions, can be tested for using our methodology and modi®cations of our
basic processing technique that will allow for alternative structures that exhibit
such features can also be devised, but we do not pursue the latter avenue here.

The assumption that the additive noise contaminating the post-synaptic
current is a zero-mean, white Gaussian process needs to be addressed, however,
because real intercellular recordings often exhibit baseline noise that is both
skewed, due to spontaneous potentials or currents, and has a colored spectrum.
In standard analysis such variation is partly accounted for by measuring am-
plitudes relative to a baseline in a local neighborhood of the peak. A similar
approach can be adopted here by introducing a step function b�k � �iÿ 1�L� �
b�i�, i � 0; . . . ;N ÿ 1, k � 0; . . . ; Lÿ 1, that represents the (time varying)
baseline associated with the ith stimulus. The baseline function b�t� can be
accommodated in practice by using the measurements immediately preceding
the onset of the pulse, where the neuron is at rest, to determine the baseline
value. This approach corresponds to applying a local time average to estimate
each b�i� and then conducting the analysis in terms of the corrected response
pro®le rather than the raw data values. It is directly analogous to the nonlinear
®ltering that is employed with conventional analysis. Alternatively, it is
straightforward to incorporate b�i�, i � 0; . . . ;N ÿ 1, into the parameter esti-
mation process described in Step 1 below. Although the baseline function b�t�
provides a means of dealing with what we might call low frequency baseline
wobble and will remove any undesirable non-zero direct-current present in the
measurements it will not deal with sources of error, such as ampli®er noise, that
introduce high frequency noise components. The latter form of noise is more
di�cult to adjust for and we will provide more detailed discussion of this issue
below.

It seems reasonable to conjecture that the model and the associated meth-
odology will be robust in that changes in the parameter values will allow the
model to adapt to and explain di�erent situations but departures from the
underlying assumptions that are not of direct relevance to the scienti®c ques-
tion of interest will not seriously degrade its performance. The basic purpose of
a model is to help separate the systematic behavior of interest from the
background noise and our method is designed to minimize the mean squared
error of the discrepancy between the signal deduced from the processing
scheme and s�k�, the true but unknown signal. Elsewhere we have provided a
set of mathematical proofs showing that under appropriate regularity condi-
tions di�erences between the values estimated from the data and the true values
governing the observed process will converge to zero as the number of ob-
servations T � NL becomes large (Theorems 3.2, 4.2 and 5.1 of [14]). These and
related theorems given in [14] form a theoretical justi®cation for using an
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idealized model or approximation when the true complexity of the process is
unknown or precludes the formulation of a tractable analytical scheme. In this
paper we present empirical evidence that the data processing technique pro-
posed here is indeed robust and can be used to detect shortcomings in the
model, giving indications of ways in which the speci®cation, and hopefully our
understanding of post-synaptic currents, can be improved.

Finally, the adequacy of the model as a description of observed data se-
quences is illustrated in Fig. 2, where post-synaptic currents recorded from a
hippocampal neuron before (upper trace) and after (lower trace) the induction
of long-term potentiation are shown. The observed synaptic currents of 20

Fig. 2. Synaptic currents recorded from the soma of a hippocampal neuron. Open circles in the

upper and lower traces represent, respectively, the averages of 20 evoked responses obtained before

and after the induction of long-term potentiation. The data points are ®tted with a transfer

function, a�z��: �1ÿ 0:982zÿ1��1ÿ 0:925zÿ1�. The continuous lines represent upper and lower 95%

con®dence intervals for the impulse response. For details of recordings, see [20,21].
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traces are summarized by plotting the averages, shown as open circles. The
measured data points are ®tted with a transfer function a�z��: �1ÿ 0:982zÿ1�
�1ÿ 0:925zÿ1� and the lower and upper 95% con®dence intervals about the
®tted impulse response curves are shown as solid lines. The precision with
which the impulse response of the model can be estimated, relative to the
variation around the curve caused by the noise component, is clearly illus-
trated. It is not our purpose here to construct a de®nitive description of post-
synaptic recordings from hippocampal neurons, but we note that there is some
evidence to suggest that the use of a simple two parameter model in both cases
may not be adequate and a slightly more complex speci®cation might be ap-
propriate. Nevertheless, the ability of the model to approximate the measured
responses with a fair degree of accuracy, despite possible shortcomings in the
speci®cation, is apparent.

2.2. Analytical steps

A ®nite algorithm is used to estimate the unknown quantities of interest and
involves the following three basic steps:
1. Determine a quasi-maximum likelihood estimate of the parameters that

characterise the transfer function and with which the synaptic currents re-
corded from the cell body are to be modeled.

2. Using the estimated transfer function, deconvolve each response and evalu-
ate the corresponding estimates of the pulse amplitudes (the amount of
neurotransmitter released).

3. From the amplitude estimates, construct an estimate of the probability dis-
tribution of the quantity of neurotransmitter molecules released using kernel
smoothing methods.
Each step is described in further detail in the following sections. Those not

interested in the technical rationale may proceed to the validation of the
methodology without loss of continuity.

2.2.1. Step 1: Parameter estimation
The unknown quantities to be estimated from the data in addition to the

parameter vector a � �a1; . . . ; ap�T, where T denotes matrix transposition, are
the noise variance r2

n and the unobserved amplitudes a � �a�0�; . . . ; a�N ÿ 1��T.
Assume, temporarily, that the model obtains so that ca � u�k� � s�k� and
n�k� � g�k�. Utilizing the white Gaussian noise assumption, the joint proba-
bility of the observed data given the actually realised but unobserved impulse
train heights a and the parameters a and r2

n can be written as

YNLÿ1

t�0

1����������
2pr2

n

p exp

 
ÿ 1

2

n�t�2
r2

n

!
; �3�
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where n�t� � y�t� ÿ ca � u�t�, t � 0; . . . ;NLÿ 1. We seek to maximize Eq. (3)
with respect to the unknowns a, r2

n and a. Given any value for the parameter a,
a � _a say, it is easily veri®ed that the optimizing values _a and _r2

n associated with
that value are obtained by ®rst solving the equations

_a�i� �
PLÿ1

j�0 y�iL� j�c _a�j�PLÿ1
j�0 �c _a�j��2

; i � 0; 1; . . . ;N ÿ 1; �4�

for the amplitudes a and then

_r2
n �

1

NL

XNÿ1

i�0

XLÿ1

j�0

�y�iL� j� ÿ _a�i�c _a�j��2; �5�

for the variance r2
n. Substituting Eqs. (4) and (5) into Eq. (3), taking the log-

arithm and then negating the result yields

L� _a� � NL
2

log 2p _r2
n

� ��
� 1
�
: �6�

Relaxing the assumption that the model obtains we now treat L�a� as a cri-
terion function for general a that determines our estimate. The minimization of
L�a�, which we call the quasi-pro®le log likelihood function, generates a value â

of a called the Gaussian estimator. The determination of â involves the use of a
Newton±Raphson type algorithm, application of which to non-linear statistical
problems is documented in [15]. Details of the evaluation of â are given in [14].

2.2.2. Step 2: Amplitude deconvolution
The properties of the input process imply the convolution ca � u�t� takes the

values a�i�ca�j�; j � 0; . . . ; Lÿ 1, in the ith pulse interval, i � 0; 1; . . . ;N ÿ 1,
since by assumption ca�i� � 0 for i P L. If we evaluate the impulse response
sequence at a � â then the residual vector can be written as

n�iL� j� � y�iL� j� ÿ a�i�câ�j�; j � 0; . . . ; Lÿ 1; �7�
where a�i� denotes the (unknown) pulse height produced by the ith stimulus.
The deconvolution that minimizes the residual sum of squares is obviously
obtained by regressing the measurements obtained in the ith interval, the ob-
served pulse pro®le, on the impulse response sequence câ�j�; j � 0; . . . ; Lÿ 1.
This gives precisely the same values for â�i�; i � 0; 1; . . . ;N ÿ 1, as obtained
via the Gaussian estimator in Eq. (4) and the residual mean square yields the
same noise variance estimate as in Eq. (5).

2.2.3. Step 3: Non-parametric density estimation
Use the amplitude estimates â�i�; i � 0; . . . ;N ÿ 1, to determine the am-

plitude distribution. More speci®cally, questions of interest concerning PA can
be addressed by reference to the density estimate
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p̂A�a� � �NbN�ÿ1
XNÿ1

i�0

K �â�i�
h

ÿ a�=bN

i
; �8�

where K��� is a basic kernel function such that K�x�P 0;
R

K�x�dx � 1, and bN

is a bandwidth parameter chosen such that bN ! 0 as N !1, NbN !1. The
choice of kernel and the bandwidth parameter is guided by the requirement
that the estimate should minimize the asymptotic mean integrated squared
error (see [16,17]).

Remark 1. Formulae for the variance±covariances associated with the esti-
mates â � �â1; . . . ; âp�T and â�i�; i � 0; 1; . . . ;N ÿ 1, based on Fisher's measure
of information, are presented in [14]. These can be readily evaluated as a by-
product of the calculations outlined in Steps 1 and 2. Thus we can construct
standard errors and test various hypotheses of interest concerning the trans-
mission mechanism. For example, for the post-synaptic currents recorded from
a hippocampal neuron employed previously, we ®nd that the null hypothesis
jnijP 1; i � 0; 1, is rejected against the alternative 0 < jnij < 1; i � 0; 1 at the
1% level of signi®cance, implying that there is reasonably strong evidence in
favor of a causal, stable transfer function for this data.

Remark 2. Note that Eq. (3) is really a conditional likelihood and the complete
likelihood is not available because the probability distribution of the unob-
served pulse heights is unknown. Indeed, it is precisely the probability measure
PA that is the focus of scienti®c interest and which we wish to ascertain. Once
the estimates â�i�; i � 0; . . . ;N ÿ 1, have been calculated from the original
data they can be taken as noisy observations on the unknown pulse heights and
examined directly in order to investigate the nature of the amplitude ¯uctua-
tions. This might be done using techniques currently in vogue in the quantal
analysis of post-synaptic currents that are based on mixture deconvolution
with unknown number and type of parent distribution [6]. Given the degree of
uncertainty surrounding PA, however, it seems desirable to impose as little a
priori structure as possible. Therefore the approach that we advocate is to use
kernel smoothing methods as a basis for making inferences about the ampli-
tude distribution.

Remark 3. It is important to observe that p̂A�a� is in fact estimating the dis-
tribution of the amplitude estimates and the true distribution PA will be con-
volved with that of the errors âÿ a to give the distribution of the âs. Suppose
that it is conjectured that the underlying amplitude distribution PA consists of
na � 1 quantal levels with values a�i� and probability of occurrence given by
p�i� � Pr�a � a�i��; i � 0; . . . ; na. As N !1 and L!1 the errors Da � âÿ a
may be treated as zero mean Gaussian random variates with variance
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r2
Da / r2

n=NL (see [14]). 2 This implies that P Â can be closely approximated by a
convolution of Gaussian laws. Thus if PA is quantal we can expect p̂A�a� to
resolve into a mixture of na normal densities centered at the quantal values a�i�
with ordinates proportional to p�i� and common variance proportional to the
reciprocal of the product NL. By selecting N and L su�ciently large, therefore,
the practitioner can increase the precision with which â estimates the unob-
served amplitudes and make r2

Da su�ciently small in relation to the quantal
separation that the presence of quanta in PA will be readily ascertained with
little ambiguity by simple visual inspection. Examples that clearly illustrate
such behavior are presented below.

Remark 4. There may be cases where it is not clear as to whether the ap-
pearance of a local mode (or bump) in p̂A�a� is a statistical artifact due to
sampling ¯uctuation or is to be attributed to a genuine quantal level. One
approach to this problem is to employ the procedures for detecting the number
of underlying modes in a distribution suggested by Silverman [16] or a test of
the veracity of the assumption of quantal neurotransmitter release can be
conducted using the techniques devised by Chu and Chung [18] for detecting
jump-discontinuities in distributions. Such methods suppose, however, that the
random variables of interest are observed directly and do not make explicit
allowance for the pre-processing that takes place in order to construct the
amplitude estimates. To overcome this di�culty we have employed boot-
strapping techniques similar to the methods used by Stricker et al. [6] in the
context of ®tting mixture distributions to post-synaptic measurements. Here we
employ a semiparametric bootstrap by resampling from the empirical distri-
bution of the â�i�; i � 0; 1; . . . ;N ÿ 1, P Â�a� � �fthe number of â�i� < ag=N�,
passing these through the estimated transfer function Câ�z� to generate the
resampled signal, and then adding a random error drawn from Pn�g�, the
empirical distribution of the ®tted residuals. This produces a single bootstrap
realization or resample and by repeating this process we can generate bootstrap

2 Some variance reduction is achieved with traditional methods. Thus, if after baseline

correction 2M � 1 values of the post-synaptic current are taken symmetrically balanced around

the peak amplitude a�i�ca�kp�, ca�kp� � maxi P 0 ca�i� then the estimated amplitude is �a�i� �
�2M � 1�ÿ1PM

k�ÿM y�k � kp � �iÿ 1�L� � �2M � 1�ÿ1fa�i�PM
k�ÿM ca�k � kp� �

PM
k�ÿM n�k � kp �

�iÿ 1�L�g. The variance of this estimate is r2
n=�2M � 1�. But the standard error of the âs will be

substantially less than that of the �as since NL� 2M � 1, the former use the information in all the

recordings to estimate each a�i� and not just local information in a neighborhood of a single peak.

Note also that, unlike â�i�, �a�i� is a biased estimate of a�i� because in general

�2M � 1�ÿ1PM
k�ÿM ca�k � kp� 6� 1 and the bias a�i�f�2M � 1�ÿ1PM

k�ÿM ca�k � kp� ÿ 1g will in-

crease as M is increased.
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resamples and construct bootstrapped con®dence intervals or hypothesis tests
in the usual way, see [19].

3. Validation of the analysis technique

The reliability and the limitations of our methodology were assessed by an
extensive simulation study using known signals buried in noise. From the
results of these simulations we have ascertained, ®rstly, that the technique is
capable of reliably estimating the underlying pulse shape of the post-synaptic
current, even when the amplitude of the individual signal is about the same as
the standard deviation of the background noise and the available observation
sequence is very short. Secondly, amplitude distributions constructed using
the technique closely approximate the actual probability distribution used to
generate values of the impulse heights. In particular, the technique correctly
deduced whether or not transmitter release occurs in quanta. Thirdly, when
the observation sequence was composed of a mixture of large and small post-
synaptic currents induced by di�erent release sites, with one located at a more
distal segment of the dendrite than the other, it was possible to detect this
structure. Finally, whenever small artifactual peaks appeared in the ampli-
tude histogram, which might have led to an erroneous conclusion that the
underlying process originated from a mixture of two or more distributions,
our testing scheme correctly relegated these deviations to sampling ¯uctua-
tions.

3.1. Data generation

The ®ctitious excitatory post-synaptic current data generating mechanisms
used in our simulations were structured in such a way that the parameters
would approximate those of real signals recorded from the hippocampal py-
ramidal cell [20,21]. Unless speci®ed otherwise, the signals were generated by
passing a series of pulses of di�ering amplitudes through a transfer function
a�z�ÿ1

, a�z� � �1ÿ 0:97zÿ1��1ÿ 0:81zÿ1� � 1ÿ 1:78zÿ1 � 0:7857zÿ2. Hereafter,
we will denote the pure, noise-free, signal generated by the parameters of such
a transfer function using the compact notation �1;ÿ1:78; 0:7857� � s�n�, which
we read as ��� models s�n�. The length L of each segment was 250 data points
and, unless otherwise speci®ed, the observation sequence for each simulation
was composed of 1000 such segments. The amplitude of the pulses was varied
such that its probability distribution would be either discrete, giving ®ve
quantal levels, or continuous. To each signal zero-mean, white, Gaussian noise
was added. The amplitude variation of the signals relative to the standard
deviation of the noise was varied systematically. To mimic real data, we as-
sumed that the record was ®ltered at 1 kHz (digitized at 2 kHz) and the
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standard deviation of the noise was 1 pA. Throughout we express the ampli-
tude of the signal in pA and the time in ms. These units are arbitrary as far as
the methodology is concerned and have only been adopted here in keeping with
the real experimental data.

3.2. Identi®cation of quantal distribution

When the amplitude probability distribution of the true signals was quantal,
our processing technique correctly deduced that transmitter release occurred in
quantum. In contrast, the amplitude histograms constructed using conven-
tional methods of sampling the maximum pulse height merely showed arti-
factual peaks uncorrelated to the underlying quantal distribution. Indeed, the
asymptotic histogram calculated from the convolution of the constituent
Gaussian distributions presents a smooth distribution with no discernible
peaks.

Figs. 3 and 4 show the results of such simulations. In the data segments
illustrated in Figs. 3(A) and 4(A), the underlying signals were, for clarity, ar-
ranged such that their amplitudes increased progressively. In the data pro-
cessed, of course, the signals of di�erent amplitudes and the absence of any
signal, representing failures, appeared randomly, their relative frequencies of
occurrence being predetermined by the chosen amplitude distribution. The
peak amplitude histograms constructed from the data segment containing 1000
evoked post-synaptic responses (including failures) are shown as bar graphs in
Figs. 3(B) and 4(B). Superimposed on the bar graphs are mixtures of six
Gaussian distributions each with a standard deviation equal to rn and with
their means located at the di�erent possible amplitude values of the underlying
signal. The mixture weights are given by the probabilities associated with each
di�erent value. These distributions represent the theoretical asymptotic prob-
ability density functions that would be obtained using traditional methods if
the location of the peak amplitude were known, (i.e., M � 0 and kp known in
footnote 2). The results obtained using the method of analysis outlined in this
paper are illustrated in the two last panels of Figs. 3 and 4. The true and es-
timated impulse responses are depicted in Figs. 3(C) and 4(C), the estimated
signals are, respectively, �1;ÿ1:76; 0:76� � ŝ�n� and �1;ÿ1:76; 0:77� � ŝ�n�.
These estimates are close to those of the true signal, which we recall is
�1;ÿ1:78; 0:7857� � s�n�. Using Câ�z� the estimate of the amplitude of each
record was calculated and the underlying amplitude ¯uctuations in all the
evoked signals derived. The distribution functions illustrated in Figs. 3(D) and
4(D) were then obtained from the amplitude estimates using the nonparametric
kernel smoothing procedure, as detailed in the previous section. In Fig. 3(D)
the upper and lower 95% bootstrap con®dence intervals are also shown but for
clarity these have been omitted in Fig. 4(D). Superimposed on the probability
density curves are the probability mass distributions of the original amplitudes.
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Fig. 3. Low-noise quantal synaptic currents. (A) A segment of 1500-point data containing six

traces of evoked records is shown. The duration of each trace was 125 ms. The ®rst of six traces

contains no evoked synaptic response. The amplitude of the ®ve subsequent evoked potentials

increases progressively from 1.1 to 5.5 pA, in steps of 1.1 pA. Each evoked response was embedded

in noise with a standard deviation of 1 pA. (B) The amplitude histogram, shown as a bar graph, was

constructed by tabulating the peak value of each evoked potential at a ®xed latency. Superimposed

on the bar graph is the asymptotic mixture distribution, shown as a continuous line, calculated by

adding six Gaussian distributions with appropriate means and variances. (C) The time course of the

original signal, the dashed line, is compared with that of the estimated signal, the continuous line.

(D) The estimated probability distribution of the pulse heights, the bold solid line, and upper and

lower 95% bootstrap con®dence intervals, the thin lines, are superimposed on the probability mass

distribution of the original signal, shown as ®lled circles and broken lines. The probability measure

of the original signal was obtained from a truncated Poisson distribution of the form

PA�a � k� / �exp�ÿk� �k�k �, k � 0; 1; . . . ; 5, with k � 2:1. The synaptic response associated with

each realization of the amplitude process was generated by passing the pulse through a second

order transfer function, Ca�z� � a�z�ÿ1
, a�z� � �1ÿ 0:97zÿ1��1ÿ 0:81zÿ1�.
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From a large number of simulation studies such as those illustrated in the
previous ®gures we have ascertained that the technique is capable of extracting
the salient features of the data generating mechanism even when the signal-to-
noise ratio is further reduced or when the number of quantal levels is increased.
The simulation results presented in Fig. 5, for example, demonstrate that the
performance of the technique is not impaired when the data sequence contains
a large number of discrete signal levels. As in the previous two ®gures, the four

Fig. 4. High-noise quantal synaptic currents. The amplitude of the synaptic current contains ®ve

discrete levels increasing progressively from 0.85 to 4.3 pA, in steps of 0.85 pA. See the legend of

Fig. 3 for further details.
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panels in Fig. 5 show, respectively, (A) segments of the data in which the
signals are ordered according to increasing amplitude, (B) the peak amplitude
histogram (bar graph) tabulated from the data together with the asymptotic
limiting probability density (solid curve), (C) the original signal (broken line)
and estimated signal (solid line) from the observation sequence, and (D) the
estimated amplitude distribution (continuous line) and the probability mass
distribution of the original signal (®lled circles and broken lines).

Fig. 5. Synaptic currents with a large number of quantal levels. Synaptic currents with 10 discrete

amplitude levels were generated. The probability mass distribution was determined from a trun-

cated Poisson distribution with k � 3:9. See the legend of Fig. 3 for detailed particulars.
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In the previous series of simulations, the number of records in the data was
kept constant at 1000. To ascertain how much data are required to obtain a
reliable estimate of the true amplitude distribution we have systematically re-
duced the value of N. In Fig. 6 the estimated amplitude distributions obtained
from three simulations are exhibited. The number of records contained in the
three data sets were 250, 100 and 50 in Figs. 6(A), (B) and (C), respectively.
Obviously, the parameter estimates become less accurate as the data length is

Fig. 6. Sensitivity to decreasing data length. Three amplitude density estimates were calculated

from di�erent data segments containing (A) 250, (B) 100 and (C) 50 traces of 125 ms. The pa-

rameters used to generate the data were identical to those employed in Fig. 3.
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decreased but the estimated signal did not deviate appreciably from the true
value even when the number of records in the data was only 50. The estimated
parameters of the signal were �1:0;ÿ1:78; 0:78� with 250 records,
�1:0;ÿ1:73; 0:74� with 100 records, and �1:0;ÿ1:78; 0:87� with 50 records. The
estimated amplitude distributions clearly re¯ect the underlying structure of the
true data generating mechanism even at these relatively small sample sizes.

3.3. Quantal variation and di�erent release sites

Generally, the amplitudes of evoked synaptic currents at central synapses
¯uctuate from a mean quantal level. Also, the release sites may be located at
di�erent dendritic segments, some forming synaptic contacts at more distal
sites than others. The presence of these factors, that will tend to obscure
quantal peaks, can readily be ascertained by applying the analytical scheme we
propose here.

The two data records displayed in Fig. 7(A) were generated to mimic a sit-
uation in which the measured currents originate from two release sites, one
located near the soma and the other further away. The modal amplitudes of the
two signals were 2 and 3.8 pA, giving an overall amplitude of 5.8 pA for the
signal resulting from the coincidental release from both sites. The synaptic re-
sponse from the more distal release site was more heavily ®ltered than that from
the proximal release site (Fig. 7(A), upper trace), although once buried in the
noise the di�erences in the time pro®le of the three responses are visually in-
discernible (see Fig. 7(A), lower trace). The amplitude histogram constructed by
sampling peak points from each record would ultimately give rise to the alge-
braic sum of four Gaussian curves, as shown in Fig. 7(B). For the particular
amplitude distribution we used to generate the data, this produces a skewed
curve centered near the 0 pA level with a subsidiary peak located near the 4 pA
level. However, the amplitude probability density curve derived by using our
technique under the erroneous assumption that the parameters of all the signals
contained in the observation sequence are identical reveals four clear peaks,
representing baseline noise (failures) and three post-synaptic current levels (Fig.
7(C)). With the knowledge that the evoked synaptic currents had four distinct
amplitudes the various records containing the di�erent responses were sepa-
rated into four groups, representing failures, local release, distant release
and simultaneous release, respectively. The parameters of the signal in each
group were then estimated separately. In Fig. 7(D), the estimated signals
(continuous lines) are superimposed on the original signals (broken lines). The
estimated parameters of the two signals were, �1:0;ÿ1:83; 0:83� � ŝ1�n� and
�1:0;ÿ1:32; 0:34� � ŝ2�n�, compared to the corresponding true parameter values
of �1:0;ÿ1:78; 0:79� � s1�n� and �1:0;ÿ1:34; 0:36� � s2�n�. We note here that the
separation of the events will not be reliable if synaptic currents emanating from
the two synaptic sites are not of di�erent amplitudes. Jack et al. [3], among
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Fig. 7. Synaptic currents originating from two di�erent release sites. (A) Three evoked responses in

the absence (upper record) and presence (lower record) of measurement noise (with rw � 1 pA) are

displayed. The amplitudes of the synaptic currents generated from the two release sites were 2 and

3.8 pA, a third observed synaptic response results from a coincidental activation of both release

sites. (B) The ®nite mixture distribution (heavy line) arising from the sum of four Gaussian dis-

tributions (light lines) reveals two broad peaks. (C) The amplitude histogram of pulse heights es-

timated from the data. (D) The time-course of each of three synaptic responses contained in the

record was estimated (solid line), and superimposed on that of the true signals used to generated the

data (broken line).
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others, have shown that synaptic potentials arising from di�erent dendritic lo-
cations in the spinal cord can have similar amplitudes.

It is known that the amplitude of the spontaneous miniature post-synaptic
potentials in the neuromuscular junction ¯uctuates around modal values with a
coe�cient of variation ranging from 0.1 to 0.3. The coe�cient of variation
equals the ratio of the standard deviation of a distribution to its mean [22].
Although direct determinations of this value in central neurons are di�cult to
make one recent study based on the observed amplitudes of spontaneous
miniature currents using whole cell recording suggests that the coe�cient of
variation may be as large as 0.4±0.6 [23]. Theoretically, a peak amplitude
histogram constructed from post-synaptic currents generated by a multi-modal
amplitude distribution with a coe�cient of variation in the region of 0.5 will in
the limit appear as a continuous unimodal distribution, even in the absence of
additive noise and measurement errors. Our simulations reveal that provided
the coe�cient of variation does not exceed 0.4 and the modal quantal levels are
separated from each other by about 3 standard deviations of the background
noise then the individual quantal peaks and the baseline can be revealed clearly
using our analytical method.

The results of two such simulations are illustrated in Figs. 8 and 9. The top
traces, Figs. 8(A) and 9(A), are segments of noise-contaminated post-synaptic
currents based on amplitude values drawn from the probability density func-
tions shown in Figs. 8(B) and 9(B). These distributions are derived by assuming
three equally likely modal values occur at 1, 2 and 3 pA, with the probability of
failure taken to be 0.2. In Fig. 8(B) the convolution of this distribution with a
Gaussian density possessing a coe�cient of variation of 0.3, representing the
quantal variation, is given and Fig. 9(B) depicts the equivalent theoretical
amplitude probability density when the coe�cient of variation is 0.4. In the
absence of noise the three modes corresponding to the three basic quantal
levels can be discerned. When background noise with a standard deviation of
0.4 and 0.3 pA, respectively, is added, however, the peaks are virtually ob-
scured in the theoretical asymptotic probability density functions, as shown in
Figs. 8(C) and 9(C). From Figs. 8(D) and 9(D), however, we see that the
amplitude distributions derived using our method recover the original modes
reasonably clearly, the measurement noise notwithstanding. By deconvolving
the estimated distribution into the constituent normal densities the underlying
coe�cients of variation can be readily recovered. The estimated signals in these
two simulations were �1:0;ÿ1:78; 0:79� � ŝ�n� and �1:0;ÿ1:78; 0:78� � ŝ�n� for
the results illustrated in Figs. 8 and 9, respectively.

3.4. Continuous amplitude distribution

It is possible that the amplitude distribution of post-synaptic currents re-
corded from neurons in the brain, unlike those from neuromuscular junctions,
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Fig. 8. Synaptic currents with a small quantal variation. (a) Pulses of various heights were sampled

randomly from the probability density in (B) and then a synaptic response associated with each

realised amplitude was generated by passing it through the transfer function given in the legend of

Fig. 3. Gaussian noise with a standard deviation of 0.4 pA was added to the signal. The data

segment contains ®ve non-zero synaptic responses and two failures. (B) The theoretical amplitude

distribution. The three normal curves, shown as light lines, depict the amplitude ¯uctuations of the

synaptic response from the mean/modal value with a coe�cient of variation of 0.3. The associated

Gaussian convolution generates the mixture distribution, shown as the heavy line. (C) A mixture of

four Gaussian distributions, the heavy line, giving the theoretical asymptotic probability density

function. The variance of each constituent distribution, represented by light lines, is obtained by

adding the variance of the amplitude distribution to that of the noise. (D) The distribution of pulse

heights derived from an analysis of the data using the current methodology.
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may not show distinct quantal levels. This might be due to the presence of a
large number of release sites, large quantal variation in the synaptic terminal or
disparate synaptic locations along the dendritic tree [24]. To mimic such be-
havior we have generated a set of ®ctitious synaptic currents in which the
amplitude probability distribution is given by a mixed mass-density function.

In Fig. 10 the result of one set of such simulations is illustrated. Six examples
of the evoked synaptic currents, arranged in order of increasing amplitude,
before and after the addition of noise, are shown in Fig. 10(A). The amplitude

Fig. 9. Synaptic currents with a large quantal variation. The coe�cient of variation of the am-

plitude process was 0.4 whereas the standard deviation of the noise was 0.3 pA. See the legend of

Fig. 8 for detailed particulars of the illustrations.
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of each signal was determined from the probability distribution function il-
lustrated in Fig. 10(B). In Fig. 10(C) the histogram of the amplitude estimates
â�i�; i � 0; 1; . . . ;N ÿ 1, derived from the observed data is shown. For com-
parison, the estimated density function is superimposed on the bar graph, as
are the upper and lower 95% bootstrap con®dence intervals. This ®gure should

Fig. 10. Continuous amplitude distribution. (A) Two traces illustrating segments of records con-

taining six evoked synaptic currents before (upper trace) and after (lower trace) the addition of

Gaussian noise with rn � 1 pA. (B) The amplitude values were randomly selected from the

probability distribution function PA�a�i�6 a� � 0:8�1ÿ exp�ÿa2��, a > 0, and PA�a�i� � 0� � 0:2.

(C) The distribution of the estimated pulse heights calculated from the data, the bar graph, with the

estimated amplitude density function, the bold solid line, and the upper and lower 95% bootstrap

con®dence intervals, shown as the thin solid lines, superimposed.
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be contrasted with Fig. 3. The ability of the processing technique to detect the
underlying structure of the data generating mechanism can be clearly seen from
the close proximity of the bar graph and the estimated density functions to the
theoretical curve.

3.5. Correlated noise

In experimental situations the noise that corrupts the signal is generally not
white. We have already noted that the baseline function b�t� provides a means
of dealing with low frequency baseline wobble and will remove any undesirable
nonzero direct-current present in the measurements. High frequency noise
components, such as ampli®er noise and background hiss, however, are more
di�cult to adjust for. From a number of simulations we have ascertained that
our method is e�ective in deducing the structure of the underlying process even
when the noise is not strictly white and the technique is quite robust to viola-
tions of this assumption. One example of such simulations is illustrated here.

The colored noise is obtained by passing white Gaussian noise through a
second-order auto-regressive ®lter whose poles are located at ÿ0:7� 0:1j and
ÿ0:7ÿ 0:1j (where j � �������ÿ1

p
). The output of the ®lter is scaled to produce the

desired standard deviation. The power spectrum of the noise, illustrated in
Fig. 11A, increases steeply at high frequencies. Using this colored noise, we
repeated the simulations illustrated in Fig. 4. Synaptic currents of ®ve discrete
peak amplitudes were buried in the colored noise and then the probability
distribution of the pulse heights was estimated with our analytical scheme. The
shape of the estimated signal (continuous line in Fig. 11(B)) closely matches
that of the original signal (broken line in Fig. 11(B)). Also, the estimated
amplitudes of the synaptic currents and their relative probability of occurrence
are in close agreement with the true values (Fig. 11(C)). We thus conclude that
the method we propose here can accurately detect and characterize synaptic
currents even when the noise is not white but exhibits characteristics more in
accordance with those found in laboratory measurements.

4. Discussion

Amplitude distributions derived by sampling the peak amplitude of evoked
endplate potentials reveal that release occurs in quanta. A statistical model
developed by del Castillo and Katz [1] to characterize such amplitude histo-
grams relies on the fact that the measurement noise is negligibly small com-
pared to the signal. The synaptic currents recorded from the soma of a neuron,
however, are severely ®ltered and attenuated and also heavily contaminated by
noise. Thus it is di�cult to draw clear inferences about the nature of the
generating mechanism from a peak amplitude histogram derived from such
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data. Moreover, when the number of release sites and/or the quantal variation
is very large, a histogram drawn from such a process will ultimately appear as a
continuous distribution, although artifactual, poorly resolved peaks may ap-
pear owing to random sampling ¯uctuation. Nevertheless, it is of considerable

Fig. 11. Synaptic currents embedded in correlated noise. Using colored noise, instead of white

noise, the simulations detailed in Fig. 4 were repeated. (A) The power spectrum of the generated

noise was calculated by using Welch's averaged periodgram method. (B) The time course of the

original signal (broken line) embedded in the colored noise and that of the estimated signal

(continuous line) are shown. (C) The estimated probability distribution of pulse heights (contin-

uous line) is superimposed on the probability mass distribution of the original signal (®lled circles

and broken vertical lines).
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importance to be able to determine if the synaptic transmitter in axon terminals
is released in the form of packets as in the neuromuscular junction. If it is, it
would be helpful to know the magnitude of the quantal content, whether or not
quantal peaks are evenly spaced, the number of release sites, and how large the
coe�cient of variation is. With the analytical scheme presented here we have
made it possible to resolve in an unambiguous manner many of these issues
concerning the generating mechanisms underlying synaptic transmission in the
central nervous system.

The ability of the processing method to extract the salient features of the
underlying synaptic transmission mechanism from a limited set of imperfect,
noisy measurements is demonstrated in our simulation studies. Using our
method we could clearly determine quantal peaks and the quantal content
when release did indeed occur in quanta, even when the signal-to-noise ratio
was relatively low (Fig. 4), many release sites were present (Fig. 5), and quantal
variance was large (Figs. 8 and 9). By examining the parameters of the pulses it
was also possible to deduce the synaptic locations relative to the recording site
of two di�erent inputs (Fig. 7).

It is possible that, due to a variety of reasons already alluded to, the am-
plitude of the synaptic currents recorded from neuronal cell bodies of central
neurons may be continuously variable. For example, it has been argued that
the quantal variance in central neurons is large enough to completely obscure
the peaks in the synaptic amplitude histogram of a central neuron [25,26]. The
technique described here will correctly identify the underlying amplitude dis-
tribution as continuous if there are no quantal synaptic responses (Fig. 10).
However, a histogram obtained by selecting a few peak values from each re-
sponse invariably shows spurious peaks for such an underlying process, espe-
cially when the sample size is small and the signal-to-noise ratio is low. Using
our processing method, we can test, as described in Remark 4, whether some
observed peaks in the amplitude histogram arise from the genuine underlying
quantal content or they merely re¯ect sampling ¯uctuations and thus should be
relegated to statistical artifacts.

The comparisons between the actual and estimated parameter values illus-
trated in our simulation studies demonstrate that some of the underlying
characteristics of the evoked synaptic currents that would have been di�cult to
obtain using conventional techniques can be extracted with the aid of our
analytical scheme. The amplitude distribution obtained by using our method
utilizes the information contained in the entire signal sequence, unlike the
conventional histogram tabulated from series of peak values taken from each
synaptic response. Moreover, the estimated parameters of the signal provide
further insight into the underlying data generating mechanism. For example, if
the amplitude of evoked synaptic currents increases after a certain experi-
mental maneuvre then it is important to compare the structure of the optimal
overall transfer function of the signals before and after the induction of
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potentiation. Such information, together with the amplitude probability dis-
tribution function derived after the noise corrupted data has been cleansed,
may enable us to discriminate between di�erent speculations concerning the
basis for long-term potentiation and delineate the more plausible explanations.

Because the acquisition of experimental records containing evoked synaptic
currents from in vitro brain preparations is both laborious and technically
demanding, analytical techniques that fully exploit the information contained
in the data need to be employed. It is with this aim in mind that we propose
here one such technique, based on the utilization of modern signal processing
methods. This may help elucidate some of the unsolved issues in synaptic
transmissions in central neurons, issues that are of fundamental importance in
neurobiology.
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