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Summary. This paper is concerned with the analysis of observations made on a system that is
being stimulated at ®xed time intervals but where the precise nature and effect of any individual
stimulus is unknown. The realized values are modelled as a stochastic process consisting of a
random signal embedded in noise. The aim of the analysis is to use the data to unravel the unknown
structure of the system and to ascertain the probabilistic behaviour of the stimuli. A method of
parameter estimation based on quasi-pro®le likelihood is presented and the statistical properties of
the estimates are established while recognizing that there will be a discrepancy between the model
and the true data-generating mechanism. A method of model validation and determination is also
advanced and kernel smoothing techniques are proposed as a basis for identifying the amplitude
distribution of the stimuli. The data processing techniques described have a direct application to the
investigation of excitatory post-synaptic currents recorded from nerve cells in the central nervous
system and their use in quantal analysis of such data is illustrated.
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1. Introduction

Consider a situation where T data values are derived from a stochastic process fy�t�g de®ned
by the signal plus noise relationship

y�t� � s�t, u� � ��t�, t � 0, : : :, Tÿ 1, �1�
where fs�t, u�g denotes an unknown signal that is generated by passing an input process
fu�t�g through an observed system and f��t�g denotes a zero-mean, white Gaussian noise
disturbance with variance �2� , independent of the signal, that represents such features as
background noise and measurement error. The input fu�t�g, like the individual signal and
noise components, is not directly observable. It is made up of a periodic pulse train where the
time interval between pulses is given but the amplitude of each pulse is random. We express
this algebraically as

u�t� �PN
r�1
�ftÿ �rÿ 1�Lgar �2�

where ��t� is the Kronecker delta function,
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��t� � 1, if t � 0,
0, if t 6� 0,

�
L � T=N with L, N and T known integers and ar, r � 1, : : :, N, are independent and iden-
tically distributed scalar random variables drawn from a probability distribution PA with
support contained in f0g [ R�, R� � fx: x > 0g. This formulation is employed since in the
applications that we have in mind, namely the analysis of observations on evoked synaptic
responses, the data are obtained by stimulating a neuron at ®xed points in time that are
subject to experimental control. Exactly the same stimulus is applied at each of these time
points but the observed response of the neuron varies from one stimulus to the next in such a
way that the precise e�ect of each stimulus is not known beforehand and is thus outside the
experimenters' control. The objective of the analysis is to use y�t�, t � 0, : : :, Tÿ 1, to model
the structure of the system and to ascertain the values and probabilistic properties of the
amplitude variations of the stimuli.

Problems that are similar to that considered here have been discussed in the literature,
under the assumptions that the signal is observed without error, that the system is linear and
time invariant and that the input either satis®es some form of stationarity condition or has a
lattice distribution; see Donoho (1981), Lii and Rosenblatt (1982), Cheng (1990), Davis and
Rosenblatt (1991), Li (1995) and Gamboa and Gassiat (1996), for example. The aim, in
general, is to determine the unknown structure of the system and to reconstruct the un-
observed input on the basis only of the observed data, and the term blind deconvolution
has been adopted to describe this process. A common feature of these references is that the
techniques discussed determine a method of deconvolution whose rationale depends on
having partial knowledge of the probabilistic structure of the input process and they are
motivated by a variety of applications, such as engineering, geophysics and digital com-
munications, where such information may be available. With recordings made on post-
synaptic currents, however, not only is the signal not observable without error but also
nothing is known about the probability characteristics of the amplitude variations in the
evoked responses. These two features have led us to use the nomenclature double-blind
deconvolution to describe the procedures that we are about to consider.

Our work is directly relevant to the solution of some outstanding problems in neu-
robiology. Fig. 1 is a schematic diagram of a post-synaptic neuron. As shown in Fig. 1, a
small number of nerve terminals a form excitatory synaptic contacts with the dendrite d of
the nerve cell. When a nerve ®bre is activated an electrical impulse invades the terminals
causing the release of packets b of neurotransmitter molecules. The released molecules di�use
across the narrow gap causing ion channels c located on the dendrite of the post-synaptic
neuron to open. When a channel opens, typically for only a few milliseconds, approximately
107±108 sodium ions per second ¯ow from outside to the inside of the dendrite. Because the
duration that each channel stays open is governed by a ®rst-order Markov process the total
current ¯ux brought about by the activation of the di�erent channels rises nearly instan-
taneously and decays exponentially. The nerve signal generated in this way passes along
the dendrite to the cell body e and is propagated to the next nerve cell via the axon f. Owing
to the physical dimensions of the dendrite the measurement of the current that ¯ows across
the membrane ion channels, known as the excitatory post-synaptic current, can only be made
from the cell body, which is some distance from the synaptic site. The original signal is
therefore attenuated and its shape distorted owing to the cable properties of the dendrite.
Moreover, the signal evoked is contaminated and obscured by the ampli®er and electrode
noise of the recording device.
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Observations of this type made on evoked responses obtained from nerve cells in the
central nervous system allow many questions of fundamental scienti®c signi®cance to be
addressed. For example, it is important to determine whether each packet contains
approximately equal numbers of neurotransmitter molecules and, if so, whether or not the
number contained in each packet increases when the synaptic link between the nerve terminal
and cell body is used more frequently. It is also important to ascertain whether the
probability that the terminal releases one or more packets of neurotransmitter when stim-
ulated can be characterized as having certain statistical properties. Such quantitative analysis
is currently not possible because of the low signal-to-noise ratios that are encountered
in practice. As will be demonstrated later, the sensitivity of the processing scheme described
here now makes it possible to answer such questions by using a limited set of excitatory
post-synaptic current recordings.

In the light of the previous discussion we shall consider modelling process (1) by using a
parametric speci®cation of the form

y�t� � P
j50

h�� j� u�tÿ j� � e�t� t � 0, : : :, Tÿ 1,

where

(a) the input process u�t� follows the regime as speci®ed in equation (2) (assumption M1)
and

(b) the impulse response function
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Fig. 1. Schematic diagram of a post-synaptic neuron together with two presynaptic terminals: the current
evoked is recorded at the cell body with a voltage-to-current converter (see the text for detailed particulars of the
annotation)



H��z� �
P
j50

h�� j �zÿj

corresponds to a stable, causal low pass ®lter given by H��z� � ��z�ÿ1 where

��z� � Qp
j�1
�1ÿ �j zÿ1�

(assumption M2). The order p of the operator ��z� � 1� �1z
ÿ1 � . . .� �pz

ÿp is con-
stant and 0 < j�jj < 1, j � 1, : : :, p.

Notice that model assumption M2 implies that the normalization rule h��0� � 1 is being
adopted to remove the scale ambiguity that is inherent to the solution of the problem. The
restriction placed on the �j, j � 1, : : :, p, re¯ects the presumption that the system being
observed is both causal, in that y�t� depends only on u�s�, s4 t, and stable, i.e. bounded input
values produce a bounded output. The biophysical interpretation of this condition is that the
nerve cell is passive until stimulated and that the total energy ¯owing through the neuron is
dissipative. Assumptions M1 and M2 lead to the representation

yft� �rÿ 1�Lg � ar h��t� � �r,L�t� � eft� �rÿ 1�Lg,
for t � 0, : : :, Lÿ 1 and r � 1, : : :, N where

�r,L�t� �
Prÿ1
j�0

aj h�ft� �rÿ j�Lg, a0 � 0 ,

represents the truncation error that arises from neglecting the e�ect of all except the most
recent stimulus or evoked response. By the triangular inequality

j�r,L�t�j4
Prÿ1
j�0
jajjjh�ft� �rÿ j�Lgj,

which is bounded above by

�r,L �
Prÿ1
j�0
jajj

PLÿ1
s�0
jh�fs� �rÿ j�Lgj

for all t. But

�r,L 4
PN
j�1
jajj
P1
s�L
jh��s�j

uniformly in r and assumption M2 implies that the factorP
s5L

jh��s�j4 constant� �L=�1ÿ ��, � � max
j
j�jj < 1.

It follows that by choosing L su�ciently large we can make �r;L arbitrarily small. Thus it
seems reasonable to suppose that for any process fy�t�g we can, by making L su�ciently large,
ensure that the truncation error is su�ciently small in relation to the size of the residual

er�t� � yft� �rÿ 1�Lg ÿ ar h��t�, t � 0, : : :, Lÿ 1, r � 1, : : :, N,

that it can almost surely be neglected. This assumption is formalized as follows (assumption
M3).
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Let er�t� � yft� �rÿ 1�Lg ÿ ar h��t� for t � 0, : : :, Lÿ 1 and r � 1, : : :, N. Then

er�t� � �r,L�t� � eft� �rÿ 1�Lg
� �ft� �rÿ 1�Lg � sft� �rÿ 1�L, ug ÿ ar h��t�

and for every � > 0 there is an L� such that, for all r and t, P�jer�t�j > j�r,L�t�j� > 1ÿ �
whenever L > L� uniformly in ��1, : : :, �p�.

(Here and throughout the paper statements involving probability calculations will be
assumed to be evaluated using the true probability distribution induced by the data-
generating mechanism given in equations (1) and (2) although this will not be made explicit
in the notation.) Heuristically assumption M3 implies that the realization y�t�, t �
0, : : :, Tÿ 1, can be divided into N disjoint segments of length L in each of which the
observed values are modelled as the sum of two components: the product of the impulse
response of a linear, time-invariant system with the amplitude evoked by the most recent
stimulus, plus a residual that encapsulates features such as measurement error, background
noise and the modelling approximation error. A block diagram depicting our basic model and
its relationship to the stylized post-synaptic neural transmission process is shown in Fig. 2.

Before closing this section let us de®ne some additional notation and assumptions. The
quantities that we wish to estimate are �2, a � �a1, : : :, aN�0 and � � ��1, : : :, �p�0, which
we place together into a parameter vector � � ��2, a0, �0�0. The parameter space � � R��
�f0g [ R��N � Rp�C� where Rp�C� indicates the subset of Rp such that ��z� 6� 0 for jzj5 1,
� 2 Rp. For any � 2 Rp we shall use k� k to denote the Euclidean norm and kA k will denote
the corresponding Frobenius norm of the matrix A � �ai, j�. For any � > 0, N�� _�� �
f�j k�ÿ _� k< �g where, in the usual set builder notation, the radius may be determined
such that N�� _�� � f�jP���g for some property P���. The true structure of the process as
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Fig. 2. Signal model: (a) hypothetical transformation of the input u(t) to the observed sequence y(t) (C(z),
current ¯ux across the ion channels; D(z), distortion of the current as it ¯ows along the dendrite towards the cell
body); (b) recording made at the cell body comprising signal contaminated by noise; (c) statistical speci®cation
(C(z) and D(z) are jointly modelled as H�(z))



described in the discussion surrounding equations (1) and (2) will be labelled assumption P1,
to which we append the following conditions.

(a) For all t, js�t, u�j < m�a� where�
m�a����0 dPA <1, � > 2, �0 > 0,

and fs�t, u�g is alpha mixing with mixing coe�cients cn such that �n51 c
�1ÿ2=��
n�L <1 for

L > L0 (assumption P2).
(b) The approximation error

���r, t, L� � sft� �rÿ 1�L, ug ÿ ar h��t�,
r � 1, : : :, N, t � 0, : : :, Lÿ 1, is such that

�NL�ÿ1PN
r�1

PLÿ1
t�0

���r, t, L�2

converges almost surely to a ®nite limit. Moreover, there exists a pL, non-decreasing
in L, pL � O�Lq�, 0 < q < 1

2
, with associated parameter values �a1, : : :, aN� and

��1, : : :, �p� such that the mean-squared approximation error is bounded by
2�2� logflog�L�g=L almost surely (assumption P3).

The ®rst part of assumption P2 states that oscillations in the signal induced by amplitude
variations in the evoked response will be bounded in probability. The second part recognizes
that although fu�t�g is an independent process the signal is likely to exhibit some form of
strong dependence. If fs�t, u�g is alpha mixing, however, then, for any events At 2 Ffs�� , u�:
� 4 tg, the �-®eld generated by s�� , u�, � 4 t, and Bt�n 2 Ffs�� , u�: � > t� ng the mixing co-
e�cients

cn � sup
t

jP�At \ Bt�n� ÿ P�At� P�Bt�n�j

are such that cn ! 0 as n!1; see Billingsley (1986). This means that members of the
sequence fs�t, u�g will become independent as they become more separated in time and
ensures that the e�ects of the di�erent evoked responses can be disentangled provided that
the time interval between successive stimuli is su�ciently large. Assumption P3 is motivated
by the Stone±Weierstrass approximation theorem and establishes a bound on the rate of
growth of the approximation error as the order of ��z� increases with the length of the
interval between successive stimuli. The import of assumption P3 is that, although we
recognize that the true data-generating mechanism and the model are unlikely to coin-
cide, the discrepancy between the true signal and that given by the model cannot be so large
as to make the mean-squared error unbounded for otherwise there would be no way of
ascertaining whether the following estimation techniques, which are based on least-squares-
type calculations, have any desirable qualities.

2. Quasi-pro®le likelihood and the Gaussian estimator

To estimate the parameter vector � we shall consider minimizing the criterion function
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GN,L��� �
NL

2
log��2� �PN

r�1

PLÿ1
t�0

er�t�2
2�2

�3�

with respect to �. The function GN,L��� is motivated by noting from assumption P1 that the
conditional distribution of y�t�, t � 0, : : :, Tÿ 1, given the unobserved impulse values
aj, j � 1, : : :, N, is Gaussian and 2�ÿNL=2 expfÿGN,L���g yields the conditional likelihood
when the model obtains. Note that the complete likelihood is unavailable because PA is
unknown and therefore application of the EM algorithm (Dempster et al., 1977), for
example, is not feasible. Following McCullagh (1991) and White (1994), we shall therefore
refer to GN,L��� as the quasi-likelihood and the value minimizing GN,L���, �̂N,L, will be called
the Gaussian estimator.

The natural way to obtain �̂N,L is to solve the ®rst-order conditions @GN,L���=@� � 0. It is
simple to verify that GN,L��� is continuously di�erentiable with respect to � and it follows
from the extreme value theorem for continuous functions and the relationship between
extreme values and critical points (see White (1994), section 1.2, for example) that, if �̂N,L

has a neighbourhood N���̂N,L� � �, then @GN,L��̂N,L�=@� � 0 almost surely. The determination
of this solution is not straightforward, however, because of the highly non-linear manner in
which the parameter � enters the calculations. Nevertheless, given a value of �, _� �
� _�1, : : :, _�p�0, say, closed form analytic expressions for the associated optimizing values of �2

and a, _�2 and _a, are readily obtained. From the ®rst-order conditions

@GN,L�.�
@�2

� NL

2�2
ÿPN

r�1

PLÿ1
t�0

er�t�2
2�4
� 0

and

@GN,L�.�
@ar

� ÿPLÿ1
t�0

er�t� h��t�
�2

� 0, r � 1, : : :, N,

it is easily deduced that

_�2 � �NL�ÿ1PN
r�1

PLÿ1
t�0

_er�t�2

where

_er�t� � yft� �rÿ 1�Lg ÿ _ar h _��t�, t � 0, : : :, Lÿ 1, r � 1, : : :, N,

and

_ar �
PLÿ1
t�0

yft� �rÿ 1�Lg h _��t�
�PLÿ1

t�0
h _��t�2, r � 1, : : :, N.

Substituting these quantities into GN,L�.� and evaluating at the point _� where _� � fN,L� _�� �
� _�2� , _a0, _�0�0 gives the quasi-pro®le likelihood function value

GN,L� _�� �
NL

2
flog� _�2� � 1g

and it is clear that �̂N,L is obtained by selecting _� such that GN,L� _��4 GN,L��� for all � 2
Rp�C�. Reverting to generic rather than speci®c values, it follows from the construction of the
mapping fN,L: Rp�C� ! � and the chain rule that
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@GN,L�.�
@�j

� @GN,LffN,L�.�g
@�j

� ÿPN
r�1

PLÿ1
t�0

er�t�ar v��tÿ j�
�2

j � 1, : : :, N �4�

where the derivative process v��tÿ j� � @h��t�=@�j is obtained by di�erentiating H��z� ��z�
� 1 and satis®es the di�erence equation

v��t� � �1 v��tÿ 1� � . . .� �p v��tÿ p� � ÿh��t�, t5 0,

with initial conditions v��t� � h��t� � 0, t < 0. The equation system @GN,L���=@� � 0, which
is analogous to the normal equations from a non-linear least squares problem, does not have
an explicit closed form solution and must be solved recursively. The determination of this
solution forms the focus of attention of the following two sections.

At this point we wish to describe the statistical properties of �̂N,L. Let �GN,L��� �
Eyja�GN,L����. Then a simple calculation shows that

�GN,L� _�� �
NL

2
log� _�2� � 1

2 _�2

�
NL�2� �

PN
r�1

PLÿ1
t�0

� _��r, t, L�2
�
.

Since log�x� � d=x, d > 0, is minimized at x � d it follows that

�GN,L���5
NL

2
flog��*2� � 1g � �GN,L��*N,L�

where

�*2 � �2� � �NL�ÿ1PN
r�1

PLÿ1
t�0

�
�*
�r, t, L�2,

�
�*
�r, t, L� � sft� �rÿ 1�L, ug ÿ a*r h�*

N,L
�t�,

a*r �
PLÿ1
t�0

sft� �rÿ 1�L, ug h�*
N,L
�t�
�PLÿ1

t�0
h�*

N,L
�t�2,

and �*N,L is the value that minimizes �r �t �
�*
�r, t, L�2. This yields the parameter value �*N,L �

��*2, a*0, �*0N,L�0 that provides the minimum mean-squared discrepancy between the actual
response and that predicted by the model and the behaviour of �̂N,L is expressed in terms of
its relationship to the pseudo-true parameter �*N,L. It can be shown that �̂N,L ÿ �*N,L ! 0
almost surely as N, L!1 and, if fV*N,Lg denotes a sequence of positive de®nite matrices
such that

�NLV*N,L�ÿ1=2 @GN,L��*N,L�=@�?D N�0, Id�,
then �NL�1=2��̂N,L ÿ �*N,L� has an approximate asymptotic normal distribution with zero mean
and covariance matrix ���N,L� � � �H*N,LV

*ÿ1
N,L

�H*N,L�ÿ1 where

�H*N,L � �NL�ÿ1 @2 �GN,L��*N,L�=@�@�0 > 0 almost surely.

For a detailed discussion of di�erent regularity conditions and a rigorous exposition of the
type of derivation that will lead to such results the interested reader is referred to White
(1994), particularly the statement and proof of theorem 3.12 and theorem 6.2. For current
purposes it is su�cient to observe that the behaviour of �̂N,L relative to �*N,L parallels that of
the maximum likelihood estimator in more traditional settings and these properties provide a
basis for the model estimation and inferential procedures developed now.
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3. A Gauss±Newton-type algorithm

Since there is no closed form solution to @GN,L���=@� � 0 it is natural to consider the use of
an iterative scheme in which the solution is placed in a ®xed point framework. Applying
Newton±Raphson iterations directly gives the sequence of recursive calculations

�̂
�r�
N,L � �̂�rÿ1�N,L ÿ

�
@2GN,L��̂�rÿ1�N,L �

@�@�0

�ÿ1
@GN,L��̂�rÿ1�N,L �

@�
, r � 1, 2, . . . �5�

with �̂
�0�
N,L set before the recursions. The calculations in equation (5) are asymptotically

equivalent, however, to the Gauss±Newton-type scheme

�̂
�i�
N,L � �̂�iÿ1�N,L � fHÿ1G DGgj��fN,L��̂�iÿ1�N,L �, i � 1, 2, . . . , �6�

where

HG �
PLÿ1
t�0

v��tÿ j� v��tÿ k� ÿ
4
PLÿ1
t�0

v��tÿ j� h��t�
PLÿ1
t�0

v��tÿ k� h��t�PLÿ1
t�1

h��t�2

26664
37775

j,k�1, : : :, p

and

DG �
�PN
r�1
!r

PLÿ1
t�0

er�t� v��tÿ j�
�
j�1, : : :, p

,

!r � ar=�N
s�1 a

2
s . To see this, note that by construction @GN,LffN,L���g=@�2 � 0 and

@GN,LffN,L���g=@a � 0. The implicit function theorem (see DieudonneÂ (1960), theorem
10.2.1) therefore implies that

@f 0N,L�.�
@�

�
�
ÿ @

2GN,LffN,L�.�g
@�@�01

�
@2GN,LffN,L�.�g

@�1@�
0
1

�ÿ1
..
.
Ip

�
, �7�

where �1 � ��2, a0�0, and hence that

@2GN,L�.�
@�@�0

� @
2GN,LffN,L�.�g
@�@�0

ÿ @
2GN,LffN,L�.�g
@�@�01

�
@2GN,LffN,L�.�g

@�1@�
0
1

�ÿ1
@2GN,LffN,L�.�g

@�1@�0
. �8�

But

@GN,L�.�
@�j@�2

� �ÿ4PN
r�1

PLÿ1
t�0

er�t�ar v��tÿ j�

� �ÿ4PN
r�1

PLÿ1
t�0
��ft� �rÿ 1�Lg ����r, t, L��ar v��tÿ j�

for j � 1, : : :, p and if p5 pL it follows from the Cauchy±Schwarz inequality, assumption P2
and Jennrich (1969), theorem 2, that the right-hand side is o�NL�. In a similar manner we also
®nd that

@2GN,L�.�
@�j@ar

� ÿ2�ÿ2ar
PLÿ1
t�0

v��tÿ j� h��t� � o�NL� almost surely
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for j � 1, : : :, p, r � 1, : : :, N,

@2GN,L�.�
@�j@�k

� �ÿ2PN
r�1

a2r
PLÿ1
t�0

v��tÿ j� v��tÿ k� � o�NL� almost surely

with j, k � 1, : : :, p and

@2GN,L�.�
@ar@as

� ��rÿ s��ÿ2 PLÿ1
t�0

h��t�2 r, s � 1, : : :, N.

Substituting these values into expression (8) and using equation (4) we conclude, after some
straightforward but tedious algebra, that the recursions in equation (5) are the same up to
terms o�1� almost surely as those in equation (6). Proofs of the next and subsequent theorems
are given in Appendix A.

Theorem 1. Suppose that assumptions P1, P2 and M1±M3 hold and that p5 pL. Let
RN,L: Rp ! Rp denote the mapping given by the right-hand side of equation (6). Then there is
an � > 0 such that �̂N,L is, with probability 1 as N,L!1, the unique ®xed point of RN,L in
N���̂N,L� and if �̂

�0�
N,L 2 N���̂N,L� then �̂�i�N,L ! �̂N,L almost surely as i!1.

Theorem 2. Suppose that the assumptions of theorem 1 obtain and that the iteration
scheme is initialized at �̂

�0�
N,L where �̂

�0�
N,L ÿ�*N,L ! 0 almost surely as N, L!1. Then, with

probability 1, the iterates �̂
�i�
N,L will converge to �̂N,L as i!1 and k�̂�i�N,L ÿ�*N,Lk< �, � > 0,

for all i5 1, for N and L su�ciently large. If, in addition, �NL�1=2��̂�0�N,L ÿ �*N,L� � Op�1� then

V*
ÿ1=2
N,L

�H*N,L�NL�1=2��̂�i�N,L ÿ �*N,L�?D N�0, Ip�,
where �̂

�i�
N,L � fN,L��̂�i�N,L� for all i5 1.

The previous results indicate that when appropriately initialized the iterative scheme given
in equation (6) will generate a sequence of estimates �̂

�i�
N,L � fN,L��̂�i�N,L� that will converge to

�̂N,L and, moreover, the iterates �̂
�i�
N,L will be statistically equivalent to the Gaussian estimator

for all i5 1. This suggests that a ®nite algorithm may be constructed by determining a
suitable initial estimate and then conducting only a single iteration of algorithm (6). We shall
return to a discussion of this issue in the following section.

4. Construction of initial estimates

Consider dividing the data y�t�, t � 0, : : :, Tÿ 1, into N disjoint segments of length L, in
each of which the observations are taken as the noise-corrupted output produced by a single
evoked response. Averaging the di�erent observed responses obtained after each stimulus is
applied at the time points t � 0, L, : : :, �Nÿ 1�=L we obtain

�y�t� � �a h��t� � ����t� � ���t�, t � 0, : : :, Lÿ 1, �9�
where

�y�t� � Nÿ1
PN
r�1

yft� �rÿ 1�Lg

and ����t� and ���t� are similarly de®ned in an obvious manner, and
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�a � Nÿ1
PN
r�1

ar,

the average amplitude of the evoked responses. From the strong law of large numbers,
however, ���t� � Nÿ1 � �ft� �rÿ 1�Lg converges to 0 almost surely uniformly in t as N!1.
Furthermore, since by de®nition ��z� h��z� � 1 it follows that

��z� �y�t� � �a ��t� � ��z�f ����t� � ���t�g, �10�
in which zÿ1 is interpreted as the unit time delay operator, so that zÿ1 �y�t� � �y�tÿ 1� etc. This
implies that for N su�ciently large

��z� �y�t� � ��z� ����t� � o�1� almost surely, t � 1, : : :, Lÿ 1,

and suggests that we choose as a very ®rst estimate of � the value that minimizes the mean
square of ��z� �y�t�, t � 1, : : :, Lÿ 1, ��N,L, say. It is well known (Rao (1965), sections 1.f.2
and 8.g.2) that this is achieved by setting ��N,L equal to the appropriately normalized
eigenvector associated with the smallest eigenvalue of the matrix �Mp of mean squares and
cross-products of the variables �y�tÿ j�, j � 0, 1, : : :, p, i.e. ��N,L is obtained by scaling the
principal component loading vector associated with the smallest principal component of the
variables in � �y�t�, : : :, �y�tÿ p��0 to have 1 as its ®rst value.

Theorem 3. Assume that the conditions of theorem 1 obtain. Then for any � > 0 there are
an N0� and L0� such that for all N5N0� and L5 L0� the probability that k�*N,L ÿ ��N,Lk4 � is
arbitrarily large.

In the light of theorem 2 we might therefore consider using ��N,L as our initial estimate in
the recursive algorithm described above. It is possible, however, to exploit the assumed
structure of the observed process and the model a little further.

By analogy with equation (9), the sum-of-squares term in the quasi-likelihood functionPN
r�1

PLÿ1
t�0

er�t�2 �
PN
r�1

PLÿ1
t�0
fer�t� ÿ �e�t�g2 �N

PLÿ1
t�0

�e�t�2

for any value of � where

�e�t� � Nÿ1
PN
r�1

er�t� � �y�t� ÿ �a h��t�.

Substituting into equation (3) we obtain

GN,L��� �
NL

2
log��2� �PN

r�1

PLÿ1
t�0

fer�t� ÿ �e�t�g2
2�2

�N
PLÿ1
t�0

�e�t�2
2�2

.

Now observe that if the amplitudes of the evoked responses are constant ar � a � �a, r �
1, : : :, N, and the second term simpli®es to

�2�2�ÿ1PN
r�1

PLÿ1
t�0
�yft� �rÿ 1�Lg ÿ �y�t��2,

which is independent of a and �. In this case, minimization of GN,L��� leads to a consid-
eration of the average quasi-pro®le likelihood function

Double-blind Deconvolution 201



�GN,L��� �
NL

2
flog� ��2� � 1g,

where ��2 � Lÿ1 �t f �y�t� ÿ a� h��t�g2 and a� � �t �y�t� h��t�=�t h��t�2.
Determination of the value �̂�N,L such that �GN,L� �̂�N,L� � minRp�C�f �GN,L���g is, once again, a

highly non-linear optimization problem. A similar argument to that developed in Section 3
leads, nevertheless, to a Gauss±Newton-type recursion equivalent to that presented in equa-
tion (6) in which the weights wr � 1=N �a, r � 1, : : :, N. Using ��N,L in a single iteration of
the recursion so derived yields

�̂
�0�
N,L � ��N,L � fHÿ1G �DGgj��fN,L� ��N,L� �11�

where

�DG �
�

�aÿ1
PLÿ1
t�0

�e�t� v��tÿ j�
�
j�1, : : :, p

.

It is this quantity that can now be taken as the initial value. We have continued to use the
same notation for the initial estimate despite the fact that it previously indicated a generic
quantity whereas now it is being used for the speci®c value computed as shown. Although
somewhat ambiguous this should cause no confusion. The choice of value and notation is
justi®ed by the following theorem.

Theorem 4. If the conditions of theorem 3 hold, then as N!1 and L!1 k�̂�0�N,L ÿ
�*N,Lk ! 0 almost surely.

As previously intimated, a combination of the theoretical results given in the previous
section with theorems 3 and 4 indicates that estimates equivalent to �̂N,L can be obtained
from the following ®nite algorithm.
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Fig. 3. Impulse response analysis: time pro®les of �y (t) (*) and h�̂
�1�
N,L
�t� (Ð), N � 20 and L � 400, for rat

hippocampal pyramidal cell post-synaptic currents (the top element relates to observations obtained ex ante, and
the bottom element to observations obtained ex post, long-term potentiation)



Step 1: determine the preliminary estimate ��N,L.
Step 2: calculate the initial value �̂

�0�
N,L as in equation (11).

Step 3: evaluate the estimate �̂
�1�
N,L from a single iteration of algorithm (6).

Step 4: take �̂
�1�
N,L � fN,L��̂�1�N,L� as the ®nal estimate of �.

It is this estimate that, for most practical purposes, we would recommend for the basis of
subsequent analysis. An application of the algorithm to recordings made on a hippocampal
pyramidal neuron from a laboratory rat is illustrated in Fig. 3. The data analysed consisted of
two sets of T � 8000 observations obtained by sampling the post-synaptic currents at 2 kHz
taking the ®rst 20 segments of 200 ms both before and after the induction of long-term
potentiation, a process designed to increase the sensitivity of the neuron to the stimulus.
Further details are given in Stricker et al. (1996). For simplicity the data values are
summarized by graphing �y�t�, which is plotted against h�̂�1�N,L

�t�, t � 0, : : :, Lÿ 1. In both cases
�̂
�1�
N,L�z� � 1:0ÿ 1:907zÿ1 � 0:908zÿ2 � �1ÿ 0:982zÿ1��1ÿ 0:925zÿ1�, to three decimal places,

and the estimated standard error of j�̂�1�N,L�z� ÿ �*N,L�z�j, jzj5 1, was less than 0.027. A second-
order system was chosen using the methodology described in the following section. The
ability of the modelling procedure to capture the basic features of the neurobiological
transmission mechanism in the two di�erent experimental situations is readily apparent.

5. Model speci®cation

In the analysis of recordings of post-synaptic currents often su�cient information is available
about the biophysical process being observed to be able to characterize some of the gross
features of the evoked response function generated by a stimulus. This implies that prior
knowledge about values of p that will most likely yield an impulse response function that
closely approximates the true signal will be at hand. Nevertheless, it seems desirable to be
able to test the model speci®cation and to ascertain whether the value of p employed in
practice is su�ciently large to ensure that the theoretical results presented above are
applicable. In particular, we would like to test the validity of assumption P3 concerning the
magnitude of the model approximation error.

As previously, let the moment matrix

�MPL
�
�
Lÿ1

PLÿ1
t�0

�y�tÿ j� �y�tÿ k�
�

j, k � 0, 1, : : :, PL

where �y�t� is de®ned as in equation (9) and PL � O�pL�, PL > pL, is an upper bound of the
order of ��z� chosen by the practitioner. The value pL is assumed to be such that the bound
on the mean-squared model approximation error given in assumption P3 is applicable. Let
r1 5 . . . 5 rPL

denote the eigenvalues of �MPL
.

Theorem 5. Suppose that assumptions M1±M3 obtain and that assumptions P1±P3 hold.
Then under the null hypothesis H0: p5 pL the test statistic

L

�PPL

i�p
�ri ÿ 
N,L�

�2�
2
PPL

i�p
r2i

converges in distribution to a �2-variate with 1 degree of freedom, �2�1�, as N, L!1,

N,L � 2�̂2�p��logflog�L�g=L�1=2 � �logflog�N�g=N�1=2�2.

An important point to note concerning this result is that the statistic can not only be
employed to test a speci®c value of p but may also be used to determine an adequate yet
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parsimonious speci®cation. Thus, if signi®cantly large values of the statistic lead to rejec-
tion of H0: p5 pL, then we may consider testing the sequence of values p � 1, 2, : : :, and
selecting for p the smallest value such that the hypothesis H0: p5 pL is not rejected.

6. Inference

In the analysis of evoked synaptic currents many questions of scienti®c interest relate to the
properties of the transmission mechanism and the unobserved amplitudes. If such questions
can be expressed in the form of J explicit functional relationships or restrictions as ���� � 0
then the application of the Wald test principle in conjunction with theorem 2 would lead to a
consideration of the test statistic

@���̂N,L�
@�

f���N,L�gÿ1
@���̂N,L�
@�

.

Values of the statistic greater than �2
��J�, the 100�1ÿ ��% quantile point of a �2�J � random

variable, would provide a locally most powerful critical region for testing the null hypothesis
H0: ���� � 0. We shall not go into details here but refer the interested reader to White (1994),
chapter 8. We have in mind at this point parametric hypotheses that relate to the structure
of H��z� and specify the behaviour of the current ¯ow and/or the ®lter properties of the
dendrite.

Alternatively, if the focus of attention centres on PA, the estimates âN,L�r�, r � 1, : : :, N,
may be taken as noisy observations on the unknown ar, r � 1, : : :, N, and examined directly.
Given the degree of uncertainty surrounding PA it is desirable to impose as little a priori
structure as possible and the approach that we consider here is to use kernel smoothing
methods (see Silverman (1986) and Wand and Jones (1995)) as a basis for making inferences
about the amplitude distribution. More speci®cally, taking account of the fact that PA will be
convolved with the error distribution to give the distribution PÂ of the amplitude estimates
â, the deconvolving kernel density estimate due to Stefanski and Carroll (1990) can be
employed:

p̂A�a� � �N!N�ÿ1
PN
r�1

Kdc

�
âN,L�r� ÿ a

!N

, !N

�
,

Kdc�x, b� �
1

2�

�1
ÿ1

exp�ÿitx� 'K�t�
'�âÿa��t=b�

dt,

where 'K�t� is the characteristic function of the basic kernel K�x�5 0,
�
K�x� dx � 1,

'�âÿa��t� is the characteristic function of the error process âN,L�r� ÿ ar, r � 1, : : :, N, and !N is
a bandwidth parameter chosen such that !N ! 0 as N!1, N!N !1. From theorem 2 it
follows that for N and L large the errors will be approximately Gaussian with mean 0 and
variance Of�NL�ÿ1g and theorem 5 of Fan (1992) implies that PA can therefore be estimated
to a level of accuracy of the order O�Nÿ1=2�, despite the fact that convergence rates for
deconvolving densities are known in general to be flog�N�gÿ1 at best; see Carroll and Hall
(1988). Consequently, the estimation of PA may not be appreciably more di�cult than
ordinary density estimation. Indeed, the continuity property of characteristic functions
(Billingsley (1986), theorem 26.3) implies that

'�âÿa��t� � exp�ÿt2 Of�NL�ÿ1g� � o�1�
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and it is easily deduced that

Kdc�x, !N� � K�x��1�Of�NL!2
N�ÿ1g � o�1��.

Thus, for N and L large little, if anything, may be lost by applying the kernel K�x� directly.
Suppose that the support of PA is discrete with na quantal values a�i� < a�i� 1� with

probability of occurrence p�i� � Prfa � a�i�g, i � 1, : : :, na. As just indicated, for N and L
su�ciently large the errors �a � âÿ a may be treated as N�0, �2�a� random variates with
variance �2�a / 1=NL. The convolution integral then implies that PÂ can be closely
approximated by Pna

i�1
p�i��

�
aÿ a�i�
��a

�
where ��.� denotes the standard normal distribution function. Hence if PA is discrete and
NL is su�ciently large to ensure that �2�a is small in relation to the quantal separation
min14 i<na

a�i� 1� ÿ a�i�g then we can expect p̂A�a� to resolve into a mixture of na normal
densities concentrated at the quantal values a�i� with ordinates proportional to p�i�. Such
behaviour is clearly observed in the results presented immediately below.

7. Empirical results

In this section we shall illustrate the application of the methodology in the context of a
simulated example designed to indicate the type of data processing that might be encountered
in the analysis of post-synaptic neural currents. Our purpose is to ascertain the behaviour
and properties of the techniques in a known situation thereby avoiding the necessity to
disentangle questions concerning the performance and practical relevance of the methods
from the scienti®c uncertainties that are likely to be present with real world data.

Figs 4 and 5 display results obtained by applying the techniques to two data-generating
mechanisms that conform with the structure of the model. Namely, fs�t, u�g was generated by
passing an input process of the type given in equation (2) through the transfer function
��z�ÿ1, ��z� � �1ÿ 0:97zÿ1��1ÿ 0:81zÿ1�. A second-order system was used to mimic the con-
volution of exponential decay in the total current ¯ux and the low pass ®lter properties of
the dendrite, the parameter values being chosen to approximate those of real signals recorded
from hippocampal pyramidal cells. The probability measure PA associated with fu�t�g was
chosen to represent the two extreme cases of interest in the quantal analysis of post-synaptic
currents. The discrete distribution

PA�a � an� � exp�ÿ2:1��2:1�n
, n!

P5
r�0

exp�ÿ2:1��2:1�r

r!

an � �0��0:771��3:855�, n � 0, : : :, 5,

for the ®rst data-generating mechanism and the mixed mass density function

PA�a � 0� � 0:2,

PA�a4 a0� � 0:2� 0:8f1ÿ exp�ÿa02�g, a0 > 0,

for the second. These two choices of PA are motivated by the neurobiological question of
whether amplitude ¯uctuations brought about by variations in the packets of neurotrans-
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mitter molecules are characterized by a probability distribution with countable support, as in
the classical quantal model of synaptic currents, or are continuous; see Clements (1991). The
observations are constructed by adding independent and identically distributed N�0, �2� �
random disturbances to fs�t, u�g where �� � 0:35 for the ®rst process and 0.7 for the second;
�� is a little under half the quantal separation of PA in the discrete case and just over a quarter
of the modal value of the positive responses (non-failures) in the continuous case. These
values yield similar signal-to-noise ratios and correspond to magnitudes of the noise variance
at which the resolution of current methods of quantal analysis will break down; see Stricker
and Redman (1994).

Figs 4(a) and 5(a) present a trace of a section of the observed series preceded by the
underlying signal over a sequence of 14 stimuli. Figs 4(b) and 5(b) plot the actual and
estimated impulse response function. The estimates are based on T � 250000 data points
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Fig. 4. Empirical results for the ®rst process (discrete): (a) trace of a section of the observed series preceded by
the underlying signal; (b) true (.. Ð ..) and estimated (Ð) impulse response function; (c) true (.. Ð ..) and
estimated (Ð) amplitude distribution (., probability mass) (see the text for further details)



with L � 250 and N � 1000. In the analysis of post-synaptic currents, data values are
available at rates exceeding 2 kHz; at this rate the ®gures for L and N correspond to
observing the post-synaptic response of a cell that is being stimulated every 125 ms for
125 s � 2 min. Figs 4(c) and 5(c) show a graph of PA with the kernel density estimate

�N!N�ÿ1
PN
i�1

K

�
â
�1�
N,L�i� ÿ a

!N

�
,

where K�x� � �2��ÿ1=2 exp�ÿx2=2� and !N is given by the data-based optimal bandwidth
selection rule of Sheather and Jones (1991), superimposed. For Fig. 4, !N � 0:041 and, for
Fig. 5, !N � 0:1169.

The ability of the technique to detect the salient features of the data-generating process is

Double-blind Deconvolution 207

Fig. 5. Empirical results for the second process (continuous): (a) trace of a section of the observed series
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(.. Ð ..) and estimated (Ð) amplitude distribution (see the text for further details)



clear and is further illustrated by the comparison between the actual and estimated parameter
values given in Table 1, which indicates that the convergence properties presented above hold
reasonably well with sample sizes of this magnitude. The standard errors of all entries in
Table 1 are less than 3:4� 10ÿ3. Table 2 presents the empirical mean-squared error of �̂

�1�
N,L

together with the asymptotic values derived from theorem 2. Once again the proximity of the
realized values to the asymptotic quantities given in our theoretical results is apparent.

In the examples presented here the presence or absence of quanta in PA is readily
ascertained with little ambiguity by simple visual inspection. There may be cases, however,
where it may be unclear whether the appearance of a local mode (or bump) in p̂A�a� is due
to sampling ¯uctuation or is to be attributed to a genuine quantal level. One approach to
this problem might be to employ the procedures for detecting the number of underlying
modes in a distribution suggested in Silverman (1986). An alternative would be to use
current techniques of quantal analysis based on mixture deconvolution with unknown
number and type of parent distribution; see Stricker and Redman (1994) once again and
the references contained therein. Another possibility, and one that is currently under
investigation by the authors, is to adapt the method of spacings as discussed by Roeder
(1992). What is the most e�ective approach to take in such situations seems, however, to be
an open question.

The ®gures and tables given above constitute a small sample from a much wider range of
simulations designed to investigate the e�ect of various forms of model and assumption
violation, di�erent signal-to-noise ratios etc. that we present elsewhere; see Chung et al.
(1998). Experience with the analysis of real data gained at the time of writing also indicates
that it may be necessary to adjust our methodology to take on board such features as the time
delay between stimulation of the nerve ®bre and activation of the excitatory synaptic contacts
and more complicated impulse response functions than those considered above. Nevertheless,
the outcomes reported here are representative and indicate the e�cacy of the techniques
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Table 1. Parameter estimates{

��N,L �̂
�0�
N,L �̂

�1�
N ,L

Process one (discrete)
�1 � ÿ1:78 ÿ1:7889 ÿ1:7841 ÿ1:7841
�2 � 0:7857 0.7946 0.7897 0.7897
�� � 0:35 �̂

�1�
N,L � 0:3491

Process two (continuous)
�1 � ÿ1:78 ÿ1:769 ÿ1:7743 ÿ1:7742
�2 � 0:7857 0.7747 0.7801 0.78
�� � 0:7 �̂

�1�
N,L � 0:6975

{N � 1000, L � 250.

Table 2. Mean-squared error �̂
�1�
N,L{

NL(bias)(bias)0 NL(variance)

Theoretical 0 0 2.8748 ÿ2:9536
0 0 ÿ2:9536 3.0346

Empirical 0.0534 ÿ0:0521 2.8447 ÿ2:7805
ÿ0:0521 0.0508 ÿ2:7805 2.7165

{N � 1000, L � 250.



described in the paper for analysing data obtained from evoked synaptic response
experiments.
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Appendix A

A.1. Proof of theorem 1
Since the quadratic form

x0f@2 �GN,L��*N,L�=@�@�0gx > 0

for all x almost surely, �NL�ÿ1@2GN,L��*N,L�=@�@�0 will be positive de®nite for N and L su�ciently large
since

�NL�ÿ1@2fGN,L��� ÿ �GN,L���g=@�@�0 ! 0 almost surely

uniformly on N���*N,L�. Hence HG is non-singular in N2���*N,L� for some � > 0 and since k�̂N,L

ÿ �*N,Lk ! 0 almost surely N���̂N,L� � N2���*N,L�, so RN,L is well de®ned for N and L su�ciently
large. Now suppose that RN,L satis®es the Lipschitz condition kRN,L��1� ÿ RN,L��2�k4 �k�1 ÿ�2k,
0 < � < 1, almost surely as N, L!1, on N���*N,L�. By de®nition �̂N,L � argminfGN,L���g and
@GN,L��̂N,L�=@� � 0 almost surely, from which we can conclude that �̂N,L � RN,L��̂N,L� and the result of
the theorem follows from the contraction mapping principle and application of the method of successive
approximations (DieudonneÂ (1960), pages 260±261).

To verify that the supposition is valid observe that HG and DG are both continuously di�erentiable
with respect to � and therefore, from the mean value theorem,

kRN,L��1� ÿ RN,L��2�k4 k
@RN,L� ���
@�0

k k��1 ÿ�2�k,

�� � �1 � ���1 ÿ�2�, 04 �4 1. By de®nition of RN,L

@RN,L

@�0
� Ip �Hÿ1G

@DG
@�0
ÿ �Hÿ1G DG 
Hÿ1G �0

@fvec�HG�g
@�0

.

Employing a similar argument to that leading to the de®nition of RN,L in equation (6), however, we ®nd
that @DG=@�

0 ! ÿHG almost surely for N, L!1 and by continuity kDGk can almost surely be
made arbitrarily small in N���̂N,L� by taking � su�ciently small since @GN,L��̂N,L�=@� � 0 almost surely.
Thus we can conclude that 04 k@RN,L� ���=@�0k < 1 almost surely for N and L su�ciently large when
�1, �2 2 N���̂N,L� and the supposition is veri®ed, thereby completing the proof of the theorem.

A.2. Proof of theorem 2
By assumption, for any �0 > 0, �̂

�0�
N,L 2 N�0 ��*N,L� almost surely for all N > N�0 and L > L�0 . The

triangular inequality and the convergence of �̂N,L ÿ�*N,L to 0 then imply that �̂�0�N,L 2 N���̂N,L� almost
surely, N > N�0 and L > L�0 , �

0 � �=2, and therefore �̂
�i�
N,L ! �̂N,L almost surely as i!1 by theorem

1. Similarly, since for all N and L su�ciently large RN,L is a contraction with ®xed point �̂N,L,
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k�̂�i�N,L ÿ�*N,Lk4 k�̂�i�N,L ÿ �̂�iÿ1�N,L k � k�̂�iÿ1�N,L ÿ�*N,Lk
4 ���iÿ1� � . . .� �� 1�k�̂�1�N,L ÿ �̂�0�N,Lk � k�̂�0�N,L ÿ�*N,Lk
4 f1=�1ÿ ��g�k�̂�1�N,L ÿ �̂N,Lk � k�̂N,L ÿ �̂�0�N,Lk� � k�̂�0�N,L ÿ�*N,Lk
4 f�1� ��=�1ÿ ��gk�̂�0�N,L ÿ �̂N,Lk � k�̂�0�N,L ��*N,Lk
4 � almost surely

for � � ��1ÿ ��=2, 04 � < 1, which completes the proof of the ®rst statement of the theorem.
Now suppose that �NL�1=2��̂�i�N,L ÿ �*N,L� � Op�1�. Then

�̂
�i�1�
N,L ÿ �̂�i�N,L � fN,L��̂�i�1�N,L � ÿ fN,L��̂�i�N,L�

and

fN,L��̂�i�1�N,L � � fN,L��̂�i�N,L� � @fN,L� ���i�N,L�
@�0

��̂�i�1�N,L ÿ �̂�i�N,L�

where ��
�i�
N,L � �̂�i�1�N,L � ���̂�i�1�N,L ÿ �̂�i�N,L�, 04 �4 1. Substituting for �̂

�i�1�
N,L ÿ �̂�i�N,L from expression (5)

and for @fN,L� ���i�N,L�=@�0 from equation (7) we ®nd that

�̂
�i�1�
N,L ÿ �̂�i�N,L �

�
@2GN,L� ���i�N,L�
@�1@�

0
1

�ÿ1�
@2GN,L� ���i�N,L�
@�1@�

��
@2GN,L� ���i�N,L�
@�@�0

�ÿ1
ÿ
�
@2GN,L� ���i�N,L�
@�@�0

�ÿ1
0BBBB@

1CCCCA @GN,L��̂�i�N,L�
@�

where

��
�i�
N,L � fN,L� ���i�N,L�:

Since GN,L�.� has continuous ®rst and second derivatives, however, @fN,L� ���i�N,L�=@�0 � @fN,L��*N,L�=@�0
�Of�NL�ÿ1=2g on N���*N,L�. Similarly, if �̂

�i�
N,L 2 N���*N,L� then

@2GN,L��̂�i�N,L�
@�@�0

� @
2GN,L��*N,L�
@�@�0

�Of�NL�ÿ1=2g.

Using standard formulae for partitioned inversion in conjunction with equation (8), recognizing that by
construction

@GN,L��̂�i�N,L�=@� � 0
@GN,L��̂�i�N,L�=@�

� �
,

leads to the conclusion that

�̂
�i�1�
N,L ÿ �̂�i�N,L � ÿ�H�ÿ1N,L ��NL�ÿ1 @GN,L��̂�i�N,L�

@�
� of�NL�ÿ1=2g

where H*N,L � @2GN,L��*N,L�=@�@�0. Finally, expanding @GN,L��̂�i�N,L�=@�̂ about @GN,L��*N,L�=@� and
rearranging terms then yields

�NL�1=2��̂�i�1�N,L ÿ �*N,L� � �IÿH�ÿ1N,L �H*N,L �Of�NL�ÿ3=2g���NL�1=2��̂�i�N,L ÿ �*N,L�

�H�ÿ1N,L �NL�ÿ1=2 @GN,L��*N,L�
@�

� o�1�,

and hence �NL�1=2��̂�i�1�N,L ÿ �*N,L� converges in distribution when appropriately scaled because the ®rst
term on the right-hand side is o�1�. The last statement of the theorem now follows by induction.
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A.3. Proof of theorem 3
From expression (10) and the Cauchy±Schwarz inequality

Lÿ1
PLÿ1
t�1
f��z� �y�t�g2 4Lÿ1

PLÿ1
t�1

�Pp
j�0
�2
j

�
pf ����t� � ���t�g2

4
�Pp

j�0
�2
j

�
p�NL�ÿ1

��PLÿ1
t�0

PN
r�1

���t, r, L�2
�1=2

�
�
N
PLÿ1
t�0

���t�2
�1=2�2

. �12�

Assumption P3 and the law of the iterated logarithm applied to ���t� then imply that the smallest
principal component of �Mp is bounded above almost surely by the value

2�2�p��logflog�L�g=L�1=2 � �logflog�N�g=N�1=2�2

as L, N!1. Suppose, therefore, that N and L are su�ciently large to guarantee that the bound is less
than �0 and let N�� ��N,L� denote the neighbourhood of ��N,L such that

k�kÿ2Lÿ1P f��z� �y�t�g2 < �0.

If N���*N,L� denotes the set of values of � such that the corresponding factor

p�NL�ÿ1
��PLÿ1

t�0

PN
r�1

���t, r, L�2
�1=2

�
�
N
PLÿ1
t�0

���t�2
�1=2�2

is less than �0 then the above inequality implies that N���*N,L� � N�� ��N,L�, giving the required result.

A.4. Proof of theorem 4
Theorem 4 is established by using a combination of the arguments employed in the derivations of
theorems 1 and 2. The detailed steps, which closely parallel those given above, are omitted to save
unnecessary repetition.

A.5. Proof of theorem 5
It follows from inequality (12) and Rao (1965), section 8g.2, that

rp 4 k ��N,Lkÿ2Lÿ1
PLÿ1
t�0
f ��N,L�z� �y�t�g2

4 2�2�pL��logflog�L�g=L�1=2 � �logflog�N�g=N�1=2�2 almost surely

for pL 4 p4PL when N and L are su�ciently large. By de®nition �y�t� � �s�t, u� � ���t� where
�s�t, u� � Nÿ1

P
r

sft� �rÿ 1�L, ug

and

���t� � Nÿ1
P
r

�ft� �rÿ 1�Lg.

Standard central limit theorems for independent and identically distributed random variables and alpha
mixing processes applied to ���t� and �s�t, u� respectively, using assumptions P1 and P2, therefore imply
that for N and L su�ciently large �y�t� will be approximately normally distributed. The result now
follows by invoking theorem (13.5.1) of Anderson (1984).
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