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Large-Scale Dynamical Models
and Estimation for Permeation
in Biological Membrane
Ion Channels
Modeling the ways that certain ions pass through, or are blocked by,

ion channels is expected allow researchers to identify channel

functions from their atomic structure.

By Vikram Krishnamurthy, Fellow IEEE, and Shin-Ho Chung

ABSTRACT | Biological ion channels are water-filled angstrom-

unit ð1 angstrom unit ¼ 10�10 mÞ sized pores formed by

proteins in the cell membrane. They are responsible for

regulating the flow of ions into and out of a cell and hence

they control all electrical activities in a cell. This paper deals

with constructing large scale stochastic dynamical models for

explaining ion permeation; that is, how individual ions interact

with the protein atoms in an ion channel and travel through the

channel. These permeation models capture the dynamics of the

ions at a femto-second time scale and angstrom-unit spatial

scale. We review large scale multiparticle simulation methods

such as Brownian dynamics for modeling permeation. Then we

present a novel multiparticle simulation methodology, which

we call adaptive controlled Brownian dynamics, for estimating

the force experienced by a permeating ion at each discrete

position along the ion-conducting pathway. The profile of this

force, commonly known as the potential of mean force,

results from the electrostatic interactions between the ions in

the conduit and all the charges carried by atoms forming the

channel the protein, as well as the induced charges on the

protein wall. We illustrate the use of adaptive controlled

Brownian dynamics in gramicidin channels and shape estima-

tion of sodium channels.

KEYWORDS | Adaptive controlled Brownian dynamics (ACBD);

biological ion channels; permeation; stochastic optimization

I . INTRODUCTION

All living cells are surrounded by a thin cell membrane,

which is composed of two layers of phospholipid

molecules. The cell membrane acts as a hydrophobic,

low dielectric barrier that is impermeable to charged

particles such as Naþ, Kþ, Cl� ions. Indeed, the amount of
energy needed to transport one monovalent ion across the

cell membrane is insurmountably highVthis energy called

the Born energy is about 65 kT.1

So how do ions diffuse in and out of a cell? The

transport of ions across the cell membrane is regulated by

specialized water-filled conduits called ion channels. Ion

channels are biological subnanotubes formed by protein

molecules across the cell membrane through which
ions can freely move in and out when the gates are open.

These ion channels have typical pore diameters of

�10�9 m or 10 Å.

Ion channels in cell membranes play a crucial role in all

living organisms. They regulate all electrical activities in

the nervous system, including communication between

cells and the influence of hormones and drugs on cell

function. Because ion channels are elementary building
blocks of brain function, understanding their mechanisms
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at a molecular level is a fundamental problem in
biophysics. A remarkable property of ion channels is that

they are selectively conductive. For example, sodium (Na)

channels primarily allow sodium ions to permeate but do

not allow significant amounts of other types of ions such as

potassium or calcium ions. Several inherited neurological,

muscular, and renal disorders arise from malfunctioning of

ion channels. Examples of ion channel diseases include

(see [1] for details): hyperkalaemic muscle paralysis that can
result from malfunctioning of muscular Na channels;

epilepsy with febrile seizure, caused sometimes by the

abnormality of neuronal Na channels; migraines, believed

to be a neuronal calcium (Ca) channel disease; and

polycystic kidney disorder that arises from a mutation of the

Ca channel. In addition, genetic alteration of the proteins

forming chloride channels are known to be associated with

cystic fibrosis which is a fatal pancreatic and lung disease,
Bartter’s syndrome which is a salt-wasting renal tubular

disorder, and diabetes. Thus, the elucidation of how single

channels work will ultimately help find the causes of, and

potentially cures for, a number of inherited disorders. We

refer the reader to the special issue [2] and the recent book

[3] for a detailed exposition of recent results in ion chan-

nels written by several leading researchers in the area. Also

[4] is a classic exposition on ion channels.
This paper deals with ion channel permeation. The

permeation problem [5], [6] seeks to explain the working of

an ion channel at an angstrom ð1 Å = 10�10 mÞ spatial

scale by studying the propagation of individual ions

through the ion channel at a femto-second ð10�15Þ time

scale. In the past few years, there have been enormous

strides in our understanding of the structure–function re-

lationships in biological ion channels due to the combined
efforts of experimental and computational biophysicists. In

recent breakthroughs, the crystal structures of the po-

tassium channels, mechanosensitive channel, chloride

channel, and nicotinic acetylcholine receptor have been

determined from crystallographic analysis [7]–[13]. The

2003 Nobel prize in chemistry was awarded to

R. MacKinnon for determining the crystallographic

structures of several different ion channels including the
bacterial potassium channel.2 It is expected that crystal

structures of other ion channels will follow these

discoveries, ushering in a new era in ion channel studies,

where predicting function of channels from their atomic

structures will become the main quest. Parallel to these

landmark experimental findings, there have also been

important advances in computational biophysics. As new

analytical methods have been developed and the available

computational power increased, theoretical models of ion
permeation have become increasingly sophisticated. It has

now become possible to relate the atomic structure of an

ion channel to its function through the fundamental laws

of physics operating in electrolyte solutions. Many aspects

of macroscopic observable properties of ion channels are

being addressed by molecular and stochastic dynamics

simulations. Quantitative statements based on rigorous

physical laws are replacing qualitative explanations of how
ions permeate across narrow pores formed by the protein

wall and how ion channels allow one ionic species to pass

while blocking others. The computational methods of

solving complex biological problems, such as permeation,

selectivity, and gating mechanisms of ion channels, will

increasingly play prominent roles as the speed of com-

puters increases and theoretical approaches that are cur-

rently under development become refined further.
This paper highlights the ubiquitous nature of large

scale stochastic dynamical systems and their estimation

and control. Ion channel permeation is modeled as a large

scale multiparticle stochastic dynamical system comprising

several ions and water molecules that interact with the

protein atoms lining the inner wall of the ion channel. We

also show how stochastic optimization algorithms can be

used to estimate certain structural parameters of the ion
channel. The paper has the following main contributions.

1) In Section II, we give a brief account of several

different computational tools employed to study

the mechanisms of ion permeation across biolog-

ical ion channels. These are: ab initio and classical

molecular dynamics, Brownian dynamics (BD),

Poisson–Nernst–Planck (PNP) theory, and reac-

tion rate theory. The merits and shortcomings of
each of these approaches are discussed in detail in

several recent publications, to which the reader is

referred [4], [14]–[18].

2) Section III gives a detailed stochastic dynamical

formulation of BD in terms of a large scale multi-

particle system with dynamics evolving according

to the Langevin equation. The various forces

acting on the ion due to other ions and the protein
atoms lining the ion channel are formulated. A

probabilistic interpretation of BD simulation in

terms of mean first passage times is also given.

3) In Section IV, we show how BD simulations can

be used to explain ion permeation in three im-

portant types of ion channels namely, potassium

channels, CLC chloride channels, and calcium

channels. We describe how BD simulations can
replicate the macroscopic current–voltage-

concentration behavior of ion channels.

4) In Section V, we describe a novel stochastic op-

timization framework for dynamically controlling

BD simulation to estimate the potential of mean

force (PMF) of a gramicidin ion channel and the

shape of a sodium channel. We formulate these

2The 2003 Nobel prize in Chemistry Press Release reads: BRoderick
MacKinnon surprised the whole research community when in 1998 he
was able to determine the spatial structure of a potassium channel. Thanks
to this contribution we can now see ions flowing through channels that
can be opened and closed by different cellular signals. . . The ion channels
are important for, among other things, the function of the nervous system
and the muscles.[
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estimation problems as stochastic optimization
problems. In Section VI, we give several sto-

chastic optimization algorithms to estimate these

parameters. We call these adaptive controlled

Brownian dynamics (ACBD) algorithms [19], [20].

These stochastic optimization algorithms are

implemented as stochastic approximation algo-

rithms that dynamically control the behavior of the

BD simulation. Several novel discrete stochastic
approximation algorithms are presented together

with a kernel-based exploration-exploitation algo-

rithm. We present numerical examples imple-

mented on a multiprocessor supercomputer to

illustrate the ACBD algorithms for estimating the

PMF of gramicidin and shape of sodium channels.

II . LEVELS OF ABSTRACTION
FOR PERMEATION MODELING
IN ION CHANNELS

This section outlines four levels of abstraction that have

been widely used to model permeation in ion channels.

The section sets the stage for BD modeling for permeation

which is the main focus of the paper.

A fundamental goal in biophysics is to construct
accurate dynamical models for ion permeation in biolog-

ical ion channels. Such models link channel structure

(which is typically defined in terms of an atomic model at

the subnanoscale) to channel function (which is observed

via experimental measurements at the macroscopic time

scale). Any high-resolution dynamical model for ion

permeation needs to consider three ingredients: the ions,

water molecules, and the atoms of the protein that form
the ion channel. It is essential for such dynamical models

to be based on physical principles and to result in

computationally tractable simulation algorithms. Such

models also need to elucidate the detailed mechanisms

of ion permeationVwhere the binding sites are in the

channel, how fast an ion moves from one binding site to

another, and where the rate-limiting steps are in con-

duction. Finally, it will make predictions that can be
confirmed or refuted experimentally.

The computational tools of physics employed in this

endeavor, from fundamental to phenomenological, are

ab initio and classical molecular dynamics, Brownian dy-

namics, continuum theories, and reaction rate theory. These

approaches make various levels of abstractions in replacing

the complex reality with a model, the system composed of

channel macromolecules, lipid bilayer, ions, and water
molecules. Each of these approaches has its strengths and

limitations and involves a degree of approximation.

Ab Initio Quantum Mechanical Models: At the lowest

level of abstraction, we have the ab initio quantum mech-

anical approach, in which the interactions between the

ions, water molecules, and protein atoms are determined

from first-principle electronic structure calculations by
solving the many-body Schrödinger equation. There are

three terms in the Hamiltonian: the nuclear part, elec-

tronic part, and the Coulomb interaction between them

[21]. As there are no free parameters in this approach, it

represents the ultimate tool to the modeling of biomolec-

ular systems. Because a solution of the Schrödinger equa-

tion is formidable and is an extremely time-consuming

process, even with some simplifying assumptions, its
applications are limited to very small systems at present.

Molecular Dynamics (MD): By replacing the potential

energy featuring in the many-body quantum mechanical

equation with a phenomenological one, a purely classical

description of a system can be obtained. This is called

classical MD [22]. MD simulations are carried out using

empirically determined pair-wise interaction potentials
between the ions, water molecules, and protein atoms, and

their trajectories are followed using Newton’s equation of

motion. Although it is possible to model an entire ion

channel in this way, it is not computationally tractable to

simulate molecular dynamics long enough to see perme-

ation of ions across an ion channel and to determine its

conductance, which is the most important channel prop-

erty. Note, however, that molecular dynamics is widely
used to understand how the ions and protein of the ion

channel interact over small segments of the ion channel.

Indeed, MD is used to compute the potential of mean force

(PMF), which represents the forces an ion encounters due

to the protein that forms the ion channel [23] (we give a

more detailed exposition of the PMF and how to estimate

it in Section V). The resulting PMF is used conjunction

with Brownian dynamics, described as follows.

BD: The precise formulation of BD, which is the main

focus of the paper, is given in Section III. Here, we briefly

provide a comparison of BD with the other methodologies

particularly, MD and Poisson–Nernst–Planck (PNP)

theory.

Unlike MD, with BD it is computationally tractable to

run a computer simulation to see permeation of ions across
the ion channel. For this reason, BD constitutes an en-

gineering viable model for permeation. Using BD, one can

simulate channel conductances under various conditions

and compare these simulated results with experimental

observations with only a modest amount of computational

power. This ability to compute current flow across ion

channels confers a distinct advantage to BD compared to

simulation techniques. To trace the trajectories of about
100 ions interacting with a dielectric boundary for many

microseconds, a period long enough to deduce the con-

ductance of an ion channel, BD makes two simplifying

assumptions compared to MD.

1) First, water is not treated explicitly but as a con-

tinuum. Water molecules that form the bulk of the

system in ion channels are integrated out and only
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the ions themselves are explicitly simulated. The
net effects of incessant collisions between ions

and water molecules are lumped together and

treated as the frictional and random forces. This

treatment of explicit water molecules by implicit

water can be viewed as a functional central limit

theorem approximation.

2) Second, the atoms in the protein that form the ion

channel are considered to be fixed, whereas in
reality they will undergo rapid thermal fluctua-

tions. Several independent lines of evidence

suggest that root-mean-square (rms) fluctuations

of typical proteins are of the order of 0.75 Å,

suggesting that the transmembrane passage

through which ions traverse may be quite flexible

[24], [25]. The fixed protein assumption can be

explained via stochastic averaging theory. We may
construe that the dynamics of ion channel is

composed of two parts: protein fluctuations that

occur at the fast time scale and movement of ions

across the pore that occur at the slower time scale.

Then, stochastic averaging theory says that the

parts of the system moving on the fast time scale

(namely, the protein) will perceive the slowly

moving portions (namely, the ions) as constant
and the slowly moving portions (ions) only see a

time-averaged effect from the fast time scale parts

(protein). We refer the reader to [26] and [27] for

an extensive treatment of stochastic averaging

theory. Stochastic averaging theory is widely used

to analyze the convergence of adaptive filters in

statistical signal processing [28].

PNP Theory: A still higher level of abstraction is the PNP

theory [29]–[32], which is based on the continuum

hypothesis of electrostatics. In this and other electro-

diffusion theories, one makes a further simplification,

known as the mean-field approximation. In this approach,

ions are treated not as discrete entities but as continuous

charge densities that represent the space-time average of

the microscopic motion of ions. In the PNP theory, the flux
of an ionic species is described by the Nernst–Planck

equation that combines Ohm’s law with Fick’s law of

diffusion, and the potential at each position is determined

from the solution of Poisson’s equation using the total

charge density (ions plus fixed charges). The PNP theory

thus incorporates the channel structure, and its solution

yields the potential, concentration, and flux of ions in the

system in a self-consistent manner.

Reaction Rate Theory: Finally, there is one other

approach that has been employed to model biological ion

channels, namely, the reaction rate theory [4], [33]. In this

approach, an ion channel is represented by a series of ion

binding sites separated by barriers, and ions are assumed to

hop from one biding site to another, with the probability of

each hop determined by the height of the energy barrier.
Although the model parameters have no direct physical

relation to the channel structure, many useful insights

have been gleaned in the past about ion permeation using

this approach.

Several comprehensive recent review articles give de-

tailed expositions of each of the these approaches. As the

primary focus of this paper is BD, these other approaches

are not discussed further here. Instead, for details, the
reader is referred to [3], [18], and [21]. We also refer the

reader to [34], where a novel birth–death Markov chain is

used to model permeation.

A. Discussion
The three computational tools discussed in this section,

namely PNP theory, MD, and BD, play important roles in

understanding ion channel permeation. Each of these
approaches has its strengths and limitations and involves a

degree of approximation. The main defects of PNP are

errors stemming from the mean-field assumption. In par-

ticular, it ignores the effects of induced surface charges

created as a charged particle in electrolyte solutions

approaches the protein boundary. The magnitude of the

errors introduced by the mean-field approximation

become large when the theory is applied to narrow ion
channels. By incorporating a term in the PNP equations to

account for the barrier created by induced surface charges,

the magnitude of the errors can be reduced somewhat.

However, doing this removes much of the simplicity of the

theory, one of its main advantages over the other ap-

proaches, and also it is still hard to know the accuracy of

the results without comparison to a more detailed model.

The greatest limitation of MD is its prohibitive
computational cost. This computational cost limits the

time horizon over which an ion permeation simulation can

be carried out. While the calculation of free energy profiles

provides useful information on ion permeation, it is not a

substitute for a direct estimation of conductance from

simulations. Thus, virtually no predictions derived from

molecular dynamics simulations can be directly compared

with experimental data. If no such comparisons can be
made, there can only be a limited interaction between

experimenters and theoreticians. With the current dou-

bling of computer speeds every two years, this computa-

tional limitation will eventually be overcome. Then, the

force fields employed in molecular dynamics simulations

may need to be improved to include polarization effects,

perhaps using ab initio molecular dynamics as a guide.

One of the main caveats to the application of BD to
biological ion channels is the use of the macroscopic (bulk)

Poisson’s equation (7) to estimate the forces encountered

by permeating ionsVsee Section III-C. The issue here is

whether one can legitimately employ macroscopic elec-

trostatics in regions that are not much larger than the

diameters of the water molecules and ions. In the narrow

constricted region of the channel, such as a gramicidin
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channel or the selectivity filter of the potassium channel,
the representation of the channel contents as a continuous

medium is a poor approximation. A major focus of the rest

of this paper (Section V and Section VI) is to overcome this

limitation of BD by directly estimating the PMF via

stochastic optimization algorithms.

MD, BD, and PNP approaches are useful in elucidating

the mechanisms underlying selectivity and permeation of

ions across biological ion channels. For ion channels with
large pore radii, such as mechano-sensitive channels, PNP

theory can be fruitfully utilized. Also, if one is interested in

simply obtaining order-of-magnitude estimates of conduc-

tances of various model channels, this simple theory will

provide the answers with little computational cost. To

study the mechanisms underlying the selectivity sequences

of monovalent ions or to determine the precise conforma-

tional changes of the protein when a channel undergoes
the transition from the closed to the open state, one has to

rely on MD simulations.

III . BD FORMULATION FOR ION
PERMEATION

As described, BD offers a computationally tractable

method for following the trajectories of interacting ions
through an ion channel. In this section, we give a complete

description of the BD dynamics and associated BD

simulation algorithm for ion channel permeation. The

main idea is to formulate BD as a multiparticle stochastic

dynamical system comprising ions interacting with the

protein atoms that form the ion channel. The reader

should keep in mind that our eventual goal is to use BD to

relate the atomic structure of the ion channel to its
macroscopic behavior, i.e., the experimentally determined

current-concentration-voltage behavior of the ion chan-

nel. By running BD simulations under different experi-

mental conditions, one can compute current–voltage and

conductance–concentration curves, which can be directly

compared to the physiological measurements to assess the

reliability and predictive power of the method. One can

carry out a trajectory analysis of ions in the system to
determine the steps involved in conduction such as the

binding sites and the average number of ions in the

channel, both of which are experimentally observable

quantities. It is also possible to study the mechanisms of

blocking of channels by larger molecules or other ion

species.

This section is organized as follows. In Section III-A,

the key BD system equations for evolution of the ions are
presented. Section III-B outlines the BD simulation

algorithm at a conceptual level. Section III-C gives a

detailed description of all the forces acting on the ions that

need to be considered in the BD simulation algorithm.

Section III-D gives a probabilistic interpretation of BD in

terms of mean first passage times of a diffusion. It shows

that the BD algorithm can be viewed as a Monte Carlo

simulation algorithm for solving a boundary valued partial
differential equation. Finally, in Section III-E, we discuss

some of the limitations of BD.

A. BD Formulation
Fig. 1 shows a schematic illustration of a BD simulation

assembly. An ion channel is placed at the center of the

assembly. The positions in three-dimensional (3-D) space

of all the atoms forming the channel are given by its X-ray
crystallographic structure, and the charge on each atom is

assigned. (For ion channels with known structure such as

Fig. 1. BD simulation system for ion channel with complete atomic

structure. Figure shows a CLC chloride channel imbedded in a

lipid-bilayer is placed at the center of the simulation assembly

and a large, cylindrical reservoir is attached at each end of the

protein. Reservoirs are denoted as R1 and R2. In the figure,

front half of the atoms are removed to reveal ion-conducting

pathway. Four Cl� ions in the pore are shown in green. Uniform

electric field is applied across the channel to mimic the

membrane potential. This arrangement is equivalent to

having two voltage plates far away from the channel.
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gramicidin, CLC chloride channels, and KcsA potassium
channels, the complete atomic structure can be down-

loaded from the protein data bank. The force field due to

the fixed charges in the protein, see Section III-C, can then

be obtained using a software package such as CHARMM

(Chemistry at Harvard Macromolecular Mechanics) [35]).

Then, two large cylindrical reservoirs R1 and R2 are

attached to the ion channel C as depicted in Fig. 1. These

reservoirs mimic the extracellular and intracellular space.
2N ions are inserted into these reservoirs where N denotes

a positive integer. These 2N ions are comprised of the

following.

1) N pos i t ive ly ch arged ions i ndexed by

i ¼ 1; 2; . . . ;N. Of these, N=2 ions indexed by

i ¼ 1; 2; . . .N=2 are in R1 and N=2 ions indexed

by i ¼ N=2 þ 1; . . . ; 2N are in R2. Each positive

ion has charge qþ, mass mðiÞ ¼ mþ, frictional
coefficient mþ�þ, and radius rþ. For example, a

Kþ ion has charge qðiÞ ¼ qþ ¼ 1:6 � 10�19 C,

mass mðiÞ ¼ mþ ¼ 6:5 � 10�26 kg and frictional

coefficient mþ�þ, where from the Einstein–

Smoluchowski relation

mþ�þ ¼ kT

D
; D ¼ 1:96 � 10�9 m2= s: (1)

Here , k ¼ 1:38 � 10�23 J/T de notes th e

Boltzmann constant and T denotes the tempera-

ture in Kelvin. Kþ ions have a radius rþ ¼ 1:33 Å.

2) N negatively charged ions. We index these by

i ¼ N þ 1;N þ 2; . . . ; 2N. Of these, N=2 ions

indexed by i ¼ N þ 1; . . . ; 3N=2 are placed in

R1 and the remaining N=2 ions indexed by
i ¼ ð3N=2Þ þ 1; . . . ; 2N are placed in R2. Each

negative ion has charge qðiÞ ¼ q�, mass mðiÞ ¼ m�,

frictional coefficient m���, and radius r�. For

example, a Cl� ion has charge qðiÞ ¼ q� ¼ �1:6 �
10�19 C, mass mðiÞ ¼ m� ¼ 5:9 � 10�26 kg, and

frictional coefficient m��� ¼ kT=D where

D ¼ 2:03 � 10�9 m/s2. Cl� ions have a radius

r� ¼ 1:81 Å.
The membrane potential is imposed by applying a uniform

electric field across the channel (Fig. 1). This is equivalent

to placing a pair of large plates far away from the channel

and applying a potential difference between them. Since

the space between the voltage plates is filled with

electrolyte solution, each reservoir is in iso-potential.

That is, the average potential anywhere in the reservoir is

identical to the applied potential at the voltage plate on
that side, and the potential drop occurs almost entirely

across the channel. Note that, as described in the

following, the applied electric field is modified inside the

channel by induced surface charges on the protein wall as

well as fixed charges in the protein. The applied potential

within the ion conducting pathway is highly nonuniform

with the largest changes occurring typically across
narrowest segments.

Let t 
 0 denote continuous time. Each ion i moves in

3-D space over time. Let x
ðiÞ
t ¼ ðxðiÞ

t ; y
ðiÞ
t ; z

ðiÞ
t Þ

0
2 R and

v
ðiÞ
t 2 R3 denote the position and velocity of ion i at time t.

Let Xt ¼ ðxð1Þ0
t ;x

ð2Þ0
t ;x

ð3Þ0
t ; . . . ;x

ð2NÞ0
t Þ

0
denote the posi-

tions and Vt ¼ ðvð1Þ0
t ;v

ð2Þ0
t ;v

ð3Þ0
t ; . . . ;v

ð2NÞ0
t Þ

0
, denote the

velocities of all the 2N ions at time t 
 0.

The algorithm for performing BD simulations is

conceptually simple. The position and velocity of each

individual ion evolves according to a continuous time

stochastic dynamical system. The velocity of the ion with
mass m and charge q located at a given position is

determined by the force acting on it at time t. This velocity

is computed by integrating the equation of motion, known

as the Langevin equation (recall i ¼ 1; 2; . . . ;N denote

positive ions and i ¼ N þ 1; . . . ; 2N denote negative ions)

x
ðiÞ
t ¼x

ðiÞ
0 þ

Z t

0

vðiÞ
s ds (2)

m
v
ðiÞ
t ¼m
v

ðiÞ
0 �

Z t

0

m
�þ xðiÞ
s

� �
vðiÞ

s ds

þ
Z t

0

F
ðiÞ
� ðXsÞds þ

Z t

0

b
 xðiÞ
s

� �
dwðiÞ

s : (3)

Here, �
ðxðiÞ
s Þ ¼ �
 (defined in the beginning of this

section) if the ion is in the reservoir, and �ðxðiÞ
s Þ is

determined by molecular dynamics simulation when the

ion is in the ion channel [36]. The process fwðiÞ
t g denotes a

3-D zero mean Brownian motion, which is component-wise

independent. The constants bþ and b� are, respectively,

bþ2ðxðiÞ
s Þ ¼ 2mþ�þðxðiÞ

s ÞkT, b�2ðxðiÞ
s Þ ¼ 2m���ðxðiÞ

s ÞkT.

The noise processes fwðiÞ
t g and fwðjÞ

t g, that drive any two

different ions, j 6¼ i, are assumed to be statistically

independent.

The Langevin equation (3) is often written in-

formally as

m
 dv
ðiÞ
t

dt
¼ �m
�þ x

ðiÞ
t

� �
v
ðiÞ
t þ F

ðiÞ
� ðXtÞ þ b
 x

ðiÞ
t

� �
e
ðiÞ
t

where e
ðiÞ
t denotes continuous time white noise.

The above dynamics show that there are two main

sources of the forces influencing the motion of ions in or in

the vicinity of an ion channel that result in the ion channel

current. These are the stochastic force and electric force.

The former arises from the effects of collisions between
ions and water molecules. Ions in electrolyte solutions are
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tightly bound by shells of water molecules and these
hydrated ions collide incessantly with surrounding water

molecules. As a result of such bombardments, the motion

of an ion is retarded by the friction term m�v
ðiÞ
t , and it

undergoes random fluctuations from an equilibrium

position via the Brownian motion term w
ðiÞ
t . The term

F�ð�Þ in (3) models the systematic electrical forces acting

on the ions when the external experimental condition is

� 2 � and is described in Section III-C.

RemarkVGeneralized Langevin Dynamics (GLD): A gen-

eralization of the above BD system called the GLD [37],

[38] replaces � in (3) with a time-varying friction kernel

�t. The terms b
 depend on �t, and m
�þðxðiÞ
s ÞvðiÞ

s ds in (3)

is replaced with m
�
t�sðx
ðiÞ
t�sÞvðiÞ

s ds. In [37] and [38], �t is

chosen as an exponentially decaying function of time t. It is

concluded in [38] that GLD may be a more accurate model
in regions of the ion channel where the energy barrier is

present.

B. Brownian Dynamics Simulation Algorithm
To implement the BD simulation algorithm on a digital

computer, it is necessary to discretize the continuous-time

dynamical equation of the 2N ions (2), (3). There are

several possible methods for time discretization of the

stochastic differential equation (3), as described in detail

by [39]. We used the second-order discretization de-

scribed in [40]. In addition, to save computational

resources, we used a two-time scale discretization in our

simulations of the BD simulation algorithm. For dynamics

of ions within the ion channel, the BD simulation

algorithm uses a sampling interval of � ¼ 2 � 10�15 s.

For dynamics of ions within the reservoirs a sampling

interval of � ¼ 2 � 10�12 s is used in the reservoirs. The

forces acting on each ion are calculated and the Langevin

equation is used to determine where it will move in the

next time step. By repeating this process many billions of

times, usually for a simulation period lasting T time points

(typically T is chosen in the order of 1 �s), we can trace

the movement of each ion in space during a simulation

period and count how many ions have crossed the

channel.

Denote the number of positive (respectively, negative)

charges that cross from R1 to R2 over time T as LþR1;R2

(respectively, L�R1;R2
). Also, denote the number of positive

(respectively, negative) charges that cross from R2 to R1

as LþR2;R1
(respectively, L�R2;R1

).

Algorithm 1 Brownian Dynamics Simulation Algorithm

for ion permeation given experimental condition �

1) Input experimental condition �.

2) For T discrete time points, propagate all 2N ions

according to the time discretized BD system (2), (3).

Each time an ion crosses the channel from reservoir
Ri to Rj, i; j 2 f1; 2g, uniformly pick an ion from

Rj and replace in Ri.

3) Compute BD current estimate as

Îð�Þ ¼ qþ

T
LþR1;R2

� LþR2;R1

� �
� q�

T
L�R1;R2

� L�R2;R1

� �
:

(4)

The sampling and replacement of ions in Algorithm 1

is required so that the concentration of ions in reservoirs

R1 and R2 is approximately constant and equal to the
desired experimental concentration specified by the

experimental condition �. Note that if the system was

allowed to evolve for an infinite time without replacement,

then eventually due to the external applied potential, more

ions will be in R2 than R1. This would violate the

condition that the concentration of particles in R1 and R2

remains constant.

In [20], it is shown how the expected current
Ið�Þ ¼� EfÎð�Þg (where Ef�g denotes mathematical expec-

tation) can be expressed in terms of the mean first passage

times of ions crossing the ion channel. We briefly describe

such a probabilistic construction in Section III-D. We show

in Section III-D that these mean first passage times satisfy

a boundary valued partial differential equation that is

similar to the Kolmogorov equation. Strong consistency of

the estimated current Îð�Þ from the above BD algorithm
can be established as shown in [20].

To carry out the above BD simulation algorithm for ion

permeation through an ion channel, one needs to specify

the boundaries of the system. This is a simple problem for

1-D BD simulations [41]–[43] but requires the addition of

reservoirs to the channel system in the more realistic case

of 3-D BD simulations. In several recent studies, a simple

stochastic boundary has been used successfully in applica-
tions of BD simulations to a number of ion channels [14],

[44], [45]. When an ion strikes the reservoir boundary

during simulations, it is elastically scattered back into the

reservoir, equivalent to letting an ion enter the reservoir

whenever one leaves the simulation system. Thus, the

concentrations of ions in the reservoirs are maintained at

the desired values at all times. During simulations of

current measurements, the chosen concentration values in
the reservoirs are maintained by recycling ions from one

side to the other whenever there is an imbalance due to a

conduction event, mimicking the current flow through a

closed circuit.

C. Systematic Force Acting on Ions
We now account for the various terms in the systematic

force F�ð�Þ in (3) acting on the ions in a BD formulation of
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ion channel permeation. The systematic force experienced
by each ion i is

F
ðiÞ
� ðXtÞ ¼ �qðiÞr

x
ðiÞ
t
�

ðiÞ
� ðXtÞ

where the scalar valued process �
ðiÞ
� ðXtÞ denotes the total

electric potential experienced by ion i given the position

Xt of all the 2N ions. We now give a detailed formulation

of these systematic forces.

The potential �
ðiÞ
� ðXtÞ experienced by each ion i is

comprised of the following five components:

�
ðiÞ
� ðXtÞ ¼ U x

ðiÞ
t

� �
þ �ext

� x
ðiÞ
t

� �
þ �IW x

ðiÞ
t

� �
þ �C;iðXtÞ þ �SR;iðXtÞ: (5)

The first three terms in (5), namely UzðxðiÞ
t Þ,

�ext
� ðxðiÞ

t Þ�IWðxðiÞ
t Þ depend only on the position x

ðiÞ
t of

ion i, whereas the last two terms in (5) �C;iðXtÞ, �SR;iðXtÞ
depend on the distance of ion i to all the other ions,

namely, the position Xt of all the ions. The five
components in (5) are now defined.

1) Potential of Mean Force (PMF), denoted UðxðiÞ
t Þ in

(5), is comprised of electric forces acting on ion i
when it is in or near the ion channel C in Fig. 1.

The PMF U originates from three different sources

defined as follows and computation of the PMF

requires solving three Poisson partial differential

equations and adding the resulting solutions
[which are potentials denoted �ð�Þ]. Poisson’s

equation relates the electric potential to the

charge density. It reads3

r �ðxÞr�ðxÞð Þ ¼ � 	ðxÞ
�0

: (6)

Here, �ð�Þ denotes the potential and �ð�Þ denotes

the dielectric constant. Also, 	ð�Þ denotes the charge

density and �0 � 8:85 � 10�12 farad per meter is

the permittivity of free space. We then make the

assumption that the space is divided into two

regions, water and protein, with �water ¼ 80 in

water and �protein ¼ 2 in protein. This implies that

in each region, (6) can be expressed as the macro-
scopic Poisson equation

r2�ðxÞ ¼ 	ðxÞ
�protein=water � �0

(7)

subject to a boundary condition that the potential

�ð�Þ is continuous at the dielectric boundary and

�waterr�0
watern̂ ¼ �proteinr0

proteinn̂, where n̂ is a unit

normal to the surface. Unlike (6), (7) is no longer a

fundamental equation, but rather a macroscopic
(bulk) approximation (we discuss this further in

Section III-E). The PMF U is computed as the sum

of the solutions (potentials) of the following three

Poisson equations.

a) Fixed Charges in Protein: First, there are

charges in the channel protein and the

electric field emanating from them renders

the pore attractive to one ionic species and
repulsive to another. Because this is inde-

pendent of the of ions, the potential �ðxÞ in

(7) does not change during simulations. Thus,

Poisson’s equation can be solved numerically

on a spatial grid in the absence of ions and the

results stored on a 3-D lookup table.

b) Induced Surface Charges: When any ion in the

assembly comes near the protein wall, it in-
duces surface charges of the same polarity at

the water–protein interface. These are known

as the induced surface charges. To compute

this potential, Poisson’s equation (7) is solved

for a single ion with the external applied field

and fixed charges switched off. The ion is

moved through a spatial grid of points and the

calculated self potentials are stored in a 3-D
lookup table. If the channel boundary is axially

symmetric, then a 2-D table suffices.

c) Reaction Potential: Finally, the reaction

potential needs to be taken into account.

This is potential due to charges induced by

an ion j when another ion i is kept at a fixed

position. The computation is similar to that

of the induced surface charges above. How-
ever, since the solution to Poisson’s equation

(7) contains the Coulomb and self potentials

with respect to ion i, these need to be

subtracted from the solution. The results can

then be precomputed and stored in a 6-D

table. For an axially symmetric channel, a

5-D table suffices.

2) External Applied Potential: In the vicinity of living
cells, there is a strong electric field resulting from

the membrane potential, which is generated by

diffuse, unpaired, ionic clouds on each side of the

3It is interesting to note that the so-called self-consistent approxima-
tion [46] used to evaluate the current voltage response of a Carbon
nanotube involves solving Poisson’s equation coupled with Schrödinger’s
equation. In comparison, BD for ion permeation requires solving Poisson’s
equation (7) coupled with the Langevin equation (2), (3) which is
distributionally equivalent to the Fokker–Planck equation.
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membrane. Typically, this resting potential across
a cell membrane, whose thickness is about 50 Å, is

70 mV, the cell interior being negative with

respect to the extracellular space.

For ion i at position x
ðiÞ
t ¼ ðx; y; zÞ, �ext

� ðxÞ ¼ ��z
denotes the potential on ion i due to the applied

external field. The electrical field acting on each

ion due to the applied potential is therefore

�r
x
ðiÞ
t
�ext

� ¼ ð0; 0; �Þ V/m at all x 2 R. It is this
applied external field that causes a drift of ions

from the reservoir R1 to R2 via the ion channel C.

As a result of this drift of ions within the

electrolyte in the two reservoirs, eventually the

measured potential drop across the reservoirs is

zero and all the potential drop occurs across the

ion channel. The applied external potential also

results in an induced surface charge at the protein
water dielectric boundary. The resulting potential

within the channel is computed using Poisson’s

equation and stored in a 3-D lookup table. Indeed,

in our BD simulation package, we combine the

external applied potential with the fixed charges

in protein (see discussion of PMF above) and then

solve Poisson’s equation as described above.

3) Inter-ion Coulomb Potential: In (5), �C;iðXtÞ
denotes the Coulomb interaction between ion i
and all the other ions

�C;iðXtÞ ¼
1

4
�0

X2N

j¼1;j6¼i

qðjÞ

�w x
ðiÞ
t � x

ðjÞ
t

��� ��� : (8)

4) Ion-wall Interaction Potential: The ion-wall poten-

tial �IW , also called the ð�=rÞ9 potential, ensures

that the position of all ions i ¼ 1; . . . ; 2N lie in

Ro. With x
ðiÞ
t ¼ ðx

ðiÞ
t ; y

ðiÞ
t ; z

ðiÞ
t Þ

0
, it is modeled as

�IW x
ðiÞ
t

� �
¼ F0

9

rðiÞ þ rw

� �9

rc þ rw �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
ðiÞ
t

2
þ y

ðiÞ
t

2
�r
 �� 
9 (9)

where for positive ions rðiÞ ¼ rþ (radius of positive
ion) and for negative ions rðiÞ ¼ r� (radius of

negative ion), rw ¼ 1:4 Å is the radius of atoms

making up the wall, rc denotes the radius of the ion

channel, and F0 ¼ 2 � 10�10 N, which is estimat-

ed from the ST2 water model used in molecular

dynamics [47]. This ion-wall potential results in

short range forces that are only significant when

the ion is close to the wall of the reservoirs R1

and R2 or anywhere in the ion channel C
(since the narrow segment of an ion channel can

be comparable in radius to the ions).

5) Short Range Potential: Finally, at short ranges, the
Coulomb interaction between two ions is modified

by adding a potential �SR;iðXtÞ, which replicates

the effects of the overlap of electron clouds. Thus

�SR;iðXtÞ ¼
F0

9

X2N

j¼1;j6¼i

rðiÞ þ rðjÞ
� �
x
ðiÞ
t � x

ðjÞ
t

��� ���9 : (10)

Similar to the ion-wall potential, �SR;i is significant

only when ion i gets very close to another ion. It

ensures that two opposite charge ions attracted by

inter ion Coulomb forces (8) cannot collide and

annihilate each other. Molecular dynamics simu-

lations show that the hydration forces between two

ions add further structure to the 1=kxðiÞ
t � x

ðjÞ
t k

9

repulsive potential due to the overlap of electron

clouds in the form of damped oscillations [48],
[49]. Reference [45] incorporated the effect of the

hydration forces in (10) in such a way that the

maxima of the radial distribution functions for

Naþ � Naþ, Naþ � Cl� and Cl� � Cl� would

correspond to the values obtained experimentally.

D. Probabilistic Interpretation
of Brownian Dynamics

The aim of this subsection is to give a probabilistic

characterization of the ion channel current. That is,

Theorem 1 states that the mean ion channel current

satisfies a boundary valued partial differential equation

related to the Fokker–Planck equation. The BD simulation

Algorithm 1 can then be viewed as a Monte Carlo

simulation method for solving this partial differential

equation. For simplicity of exposition, we assume in this
subsection that as a result of the applied external potential,

only positive ions traverse through the channel from R1 to

R2. In cationic channels, for example, only Kþ or Naþ ions

flow through to cause the channel currentVso we do not

need to consider the mean passage time of negative ions.

The dynamics of the BD simulation has an inherent

two-time scale property. Typically, the time for an ion to

enter and propagate through the ion channel is several
orders of magnitude larger compared to the time it takes

for an ions to move within a reservoir. That is the time

constant for the particles in the reservoirs to attain steady

state is much smaller than the time it takes for a particle to

enter and propagate through the channel.

The following two-step probabilistic construction

formalizes the probabilistic construction of BD.

Procedure 1: Probabilistic Construction of Brownian
Dynamics Ion Permeation in Ion Channel:

Step 1: The 2N ions in the system are initialized in the

reservoir and the ion channel C is closed. The system

evolves and attains stationarity.
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Step 2: After stationarity is achieved, the ion channel
is opened. The ions evolve according to (2) and (3). As

soon as an ion from R1 crosses the ion channel C and

enters R2, the experiment is stopped. Similarly, if an

ion from R2 crosses C and enters R1, the experiment is

stopped. Theorem 1 gives a partial differential equation

for the mean time an ion in R1 takes to cross the ion

channel and reach R2. From this an expression for the

mean ion channel current is constructed (13).

Remark: The above construction is a mathematical

idealization. In the BD simulation Algorithm 1, the ion

channel is kept open and ions that cross the channel are

simply removed and replaced in their original reservoir.

However, the above mathematical construction is a

satisfactory approximation since due to the two time scale

property, the time taken to attain this stationary distribu-
tion is much smaller than the time it takes for a single ion

to cross the ion channel.

Let 

ð�Þ
t ðX;VÞ denote the joint probability density

function of the position and velocity of all the 2N ions at

time t 
 0. We explicitly denote the � dependence of the

probability density functions since they depend on the

experimental condition � 2 �. The marginal probability

density function 

ð�Þ
t ðXÞ ¼ pð�Þðxð1Þ

t ;x
ð2Þ
t ; . . . ;x

ð2NÞ
t Þ of

the positions of all 2N ions at time t is obtained as



ð�Þ
t ðXÞ ¼

Z
R6N



ð�Þ
t ðX;VÞdV:

It is shown in [20] that 

ð�Þ
t ðX;VÞ converges

exponentially fast to its stationary (invariant) distribution



ð�Þ
1 ðX;VÞ. That is, the ions in the two reservoirs attain

steady state exponentially fast.

We now proceed to Step 2 of the BD construction of

Procedure 1. Assume that the BD system (2), (3) comprised

2N ions has attained stationarity with the ion channel C
closed according to Step 1. Now in Step 2 of Procedure 1,

the ion channel is opened so that ions can diffuse into it.

Let �
ð�Þ
R1;R2

denote the mean minimum time for any of

the N=2 positive ions in R1 to travel to R2 via the channel C

�
ð�Þ
R1;R2

¼ Eft
g: (11)

To define the first passage time t�, it is convenient to define

� ¼ðX;VÞ

P2 ¼ � : zð1Þ 


n o

[ zð2Þ 


n o

[ � � � [ zðN=2Þ 


n on o

P1 ¼ � : zðN=2þ1Þ ��
n o

\ � � � \ zð2NÞ ��
n on o

: (12)

Here, zðiÞ denotes the z-axis spatial coordinate of the ith ion.
Then, t
 ¼ infft : �t 2 P2j�0 2 P1g.

In terms of the mean first passage time �
ð�Þ
R1;R2

defined

in (11), the mean current flowing from R1 via the ion

channel C into R2 is defined as

Ið�Þð�Þ ¼ qþ

�
ð�Þ
R1;R2

: (13)

The following result adapted from [50, p. 306] shows

the mean passage time �
ð�Þ
R1;R2

and satisfies a boundary

valued partial differential equation (see also [51]). In
particular, the expressions for the mean passage time

below, together with (13), give a complete characterization

of the ion channel current.

Theorem 1: Consider the two step BD probabilistic

construction in Procedure 1. Then, the mean first passage

time �
ð�Þ
R1;R2

[defined in (13)] for ions to diffuse through the

ion channel are obtained as

�
ð�Þ
R1;R2

¼
Z
P1

�
ð�Þ
R1;R2

ð�Þ
ð�Þ
1 ð�Þd�: (14)

Here, �
ð�Þ
R1;R2

ð�Þ satisfies the following boundary value

partial differential equations:

L �
ð�Þ
R1;R2

ð�Þ
� �

¼�1 � 62 P2; �
ð�Þ
R1;R2

ð�Þ¼0 �2P2

(15)

where for any test function �ð�Þ, L denotes the backward

elliptic operator (infinitesimal generator)

Lð�Þ ¼ 1

2
Tr �r2

��ð�Þ
h i

þ f �;�ð�Þ þA�
� �0r��ð�Þ: (16)

Remark: The previous partial differential equation

cannot be solved in closed formVso the BD simulation

Algorithm 1 can be viewed as a randomized numerical

method for solving this partial differential equation. We
show in Section IV that the BD simulation algorithm can

be successfully used to predict the function of several

important types of ion channels.

E. Discussion
In the above BD formulation the forces acting on

charged particles were calculated by solving the macro-

scopic (bulk) Poisson’s equation (7). In bulk water,
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molecules polarize to shield electrostatic interactions by a
factor of approximately 1/80. However, given the likely

preferential alignment of water in narrow pores and

regions of high charge, this shielding is likely to be far less

effective in an ion channel. Thus, one should use a lower

value of the dielectric constant �water for the water in the

channel when solving Poisson’s equation (7). But exactly

what value of the dielectric constant should be used is

unknown. Determining the appropriate values using
molecular dynamics simulations or otherwise would be a

useful project.

Assigning the appropriate value of the dielectric

constant of protein �protein in (7) is also nontrivial. Unlike

water and lipids, which form homogeneous media,

proteins are quite heterogeneous, exhibiting large varia-

tions in polarizability depending on whether we are

dealing with the interior or exterior of a protein [52].
There are several molecular dynamics studies of the

dielectric constant of protein [53]–[55]. The dielectric

constant for the whole protein varies between 10 and 40,

but when only the interior region of the protein consisting

of the backbone and uncharged residues is considered, the

value drops to 2 or 4. The effects of changing the dielectric

constant of protein from to 3.5 and 5 were examined by

[56] using the KcsA potassium channel. They showed that
the precise value adopted in solving Poisson’s equation has

negligible effects on the macroscopic properties derived

from BD simulations.

The validity of treating the channel protein as a static

structure in BD also deserves further investigation. It

should be noted that thermal fluctuations of proteins

occur in the time-scale of femto seconds, whereas a con-

duction event across a typical ion channel takes place once
in 100 nsVapproximately six to seven orders of magnitude

slower time scale. Thus, it is likely that rapid thermal

fluctuations of the atoms forming the channel are not

important for channel selectivity and conduction. This can

be shown using stochastic averaging methods in nonlinear

dynamical systems (e.g., [27]). Alterations in the average

positions of the protein atoms caused by the presence of

permeating ions may play a role, and their effects should
be examined both experimentally and by using molecular

dynamics simulations. If found to be important, some of

the motions of the protein, such as the bending of

carbonyl groups, can readily be incorporated in BD

modeling of ion channels. Finally, size-dependent selec-

tivity among ions with the same valence cannot be easily

understood within the BD framework, and one has to

appeal to molecular dynamics or semi-microscopic Monte
Carlo simulations [57].

IV. APPLICATION OF BD
IN ION CHANNELS

The BD modeling and simulation methodology described

in Section III has been been fruitfully utilized in

satisfactorily capturing the macroscopic behavior of
several specific ion channels. In this section, we summa-

rize the performance of BD for three important classes of

biological ion channels: the KcsA potassium channel, the

L-type calcium channel, and the anionic CLC Cl� channel.

A. Potassium Channels

KcsA Kþ Channel: A number of computational studies
using molecular dynamics [24], [58]–[63] and semi-

microscopic approaches [44], [64], [65] have been carried

out on the KcsA potassium channel, the first biological

channel whose crystal structure has been determined.

These studies have elucidated, among others, the basis of

ion selectivity, the mechanisms underlying the permeation

of ions across the channel, and the conformational changes

that occur in the KcsA protein when the channel opens.
Detailed summaries of the main findings are given in

several recent review articles [66], [67]. Here, we outline

the main results obtained from BD simulations on the

KcsA channel.

The KcsA structure determined from X-ray diffraction

consists of 396 amino acid residues, or 3504 atoms

excluding polar hydrogens. The channel is constructed

from four subunits of peptide chains, each subunit
consisting of an outer helix, inner helix, pore helix, and

a threonine–valine–glycine–tyrosine–glycine (TVGYG)

amino acid sequence that forms the selectivity filter. The

protein atoms form a central pore between these subunits.

The shape of the ion-conducting pathway across the KcsA

protein is illustrated in Fig. 2, where two of the four

subunits of the full experimentally determined protein are

shown. Water molecules residing inside and just outside of
the pore shown as gold balls in Fig. 2(a). An outline of the

pore reveals that the channel is composed of three

segmentsVa long intracellular region of length 20 Å lined

with hydrophobic amino acids extending towards the

intracellular space (left-hand side), a wide water-filled

chamber of length 10 Å, and a narrow selectivity filter of

length 12 Å, extending towards the extracellular space. The

selectivity filter is the most important element in this
structure as it can distinguish Kþ ions from those of Naþ

on the basis of their sizes (the crystal radius of Kþ is 1.33 Å

and that of Naþ is 0.95 Å). The aspartate–arginine pair

near the extracellular entrance (right-hand side) and the

glutamate-arginine pair near the intracellular entrance

(left-hand side) are indicated in red and silver. BD

simulations show that there are three regions in the

selectivity filter and cavity where Kþ ions dwell preferen-
tially. There is also another prominent binding site near

the intracellular entrance of the channel. The preferred

positions where ions dwell preferentially are in close

agreement with the positions observed in Rbþ X-ray

diffraction maps [7].

To illustrate the permeation mechanism across the

potassium channel, we bisect the channel such that ions in
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the chamber and filter found during BD simulations are

consigned to the right side, and the rest to the left side.
The most common situation in the conducting state of the

channel has one ion in the left half, and two ions in the

right half. We refer to this configuration as the [1, 2] state.

A typical conduction event consists of the following

transitions: ½1; 2� ! ½0; 3� ! ½0; 2� ! ½1; 2�. In other

words, the ion waiting near the intracellular mouth

overcomes a small energy barrier in the intracellular

pore to enter the chamber region. Because this system is
unstable in the presence of an applied potential, the right-

most ion is ejected from the channel. Another ion enters

the intracellular mouth, leaving the system in its original

configuration. The precise sequence of events taking place

for conduction of ions depends on their concentration,

applied potential, and the ionization state of charged

residues at the intracellular gate, and many other states

can be involved in the conduction process depending on
the values of these variables. Simulations also reveal that

permeation across the filter is much faster than in other

parts of the channel. That is, once a third ion reaches the

oval cavity, the outermost ion in the selectivity filter is

expelled almost instantaneously. Thus, although the filter

plays a crucial role in selecting the Kþ ions, its role in

influencing their conductance properties is minimal.

Fig. 3(a) and (b) shows the current–voltage and
current-concentration curves obtained from BD simu-

lations [56]. The results of BD simulations are in

broad agreement with those determined experimentally

[68]–[70]. With the radius of the intracellular gate

expanded to 4 Å, we obtain the conductances at þ150 mV

and �150 mV of, respectively, 147 
 7 and 96 
 4 pS.

The relationship is linear when the applied potential is in

the physiological range but deviates from Ohm’s law at a
higher applied potential, especially at high positive

potentials. The current saturates with increasing ionic

concentrations, as shown in Fig. 3(b). Experimentally, the

current Ið�Þ across many channels first increases with an

increasing potassium ionic concentration � ¼ ½K� and then

saturates. (As usual, � denotes the experimental condition,

i.e., the potassium concentration denoted [K] in this case.)

Fig. 3. Current–voltage–concentration profile deduced from BD

simulations. (a) Current passing through channel with a symmetric

solution of 300 mM KCl in both reservoirs is plotted against

applied potential. Relationship is linear when applied potential

is less than 
150 mV but deviates systematically from Ohm’s

law with a further increase in the membrane potential. (b) The

current–concentration relationship is obtained with symmetrical

solutions of varying concentrations of KCl in the reservoirs, with

applied potential of 221 mV. Data points are fitted by a solid

line using (17). Half-saturation value ½Ks� deduced from

the fitted curve is 277 
 54 mM.

Fig. 2. Model potassium channel. (a) Two of four subunits of full

experimentally determined KcsA potassium channel and positions

of water molecules (gold) inside pore are illustrated. Here,

helices of channel protein are represented in ribbon form.

Aspartate–arginine pairs near the extracellular entrance of the

channel (right-hand side) and glutamate–arginine pair near

intracellular entrance of the channel are indicated in red

and silver. (b) Outline of the water-protein boundary

of a channel is shown. For clarity, top and bottom

subunits are removed.
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This behavior leads to a current-concentration relationship
of the Michaelis–Menten form

Ið�Þ ¼ Imax

1 þ ½Ks�=½K�
: (17)

Here, ½Ks� denotes the half-saturation point of the ion

channel. According to (17), the current Ið�Þ approaches the

saturation current Imax when ½K� � ½Ks�. Theoretically, the
conductance-concentration curve is expected to saturate if

the transport of ions across the channel is determined by

two independent processes: the time it takes for an ion to

enter the channel mouth depends on the concentration,

while the time it takes for the ion to reach the oval

chamber is independent of the concentration but depends

solely on the applied potential.

Modeling Other Potassium Channels: There are many

different types of potassium channels, which differ widely

in their conductances and gating characteristics while

having a similar primary structure. Conductance levels of

various types of potassium channels range from 4 to 270 pS

(1 pS equals 0.1 pA of current across the channel with the

driving force of 100 mV). Despite this diversity, they all

share the common feature of being highly selective to
potassium ions and display broadly similar selectivity

sequences for monovalent cations. Also, the amino acid

sequence of the peptide chains lining the selectivity filter

of all potassium channels is known to be highly conserved.

Thus, it is likely that the diversity of potassium channels

results from structural changes on the protein architecture

near the intracellular segment of the pore, which have very

different sequences.
Using BD simulations, [71] explored whether the

widely differing properties of potassium channels found

in nature can be understood by small modifications of the

channel geometry. Using the experimentally determined

potassium channel structure as a template, as shown in

Fig. 4(a), they systematically changed the radius of the

intracellular pore entrance, leaving the dimensions of

the selectivity filter and cavity unaltered. By examining the
energy profiles and the probabilities of ion occupancies in

various segments of the channel, they deduce the rate-

limiting step for conduction in the potassium channels.

Ion distributions revealed that the selectivity filter is

occupied by two Kþ ions most of the time. Potential

energy profiles encountered by a third ion traversing along

the central axis of the channel when there are two ions in

or near the selectivity filter are shown for the channels
with radii 2 Å [solid line in Fig. 4(b)], 3 Å (long-dashed

line), and 4 Å (dashed line). Ions need to climb over the

energy barrier, whose height is denoted as �U, to move

across the channel. This barrier is the rate-limiting step in

the permeation process: as its height increases with a

decreasing intra-pore radius, the channel conductance
drops exponentially. As the intra-pore radius is increased

from 2 to 5 Å, the channel conductance changes from 0.7

to 197 pS (0.17 to 48 pA). In Fig. 4(c), the simulated

current across the model ion channel determined from BD

Fig. 4. Models of potassium channels. (a) Shape of KcsA channel is

modified such that minimal radius of the wider segment is 3 Å. Solid

line shows outline of a simplified model channel. Three-dimensional

channel is obtained by rotating curves about the central axis by

180 . The 10 of 20 oxygen atoms lining the pore are shown in filled

circles. Locations of aspartate and glutamate residues guarding

extracellular and intracellular gates are shown in filled diamonds.

Radii of intracellular gate were varied from 2 to 5 Å. (b) Potential

energy profiles encountered by an ion traversing along central

axis of channel, when there are two other ions in or near the

selectivity filter, are shown for the channels with radii 2, 3,

and 4 Å. Ions need to climb over energy barrier, whose height is

denoted as �U, to move across channel. (c) Outward current is

plotted against radius of intracellular aspect of channel entrance.
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is plotted against the radius of the intra-pore gate. Thus,
the diversity of potassium channels seen in nature is

achieved by slightly altering the geometry of the intracel-

lular aspect of the channel macromolecule.

B. CLC Chloride Channels
BD simulations were similarly applied to elucidate the

dynamics of ion permeation across CLC-type channels

[72]. The prototype channel, known as CLC-0, first
discovered and characterized by [73], is found in Torpedo
electroplax. Since then, nine different human CLC genes

and four plant and bacterial CLC genes have been

identified. The CLC family of Cl� channels is present in

virtually all tissuesVin muscle, heart, brain, kidney and

liverVand is widely expressed in most mammalian cells.

By allowing Cl� ions to cross the membrane, CLC channels

perform diverse physiological roles, such as control of
cellular excitability, cell volume regulation, and regulation

of intracellular pH [74]. Dutzler et al. [8], [9] determined

the X-ray structure of a transmembrane CLC protein in

bacteria that has subsequently been shown to be a

transporter, not an ion channel [75]. Nevertheless, many

amino acid sequences of the bacterial CLC protein are

conserved in their eukaryotic CLC relatives, which are

selectively permeable to Cl� ions.
We refer the reader to [72] for details on the homology

model construction of a CLC-0 channel atomic model. As

illustrated in Fig. 5(a), the ionic pathway of CLC-0 takes a

tortuous course through the protein, unlike that of the

potassium channel, which is straight and perpendicular to

the membrane surface. The channel is quite narrow,

having a minimum radius of 2.5 Å near the center, but

opens up quite rapidly at each end. The distance from
one end of the pore to the other is 55 Å and it is lined

with many charged and polar amino acid residues. Incor-

porating this homology model into BD, they determined

the current–voltage-concentration profile of CLC-0. A

current–voltage relationship obtained with symmetrical

solutions of 150 mM in both reservoirs is shown in

Fig. 5(b). The relationship is linear, with a conductance

of 11.3 
 0.5 pS that agrees well with experimental
measurements reported by [73] (superimposed open

circles). The slope conductance determined from the

experimental data is 9.4 
 0.1 pS. The current-

concentration relationship obtained from the homology

model using BD (filled circles) is also in accord with the

experimental observations as shown in open circles in

Fig. 5(c). The lines fitted through the data points are

calculated from the Michaelis–Menten equation (17).
There is a good agreement between the simulated data

and experimental measurements for CLC-0.

BD simulations also reveal the steps involved in

permeation of Cl� ions across the CLC channel. The

pore is normally occupied by two Cl� ions. When a third

ion enters the pore from the intracellular space [left-hand

side in the inset of Fig. 5(a)], the stable equilibrium is

disrupted, and the outermost Cl� ion is expelled to the

extracellular space.

C. Calcium Channels
Calcium channels are necessary for several important

physiological functions, such as the contraction of cardiac

Fig. 5. BD simulations of CLC-0. (a) Locations of charged residues

lining the pore of CLC-0 are illustrated. The locations of arginine (R )

and lysine (K) (positively charged) residues and aspartate (D)

and glutamate (E) (negatively charged) residues lining the

ion-conducting path are shown. Intracellular aspect of channel is on

left-hand side. (b) Current measured at various applied potentials

(filled circles) is obtained with symmetrical solutions of 150 mM

in both reservoirs. Superimposed on the simulated data are

experimental measurements obtained in [73], shown in open circles.

(c) Outward currents (filled circles) are obtained with symmetrical

solutions of varying concentrations of NaCl in reservoirs under an

applied potential of �80 mV. Data points are fitted by solid line

using the Michaelis–Menten equation. Unpublished experimental

measurements obtained by Dr. T.-Y. Chen (personal communication)

are shown in open circles.
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and skeletal muscles and communication between cells. To

perform these roles, they must exhibit remarkable
selectivity while conducting millions of ions into the cell

every second. Biophysical studies on calcium channels

reveal many complex properties. Sodium ions can move

across calcium channels in the absence of calcium ions, but

as soon as a small concentration of calcium ions is

introduced, conduction of sodium ions is completely

blocked. Channels become exquisitely selective, selecting

calcium over sodium at a ratio of 1000 : 1. To date, the
crystal structure of any type of calcium channels has not

been determined. Reference [45] constructed a minimal

model of the L-type calcium channel, making use of many

of their known experimental properties. A 3-D model was

generated by rotating the curves shown in Fig. 6 by 180 .

The important features of the model are a wide

extracellular entrance chamber, a narrow selectivity filter

ðr ¼ 2:8 ÅÞ with four point charges, representing gluta-

mate residues, placed in a helical pattern (two of which are
shown in filled squares), and a long chamber region that

tapers toward the intracelluar entrance (left-hand side).

Four mouth dipoles (two of which are shown in filled

diamonds) were placed at the intracellular entrance to

overcome the image forces. These dipoles are also

represented as point charges. Thus, the channel is con-

strued as a homogeneous, featureless low dielectric

material with the dielectric constant of 2, through which
an ion-conducting pathway is bored.

Despite its simplicity, the model, when incorporated

into a BD simulation assembly, reproduced many of the

remarkable biophysical findings. The deep energy well

created by four point charges along the selectivity filter

attracted two sodium ions when the reservoirs contained

150 mM NaCl and one calcium ion when NaCl was re-

placed with CaCl2. A third Naþ ion entering the selectivity
filter from the intracellular reservoir disrupts the stable

equilibrium established by the two resident Naþ ions and

expels the outermost ion to the extracellular reservoir.

Similarly, a second Ca2þ ion entering the selectivity filter

expels the resident Ca2þ ion. Thus, the conduction across

the channel for both monovalent and divalent ions is a

multi-ion process. The current–voltage-concentration pro-

files for Naþ and Ca2þ ions obtained from BD simulations
broadly mirrored the experimental findings.

Experimental studies of mixtures of Ca2þ and Naþ ions

in calcium channels have shown a remarkable behavior. As

the relative concentration of Ca2þ to Naþ is decreased, the

conductance of the channel first decreases to a minimum

and then increases again to a maximum where there is no

Ca2þ present [76]. This so-called Banomalous mole

fraction effect[ has been a major subject of attention in
calcium literature. Using the minimal model illustrated in

Fig. 6(a), [45] investigated this behavior using electrostatic

calculations as well as in BD simulations. They showed

that when a Ca2þ entered the selectivity filter of the

channel, it would bind there tightly so that a Naþ ion could

not displace it via Coulomb repulsion. Thus, sodium con-

duction, once a Ca2þ entered the channel, would cease. On

the other hand, another Ca2þ ion entering the selectivity
filter, owing to a greater Coulomb force it could exert on

the resident ion, was able to displace it, allowing calcium

conduction to take place. In BD simulations, they fixed the

Naþ concentration at 150 mM and measured the channel

current at different Ca2þ concentrations. The values of the

calcium and sodium current at different calcium concen-

trations, normalized by the maximum value of each, are

shown by the filled and open circles in Fig. 6. As the
calcium concentration decreased, the Ca2þ current also

decreased. With further reduction in calcium concentra-

tion, it would take longer for a calcium ion to enter and

block the channel, thus allowing more Naþ ions to pass

through the channel. The experimental measurements of

[76] are shown in the inset for comparison. The figure

shows how the complex behavior of the calcium channel

Fig. 6. Minimal model of L-type calcium channel and anomalous mole

fraction curve deduced from BD simulations. (a) Three-dimensional

channel model is generated by rotating curves about central axis by

180 . Positions of two of four glutamate groups are shown by the

filled squares, and inner end of two of four mouth dipoles by the

filled diamonds. Intracellular side of the channel is on left-hand

side. (b) Ca2þ (filled circles) and Naþ (open circles) currents across

channel determined with different symmetrical calcium

concentrations in reservoirs from BD simulations are plotted.

Sodium concentration is held fixed at 150 mM in both reservoirs,

and current was measured with an applied potential of �200 mV.

Experimental measurements obtained by [76] are shown in

inset for comparison.
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can arise from simple electrostatic interactions between
ions, the channel boundary, and the charges therein.

V. ACBD FOR ION CHANNELS:
FORMULATION

In Section IV, we illustrated how BD can be used as a valid

theory for explaining permeation in several types of ion

channels. What this means is that the simulated BD

current Îð�Þ under various simulated experimental condi-
tions � 2 � matches the actual experimental observed

current Ið�Þ. (Recall that � denotes the set of experimental

conditions.) Thus, for such channels BD provides a valid

theory for relating atomic structure of the ion channel to

macroscopic function. However, as discussed in Section II

and Section III-E, BD does not explain permeation for

particularly narrow ion channels such as gramicidin or

within the selectivity filter of a sodium channel.
The method of ACBD we propose in this section is

designed to circumvent the limitations posed by the

traditional BD simulation approach. In ACBD, we solve an

inverse estimation problem. That is, given the 3-D atomic

model of an ion channel, we directly estimate the PMF of a

gramicidin channel or the shape of a sodium channel that

best replicates experimental observations Ið�Þ for a variety

of experimental conditions � 2 �. Thus, ACBD estimates
the effective PMF or effective shape that minimizes the mean

square error between the BD simulated current and the

actual observed experimental current. The advantage of

directly estimating the effective PMF or shape is that it

completely removes the requirement of solving Poisson’s

equation (7). Thus, the problem of assigning the effective

dielectric constants of the pore and of the protein is

avoided. Second, no assumption about the ionization state
of some of the residues lining the pore has to be made.

A. ACBD as Stochastic Optimization Problem
Let � denote a finite-dimensional parameter that

characterizes either the PMF of a gramicidin channel or

the shape of a sodium channel. From experimental data, an

accurate estimate of the current–voltage-concentration

profiles of an ion channel can be obtained. These curves
depict the actual current Ið�Þ flowing through an ion

channel for various external applied potentials � 2 � and

ionic concentrations. Suppose that the BD simulation

Algorithm 1 is run in batches indexed by batch number

n ¼ 1; 2; . . .. In each batch n, the PMF parameter �n is

selected (as described in the following), the experimental

condition (applied potential and concentration) � 2 � is

applied, and the BD Algorithm 1 is run over L iterations,
then the estimated current Îð�Þn ð�Þ is computed using (4).

Define the square error loss function as

Cð�Þ ¼ E Cnð�Þf g; Cnð�Þ ¼
X
�2�

Îð�Þn ð�Þ � Ið�Þ
� �2

: (18)

The total loss function Cð�Þ is obtained by adding the
square error over all the applied fields � 2 � on the

current–voltage or current-concentration curve. Our aim

is to compute the optimal parameter �! 2 � where �
denotes the set of feasible parameters and

�! ¼ arg min
�2�

Cð�Þ: (19)

Note that (18) and (19) constitute a stochastic optimiza-

tion problem, since we do not have a closed form

expression for Cð�ÞVinstead only noisy estimates Cnð�Þ
of the cost function are available in terms of the BD

simulated current Îð�Þn ð�Þ for different experimental

conditions � 2 �.

Depending on whether the parameter space � is a

compact subset of the reals or a finite set, (19) can be

formulated as a continuous-valued or discrete-valued
stochastic optimization problem. For example, we consid-

er the continuous case where � is a compact subset of the
reals representing the means and variances of Gaussian

basis functions used to fit the PMF U� for gramicidin

channels. Another example, considered as follows, is the

discrete case where � ¼ ð1; 2; . . . ; SÞ denotes S feasible

shapes of the sodium channel.

B. Example 1: Estimating PMF of
Gramicidin Channels

Gramicidin is an antibiotic produced by Bacillus brevis
[77, p. 130]. In this section, we formulate the PMF

estimation problem for a gramicidin channel as a sto-

chastic optimization problem of the form (18).

Why PMF estimation of Gramicidin? Since the structure

of gramicidin channels are simple and well known, they

are a useful benchmark for computational models that seek

to explain ion permeation. Also, since the radius of
gramicidin channels is much smaller than other biological

ion channels, it has been recently been shown that the

PMF U in (5) obtained by solving the macroscopic

Poisson’s equation (7) does not yield accurate results

that fit experimental data [23]. Moreover, the PMF

calculated along the gramicidin channel axis using

molecular dynamics (MD) yields unrealistically large

central barriers for a permeating ion, e.g., [25], [78].
When such a PMF is incorporated into nonequilibrium

permeation models, it fails to replicate the experimental

measurements.

Let us parameterize the PMF U in (5) by U�, where

� 2 � denotes a finite-dimensional parameter vector. We

will consider the case where � is a compact subset of the

reals and also the case where � is a finite set. For the

gramicidin channel, we will represent U�ð�Þ by a Gaussian
mixture with parameter vector � and then present a

stochastic algorithm to estimate �. Any basis function

approximation of the gramicidin PMF U�ðxÞ needs to
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capture the following important properties of the grami-
cidin channel.

1) The PMF U�ðxÞ (where x ¼ ð0; 0; zÞ) experienced

by the ion within the gramicidin channel is

symmetric with respect to z, i.e., U�ðxÞ ¼
U�ð0; 0; zÞ ¼ U�ð0; 0;�zÞ for all x 2 C.

2) For z G �20 Å or z > 20 Å, U�ð; zÞ should be

close to zero since the PMF only acts on ions in or

near the ion channel.
By using physiological data of the gramicidin channel, we

find that the following scaled Gaussian mixture comprised

of a linear combination of three Gaussian density functions

gives an excellent fit:

U� ½0; 0; z�ð Þ ¼m exp �1

2

ðz � WÞ2

�2


 �

þ m exp �1

2

ðz þ WÞ2

�2


 �

þ m0 exp �1

2

z2

�2
0


 �
(20)

� ¼ W; �2;m; �2
0;m0

� �0
: (21)

It is obvious that the parameterization satisfies the sym-

metry property 1. Also, for a suitable choice of the parameter

vector � in (21), property 2 holds. The structure of the

gramicidin channel implies that the parameters � defined in

(21) need to be constrained to the set � defined as follows:

�¼ W 2½0; 30 Å�; �2; �2
02 0; �2

max

� �
; m;m0 2 ½0;M�

�
(22)

where M and �max are positive bounded constants.

C. Example 2: Estimating Shape of Sodium Channel
Here, we formulate the estimation of the shape a

sodium channel as a discrete stochastic optimization

problem of the form (18).

To motivate the shape estimation problem for sodium

channels, let us first describe several of its salient features.

A sodium channel has several unique properties that need

to be captured by a simulation model. First, the sodium

channel allows over 106 ions through the channel every

second and yet is able to distinguish between sodium and
other ions. Second, it has a high affinity for monovalent

ions, is rapidly blocked by divalent ions, and allows no

anions through. Third, the channel exhibits a symmetric,

linear current–voltage curve when there are symmetric

concentrations of NaCl in the intra-cellular and extra-

cellular regions, and the current rapidly saturates with

increasing concentrations. Finally, the channel is com-

pletely blocked when divalent ions are present in the

external solution but only marginally reduced in presence
of intracellular divalent ions.

A sodium channel is comprised of four functional

components: external vestibule, selectivity filter, internal
pore, and internal entrance region. The family of sodium

channels is believed to be structurally similar to the family

of potassium ion channels. Thus, we have based the feasible

shapes of the sodium channel on the KcsA potassium

channel, the structure of which was recently crystallized by
Doyle et al. [7]. We have shortened the selectivity filter and

added an external vestibule to the existing potassium

channel shape. Here, we describe in detail how by varying

the dimensions of the above structural components there is

a finite number of distinct possibilities for the shape. The

candidate channels are depicted in Fig. 7 and the various

parameters of these candidate channels are given in Table 1.

1) Outer Vestibule: The outer regions making up the
sodium channel protein are believed to be

composed of the P loops of the protein that form

a conical outer vestibule [79], [80].

2) Selectivity filter: Similar to the KcsA, we include a

short selectivity filter followed by an internal pore

region. All channel models contain a selectivity

filter with a radius of r ¼ 2:2 Å derived from

permeant cation studies in [81]. As the length of
the filter is unknown, we vary this parameter to fit

the current. We use only the two charged rings

suspected to lie in the selectivity filter and known

from mutation studies to have a large effect on

selectivity and conductance of the sodium channel

[82]–[84]. The two charged rings are placed

around the filter region as point charges, 1 Å

behind the protein boundary, at a distance of
z ¼ 14 Å and z ¼ 18:5 Å from the central axis of

the channel. The inner ring contains a positively

charged lysine and a negatively charged glutamate

and aspartate amino acid group, and the outer ring

contains two negatively charged glutamates and

two negatively charged aspartates. The positive

lysine in the inner ring is fully charged, but we

believe that more than one negative residue is
likely to be protonated. For the position and

charged states of these residues we have used the

data of [85]. They find that two residues must be

protonated at any given time to reproduce the

experimental data. The inner ring has a total

charge of �1.0 � 10�19 C on average, where the

lysine has the charge of one proton, and the

negative residues in the inner ring a charge of
�1.3 � 10�19 C each. The outer ring contains a

total charge of 3.8 � 10�19 C where the total

charge is shared equally among all four negative

residues, giving each residue a charge of

0.95 � 10�19 C. We distribute equal charges

among all residues in a ring because the exact

charge state of any residue at a given time is
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difficult to calculate; only the average behavior of

the charged residue can be estimated.

3) Inner pore: Followed by the selectivity filter is an

inner vestibule region. This is again adopted from
the KcsA structure. The diameter and length of

this region is unknown and has been varied in the

shape estimation of the channel.

4) Internal entrance: The internal entrance leads into

the inside of the cell. This region contains the

carboxyl end of the protein making up the

sodium channel. For this reason, we include a

set of dipole charges at z ¼ �20 Å, mimicking

the intracellular helix dipoles of the channel
protein. The magnitude of charge on the helix

dipoles is 0.6 � 10�19 C. The negative end is

nearer to the channel entrance; the positive ends

are buried deep inside the protein, and its effect

is negligible.

Fig. 7. Nine candidate channel shapes for sodium channels considered in this paper. Six dots in each figure denote point charges in

protein lining inner wall of ion channelVall units are in angstrom units Å ð1 Å ¼ 10�10 mÞ. Upper four dots represent point

charge approximations of two charged rings in selectivity filter, and bottom two dots in internal entrance of ion

channel represent dipole charges that mimic intracellular helix dipoles of sodium channel protein.
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The channel model is generated by creating an initial

outline of the channel pore and then rotating it by 180 to

create a 3-D shape. Cylindrical symmetry is assumed with
the channel centered around z ¼ 0 Å and extending out to

z ¼ 
27. An extracellular and intracellular reservoir, R1

and R2, is attached to either ends of the channel. The

channel model has been varied systematically, all shapes

used are given in Fig. 7 and Table 1. On the above-stated

basic outline (of outer vestibule, selectivity filter, inner

pore, and internal entrance), we have varied the

dimensions of the channel to obtain currents through
each individual channel. The parameters that were varied

are stated in Table 1. We have varied the width and

height of the outer vestibule (shapes 1 and 2), length of

the selectivity filter (shapes 3 and 4), width of the inner

pore (shape 5), and the width of the intracellular pore

(shapes 4, 6, and 7) and the width, and height of the

outer vestibule and length of the selectivity filter simul-

taneously (shapes 8 and 9). We have maintained a fixed
length of 54 Å for all channel shapes, as this is close to

the length of the potassium channel.

VI. ACBDVALGORITHMS

In the previous section, we formulated ACBD as a sto-

chastic optimization problem (18) and provided two
examples, namely PMF estimation of gramicidin channels

and shape estimation of sodium channels. In this section, we

focus on continuous and discrete stochastic optimization

algorithms that optimize (18). Apart from Section VI-A,

most of the discussion will focus on discrete stochastic

optimization algorithms since they are of independent

interest in the control of large scale dynamical systems.

A. Continuous Stochastic Optimization-Based ACBD
Simulation Algorithm for PMF Estimation

Consider the PMF estimation problem for gramicidin

formulated in Section V-B. Here, we parameterize the

PMF U� in (5) by a finite-dimensional basis function

representation with coefficients � 2 � where � " Rp is a

compact set in Euclidean space. We then solve the

continuous stochastic optimization problem (18) to

estimate the effective PMF. Recall n ¼ 0; 1; . . . denotes

batch number.

Algorithm 2 Continuous ACBD Simulation Algorithm

Step 0: Set batch index n ¼ 0, and initialize �0 2 �.

Step 1 (Evaluation of loss function): At batch n,

evaluate loss function Cnð�nÞ in (18) over the set of

experimental conditions � 2 �. This involves comput-

ing Îð�Þn ð�Þ using the BD Algorithm 1.

Step 2 (Gradient Estimation): Compute cr�Cnð�nÞ
Step 3 (Stochastic Approximation Algorithm): Update

PMF estimate

�nþ1 ¼ �n � �nþ1
cr�Cnð�nÞ (23)

where �n denotes a decreasing step size (see discussion

below for choice of step size).

Set n to n þ 1 and go to Step 1.

The step size is typically chosen as �n ¼ �=ðn þ 1 þ RÞ�,

where 0:5 G � � 1 and R is some positive constant. This

choice of step size satisfies the condition
P1

n¼1 �n ¼ 1
which is required for convergence of Algorithm 2.

A crucial aspect of the algorithm is the gradient

estimation Step 2. In this step, an estimate cr�Cnð�nÞ of

the gradient r�Cð�nÞ is computed. This gradient estimate

is then fed to the stochastic gradient algorithm (Step 3)

which updates the PMF. Note that since the explicit

dependence of Cnð�nÞ on � is not known, it is not possible

to analytically compute r�Cð�nÞ. Thus, we have to resort
to gradient estimation. One can use a simple finite dif-

ference gradient estimator such as the Kiefer–Wolfowitz

algorithm or Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithm; see [86] and the web-

site http://www.jhuapl.edu/SPSA/. Alternatively, more so-

phisticated gradient estimators can be implemented such

Table 1 Nine Candidates for Channel Shapes of Sodium Channel
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as weak derivative estimators and Infinitesimal Perturba-
tion Analysis (IPA) Estimators (see [87]), which typically

have much smaller variances compared to finite difference

methods.

Convergence of Controlled Brownian Dynamics Simulation
Algorithm 2: By construction in Step 1 of Algorithm 2, for

fixed �, the loss function estimates Cnð�Þ are independent

and identically distributed random variables. Under this
assumption, it is straightforward to prove that the

estimates �n generated by ACBD Algorithm 2 (whether

using the Kiefer–Wolfowitz or SPSA algorithm) converge

to a local minimum of the loss function. We refer the

reader to [26] for more sophisticated results that deal with

convergence of stochastic gradient algorithms for state-

dependent Markovian noise.

B. Discrete Stochastic Optimization-Based
ACBD Simulation Algorithm

In the remainder of this section, we propose discrete

stochastic optimization algorithms for shape estimation of

sodium channels as well as PMF estimation of gramicidin

channels (in this case, the parameter � in (22) comprised

of the Gaussian means, variances, and weights is quantized

to a finite set). For convenience of exposition, we will
primarily refer to shape estimation in this section.

Algorithms 4 and 5 are novel extensions of recent results

in discrete stochastic optimization [88], [89] and are

hence of independent interest. The algorithms have been

used in other diverse applications ranging from optimiza-

tion of wireless communication networks [90], [91] and

experimental control of ion channels [92].

Because in actual BD simulations, the loss function
Cnð�Þ of (18) is nonnegative and uniformly bounded from

above, it is convenient to normalize the objective (18) as

follows. Let � � Cnð�Þ � 
, where � denotes a finite

lower bound and 
 > 0 denotes a finite upper bound. For

example, since Cnð�Þ is nonnegative, � can be chosen as

zero. Define the normalized costs mnð�Þ as

mnð�Þ ¼�
Cnð�Þ � �


 � �
; where 0 � mnð�Þ � 1: (24)

Then, the stochastic optimization problem (18) is equiv-

alent to

�! ¼ arg min
�2�

mð�Þ where mð�Þ ¼� E mnð�Þf g (25)

since scaling the cost function does not affect the

minimizing solution. Here, � ¼ f1; 2; . . . ; Sg is a finite

discrete set of possible shapes of the sodium channel.

Overview of Literature: There are several different classes
of methods that can be used to solve the discrete stochastic

optimization problem (25); see [88] and [93] for a recent

survey. Problem (25) can also be viewed as a multi-armed

bandit problemVwhich is a special kind of an infinite

horizon Markov decision process with an Bindexable[
optimal policy [94]. In recent years, a number of discrete

stochastic approximation algorithms have been proposed.

Several of these algorithms [88], [95]–[99] including
simulated annealing type procedures [100] and stochastic

rulers [98] fall into the category of random search. In this

paper, we construct algorithms based on the random

search procedures in [95] and [96]. The basic idea is to

generate a homogeneous Markov chain taking values in �
which spends more time at the global optimum than at any

other element of �.

An obvious brute force approach for computing the
optimal ion channel shape �! is as follows. For each

possible shape � 2 �, run the BD simulation Algorithm 1

for a very long sample size T and compute the estimated

loss function mTð�Þ using (24) for each possible shape �.

Finally, pick �̂!T ¼ arg min�2� mTð�Þ. Since for any fixed �,

mTð�Þ ! mð�Þ with probability one (w.p. 1) as T ! 1, it

follows that the brute force estimator is statistically

consistent, i.e., �̂!T ! �! with probability one (w.p. 1) as
T ! 1. Thus, in principle, the above brute force

simulation method can be used to compute the optimal

channel shape. However, the method is highly inefficient

since mTð�Þ needs to be evaluated for each � 2 � via

extensive BD simulation. The evaluations of mTð�Þ for

� 6¼ �! are wasted because they contribute nothing to the

estimation of the optimal shape. Indeed, the above brute

force method was used manually in [85] to estimate the
optimal channel shapeVthis took the authors several

months.

The idea of discrete stochastic approximation [88],

[90], [95], [96], [101], [102] is to run more BD simulations

for �, where the optimal shape is expected and less in other

areas. More precisely, what is needed is a dynamic

resource allocation (control) algorithm that controls

(schedules) the BD simulation Algorithm 1 to efficiently
estimate the optimal shape �!. We propose a discrete

stochastic approximation algorithm that is both consistent
and attracted to the optimal shape. That is, the algorithm

provably spends more time at the optimal shape gathering

observations Îð�Þð�Þ at the optimal shape � ¼ �! and less

time for other shapes � 2 �. Thus, in discrete stochastic

approximation the aim is to devise an efficient [87, Ch. 5.3]

adaptive search (sampling plan) which allows us to find
the minimizer �! with as few samples as possible by not

making unnecessary observations at nonpromising

values of �.

1) Discrete Stochastic Approximation ACBD Algorithm: In

the algorithm that follows, the process f�n; n ¼ 1; 2 . . .g
denotes the Bstate[ of the algorithm. For the state �n, at
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batch time n, define the neighborhood set N �n
¼

�� f�ng. Finally, denote the S-dimensional standard

u n i t v e c t o r s b y em, m ¼ 1; . . . ; S, w h e r e em ¼
½0 � � � 0 1 0 � � � 0�0 with 1 in the mth position and

zeros elsewhere.

Consider the following algorithm.

Algorithm 3 Stochastic Search ACBD Algorithm for Ion

Channel Shape Estimation

Step 0: (Initialization.) At batch-time n ¼ 0, initialize

state of the algorithm �0 2 f1; . . . ; Sg randomly.

Initialize state occupation probabilities 
0 ¼ e�0
. Ini-

tialize optimal shape estimate of ion channel as �!0 ¼ �0.

Step 1: (Sampling and exploration.) At batch n, given

current algorithm state �n, evaluate mnð�nÞ according

to (24) by conducting � independent BD simulation

runs of Algorithm 1 on the ion channel.
Generate an alternative candidate state ~�n by

sampling uniformly from the neighborhood N �n
of

current state �n. Evaluate mnð~�nÞ.
Step 2: (Conditional acceptance test.) If mnð~�nÞ G
mnð�nÞ, set �nþ1 ¼ ~�n, else, set �nþ1 ¼ �n.

Step 3: Update empirical state occupation probabil-

ities 
n as


nþ1 ¼ 
n þ �n e�nþ1
� 
n

� �
; 
0 ¼ e�0

: (26)

Step 4: (Update estimate of shape of ion channel.)

�!n ¼ ~�ðm!Þ where m! ¼ arg maxm2f1;...; Sg 
nþ1ðmÞ, set

n ! n þ 1, go to Step 1.

Remark: The elements 
nð�Þ of 
n generated by Step 3

are merely normalized counters for how many times the

algorithm state has visited any particular shape � 2 �. In

particular


nð�Þ ¼
# of times state visits shape � in batches 1 to n

n
(27)

is the empirical occupation probability of state �. As we

will show, the attraction capability (efficiency) of
Algorithm 3 is captured by the fact that for sufficiently

larger n, 
nð�!Þ > 
nð�Þ, meaning that the algorithm

spends more time at the optimal shape �! than at any other

shape � 2 �. As a consequence, �!n (which according to

Step 4 is the shape at which the algorithm has spent

maximum time until time n) converges to the optimal

shape �! with probability one. This is formalized as follows.

Convergence of Algorithm 3: In [96], the following
stochastic ordering assumption is used:

(O) For each �, ~� 2 �,

P mnð�!Þ G mnð�Þð Þ 
 P mnð�Þ > mnð�!Þð Þ
P mnð~�Þ > mnð�!Þ
� �


 P mnð~�Þ > mnð�Þ
� �

:

Roughly speaking, this assumption ensures that the algo-

rithm is more likely to jump towards a global minimum

than away from it, see [96] for details.

The following convergence theorem for Algorithm 3 is
proved in [96].

Theorem 2 (Convergence and Efficiency of Algorithm 3):
Under condition (O), the estimated sequence f�!ng gen-

erated by Step 4 of Algorithm 3 converges with probability

one to the global optimizer �!. Equivalently, Algorithm 3 is

attracted to �! in that for sufficiently large n, the state

spends more time at �! than any other value of � 2 �, i.e.,
the state occupation probabilities generated by Step 3 (26)

satisfy 
nð�!Þ > 
nð�Þ, � 2 �� f�!g.

A sufficient condition for Assumption (O) to hold (see

[96]) is that the probability density function of the mean

square error current mnð�Þ is symmetric, unimodal, and

identical for all � 2 �. Since the distribution of the mean

square error current mnð�Þ is not known, it is difficult to

verify Assumption (O). However, Algorithm 3 yields
excellent numerical results for estimating the shape of

the sodium channel (Section VII).

2) Discrete Search/Ruler-Based ACBD Algorithm: We

propose two alternative discrete stochastic optimization

algorithms that require much less restrictive conditions for

convergence than Algorithm 3. We start by expressing the

optimal ion channel shape �! as the solution of the
following equivalent stochastic optimization problem.

Define the loss function

Ynð�; unÞ¼I mnð�Þ�unð Þ

where IðxÞ¼ 1; if x>0

0; otherwise.

�
(28)

Here, un is an independent uniform random number in

[0, 1]. The uniform random number un is a stochastic ruler

against which the candidate mnð�Þ is measured. The result
was originally used in devising stochastic ruler optimiza-

tion algorithms [89]; although, here we propose a more

efficient algorithm than the stochastic ruler. Applying

Algorithm 3 to the cost function EfYnð�; unÞg defined in

(28) yields the following search-ruler algorithm.
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Theorem 3 (Convergence and Efficiency of Algorithm 4):
The estimated sequence f�!ng generated by Step 4 of the

search ruler Algorithm 4 converges with probability one to

the global optimizer �!. Equivalently, Algorithm 4 is

attracted to �! in that for sufficiently large n, the state

spends more time at �! than any other value of � 2 �, i.e.,

the state occupation probabilities generated by Step 3 (26)

satisfy 
ð�!Þ > 
ð�Þ, � 2 �� f�!g. Here

lim
n!1


nð�!Þ

nð�Þ

¼ 
ð�!Þ

ð�Þ ¼ mð�Þ

mð�!Þ
1 � mð�!Þð Þ
1 � mð�Þð Þ > 1: (29)

The proof is presented in Appendix.

Discussion: Inequality (29) gives an explicit representa-

tion of the discriminative power of the algorithms between

the optimum shape �! and any other candidate � in terms
of the normalized expected costs mð�Þ and mð�!Þ.
Algorithm 4 is more efficient than the stochastic ruler

algorithm of [88] when the candidate samples are

chosen with equal probability. The stochastic ruler algo-

rithm of [88] has asymptotic efficiency 
ð�!Þ=
ð�Þ ¼
ð1 � mð�!ÞÞ=ð1 � mð�ÞÞ. So, Algorithm 4 has the addi-

tional improvement in efficiency due to the additional

multiplicative term mð�Þ=mð�!Þ in (29).

C. Search Ruler With Antithetic Variable
Variance Reduction

A more efficient implementation of the search-ruler

Algorithm 4 can be obtained by using variance reduction

based on antithetic variables as follows. Since un is

uniformly distributed in [0, 1], so is 1 � un. Similar to

Theorem 3, it can be shown that the optimal ion channel
shape �! defined in (25) is the minimizing solution of the

following stochastic optimization problem �! ¼
arg min� EfZnð�; unÞg where

Znð�; unÞ ¼
1

2
Yn mnð�Þ; unð Þ þ Yn mnð�Þ; 1 � unð Þ½ � (30)

where the normalized sample cost mnð�Þ is defined in (25).

Since the indicator function Ið�Þ is a monotonic function of

its argument, the following well-known result in antithetic
variables applies; see [103, p. 136] for proof.

Result 4: For the variables Zn in (30) and Yn in (28),
varfZnð�; unÞg � varfYnð�; unÞg.

As a result, one would expect that the stochastic

optimization algorithm using Zn would converge faster.

Applying Algorithm 4 to the cost function EfZnð�Þg
defined in (30) yields the variance reduced search-ruler

algorithm.

D. Kernel-Based Constrained
Exploration Exploitation

The above discrete ACBD algorithms can be modified

to dynamically adapt their exploration of the possible

shapes as the number of iterations increases. Typically,

during initial iterations of a learning algorithm, it is

desirable to aggressively explore more candidates since

one is uncertain how good the current estimate is. After

more confidence has been obtained about the candidates,
it is desirable to reduce exploration and exploit the best

candidates. This adaptation is done via a kernel-based

learning algorithm. The key idea is Step 3, where a kernel-

based update is used.

Algorithm 5 Kernel-Based Adaptive Exploration/Exploita-

tion ACBD Algorithm

Step 0: Identical to Algorithm 3.

Step 1: (Adaptive Sampling and Exploration.) Evalu-

ate mnð�nÞ. Then perform the following two level sam-

pling procedure: Simulate a Bernoulli random variable

�n 2 f0; 1g with probabilities Pð�n ¼ 0Þ ¼ 2�n and

Pð�n ¼ 1Þ ¼ 1 � 2�n, where 0 � �n � 1=2.

/ If �n ¼ 0, perform exploration as follows: sample
~�n uniformly from N �n

. Evaluate mnð~�nÞ and go to
Step 2.

/ If �n ¼ 1 (perform no exploration), go to Step 3.

Step 2: (Conditional Acceptance test.) If mnð ~�nÞ G
mnð�nÞ, set �nþ1 ¼ ~�n, else, set �nþ1 ¼ �n.

Step 3: (Update Kernel-based exploration probability

�n and state occupation probabilities 
n.)


nþ1 ¼ 
n þ �n e�nþ1
� 
n

� �
; 
0 ¼ e�0

(31)

Tnþ1 ¼ Tn þ �n e�nþ1
� 
n � Tn

� �
(32)

�nþ1 ¼ 0:5 1 � K
Tnþ1

�nþ1


 �� 

(33)

where �n 
 0, �n ! 0, and �n=�n ! 0 as n ! 1.

Step 4: Identical to Algorithm 3.

In the above algorithm, for any x 2 RS the kernel

KðxÞ ¼ ð1 � x0xÞ; if kxk2 ¼
ffiffiffiffiffiffi
x0x

p
� 1

0; otherwise.

�

Algorithm 4 Stochastic Search Ruler-Based ACBD

Algorithm for Ion Channel Shape Estimation

Identical to Algorithm 3 with mnð�nÞ and mnð~�nÞ replaced

by Ynð�n; unÞ and Ynð~�n; ~unÞ. Here un and ~un are indepen-

dent uniform random numbers.
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The intuition in the above kernel-based learning in
Step 3 is as follows. In early iterations the algorithm

knows little about the optimal shape. Hence, the average

error Tn between e�n
and the empirical occupation 
n is

large. When this average error Tn is large, then

KðTnþ1=�nÞ is close to zero and �n given in (33) is close

to 0.5. Thus, in early iterations the algorithm is forced to

explore the space of candidate shapes. As the iterations

progress and the algorithm learns the optimal shape, the
average error Tn is getting smaller, then KðTnþ1=�nÞ is close

to one and �n ! 0. As a result, as the algorithm becomes

more confident about the optimal shape estimate, it

reduces the exploration probability to reduce the explora-

tion cost.

Remark: Corresponding versions for Algorithm 4 and its

antithetic variable variance reduced version are obtained
by replacing mnð�Þ by Ynð�; unÞ and Znð�; unÞ.

The following theorem deals with the convergence of

the above algorithm. The proof is presented in [92].

Theorem 5: Assume that the conditions of Theorem 2

are satisfied. Then, the sequence ð
n; Tn; �nÞ0 given in

Step 3 above converges to ð
; 0; 0Þ0 w.p. 1. Also,

Algorithm 5 is attracted to the equilibrium potential �!.
Theorem 5 says that the exploration probability �n

converges to zero. This is intuitively appealing since it

means that as the algorithm becomes more confident in its

estimate of the optimal candidate, fewer computational

resources are spent running BD algorithms on other less

promising candidates. We refer the reader to [92] for

further motivation of the above adaptive kernel learning

algorithm. The rate of convergence of the algorithm is
studied in [92] by use of diffusion approximation methods;

see also [104, Ch. 10].

VII. NUMERICAL EXAMPLES

The ACBD simulation algorithms were run on the Linux

Cluster LC supercomputer of the Australian National

University Supercomputer Facility at the Glacier super-

computer at the University of British Columbia, Canada

(which is part of the Westgrid network). Glacier is

comprised of 840 dual processor nodes, each node being
an IBM blade Xeon 3.06 GHz processor.

A. Example 1: Estimating PMF of
Gramicidin Ion Channels

Here, we illustrate the performance of discrete

stochastic optimization-based ACBD Algorithm 3 in

estimating the PMF of a gramicidin channel formulated

in Section V-B. Further detailed numerical results are

presented in [105]. Consider the parameterization

� ¼ ðW; �2;m; �2
0;m0Þ0 defined in (21) for the PMF U�.

Since the positions of the potential wells for the gramicidin

channel are known to be around �9 Å and þ9 Å [25],
[78], we fix the components W ¼ 9, �2 ¼ 16, and

�2
0 ¼ 12:25 in �. In our numerical study, we have assumed,

for simplicity, prior knowledge of the position and number

of binding sites. Note that this assumption is not essential

since our algorithm can also estimate these parameters.

Thus, our aim is to estimate the two components ðm;m0Þ
which determines the depth of the two potential wells of

the gramicidin channel and the height of the potential
barrier between the wells. This is obtained by estimating

the parameter �! that optimizes the fit between the BD

simulated current and experimentally determined current.

We thus construct �d to contain 25 possible values for

ðm;m0Þ corresponding to well depth 2 f5 kT; 6 kT; 7 kT;
8 kT; 9 kTg and barrier height 2 f4 kT; 4:5 kT; 5 kT;
5:5 kT; 6 kTg. The particular values of these parameters

were chosen after a preliminary study showed that choices
of well-depth and barrier-height outside the given range

lead to significant degradation in performance; we thus

find the best fit PMF from this subset which comprises a

reasonable range of values.

Each iteration runs 24 BD algorithms in parallel

(12 experimental conditions for �n and ~�n in Step 1 of the

adaptive BD) on the supercomputer. The experimentally

determined current Ið�Þ is evaluated at 12 different

Fig. 8. Figure depicts error surface Cð�Þ for PMF estimate of

gramicidin channel. Minimum is at a well depth of

6 kT and barrier height of 4.5 kT.
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voltages and concentrations on the current–voltage-
concentration profiles of the gramicidin channel. The

concentration-voltage pairs used cover voltages ranging

from 25–200 mV at a concentration of 500 mM as well

as concentrations ranging from 100–1000 mM at

voltages of 100 and 200 mV. Specifically, the conditions

we used are 25, 50, 75, 100, 150, and 200 mV from the

current–voltage curve obtained with an ionic concen-

tration of 500 mM; 100, 200, 500, and 1000 mM from
the current-concentration curves were obtained with the

applied potentials of 100 and 200 mV.

Moreover, Fig. 8 illustrates the profile of the loss

function obtained using Algorithm 3 with the varying well

depths and barrier heights in �d as well as an interpolated

version of this surface. The figure shows that the optimal

value for the loss function (in dark blue) occurs at well

depth and barrier height of 6 kT and 4:5 kT as mentioned
previously. It also suggests that there are several possible

PMF parameter values that produce near optimal values

for the loss function.

B. Example 2: Shape Estimation of Sodium Channels
Here, we illustrate the performance of Algorithm 3 in

estimating the shape of the sodium channel. In the BD

simulations we match the BD current Îð�Þð�Þ to 12
different experimental conditions � 2 � where � ¼
f�1 . . .�12g. These are described in Table 2 where each

condition corresponds to one value for �. The experimen-

tal currents Ið�Þ used to match our simulation currents are

from experimental data in [106]–[108] for actual sodium

channels under different experimental conditions. It took

approximately 38 h of simulation time to simulate all the

experimental conditions � 2 � at each n 2 N and a total of
approximately �4500 h for 120 batches. With batch jobs

running in parallel, it took less than three weeks to obtain
all the results.

Fig. 9 shows the cost Cð�Þ for the nine different shapes.

It also shows the effort Algorithm 3 spends on the different

candidates. Fig. 9 also plots the empirical occupation

probabilities 
n at iteration n ¼ 120 for Algorithm 3. The

plot illustrates the attraction property of the algorithm. It

spends more time at the optimal shape (Case 4) than any

other shape. The closest candidate shape to Case 4 is Case 1
and the figures shows that the algorithm spends the second

largest time at Case 1.

Discussion: The reason why the loss function for shape

� ¼ 4 and � ¼ 1 are very similar can be explained as

follows. From Table 1, the only difference between the

two shapes is the diameter of the outer vestibule. In this

region, the ions filling up this external vestibule are
responsible for aiding the ions further in the selectivity

filter to conduct through the channel by providing them

with a repulsive kick. For shape � ¼ 1 the width of this

region is nearly 28 Å, and for shape � ¼ 4 it is only about

14 Å. There are no other differences between the two

models. We know from [85] that this outer vestibule

region contains on average about two ions during much of

the BD simulation. What we have learned from this new
set of simulations performed with Algorithm 2, is that, as

long as the vestibule is wide enough to accommodate two

ions, its exact width seems to be irrelevant. Once the two

ions are present in this outer vestibule, the ions inside the

channel are provided with enough repulsive force for

these resident ions to move through to the other side of

the channel. Thus, even though it might seem that two

shapes were selected by the algorithm as being almost
equally successful in satisfying all the experimental

Table 2 Simulation Conditions: Simulations Were Performed for Each Shape With All 12 Conditions. Concentrations Inside and Outside the Channels Were

Varied Between Solutions of NaCl and CaCl2 and Both. External Potentials of 
70 and 
100 mV Were Applied
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conditions presented, the important features for selectiv-

ity and permeation in the sodium channel are still

maintained.

VIII . CONCLUDING REMARKS

In this paper, we have given a detailed description of the
permeation problem in biological membrane ion channels.

The main theme of this paper is the formulation of the ion

channel permeation problem as a large scale interacting

particle dynamical system comprised of ions, protein

atoms, and water molecules.

In Section II, we discussed four widely used physical

models for ion channel permeation, namely quantum

mechanics, MD, BD, and PNP theory. Of these four
theories for permeation, as discussed in Section II, BD is

computationally tractable and yet sufficiently accurate for
modeling ion permeation in many important biological ion

channels.

In Section IV, we presented a detailed description of

BD. In BD, the propagation of ions in the ion channel is

modeled as a large-scale, multiparticle, continuous-time,

stochastic dynamical system satisfying the Langevin

equation. The key idea here is that instead of considering

the dynamics of individual water molecules, which is
computationally intractable, the BD system considers the

average effect of water molecules as a random force acting

on individual ions. We also presented a probabilistic

interpretation of BD.

One of the major caveats to using BD in studying the

permeation dynamics in biological ion channels is the use

of Poisson’s equation to calculate the forces encountered

by permeant ions. The issue here is whether one can
legitimately employ macroscopic electrostatics in regions

that are not much larger than the diameters of the water

molecules and ions. In the narrow, constricted region of

the channel, such as in the selectivity filter of the

potassium channel, the representation of the channel

contents as a continuous medium is a poor approximation.

The method of ACBD, which we discussed in Sections V

and VI, is designed to circumvent the limitations posed in
the conventional simulation approach. Using the ACBD

algorithm, we are able to solve the inverse problem. That

is, given the 3-D shape of a channel, we can deduce the

potential of mean force encountered by an ion traversing

the channel that correctly replicates experimental find-

ings, thus obviating the need to solve Poisson’s equation.

Another issue with BD is the replacement of ions to

maintain the fixed concentration; see remark following
Procedure 1 in Section III-D. We refer to [109] and [110]

for further discussion.

Since ions are assumed to be spherically symmetric,

the BD formulation in this paper only considers transla-

tional movement (2) and velocity (3). However, drug and

channel blocker molecules are large and asymmetric. To

model the effect of such large asymmetric molecules on

ion channel permeation, it is necessary to consider both
translational as well as rotational dynamics in a BD

formulation [111]. Such a methodology may be used to

explain how such drugs/blockers interact dynamically and

bind with the ion channel. Understanding the dynamics of

such a mechanism at a molecular level can eventually lead

to the design of more efficient drugs and channel

blockers. h

APPENDIX

. Proof of Theorem 3
We first show that the optimal ion channel shape �!

defined in (25) is the minimizing solution of the

following stochastic optimization problem �! ¼
arg min� EfYnð�; unÞg.

Fig. 9. (a) Error surface Cð�Þ for nine different shapes for sodium

channel. (b) Computational effort spent on the nine different

candidates by ACBD discrete optimization Algorithm 3.

Figure shows attraction property of Algorithm 3 to

optimal shapeValgorithm spends more effort at

optimal shape compared to other shapes.
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The proof is as follows: Using the smoothing property
of conditional expectations yields

E I mnð�Þ � unð Þf g ¼E E I mnð�Þ � unð Þjmnð�Þf gf g
¼E P un G mnð�Þð Þf g
¼E mnð�Þf g
¼mð�Þ:

The second equality follows since expectation of an

indicator function is probability, and the third equality

holds because un is a uniform random number in [0, 1] so

that Pðun G aÞ ¼ a for any a in [0, 1].

Next, we show that the state process f�ng generated by
Algorithm 4 is a homogeneous, aperiodic, irreducible,

Markov chain on the state space � with transition

probability matrix A ¼ ðaij; i; j 2 �Þ where

aij ¼ Pð�n ¼ jj�n�1 ¼ iÞ ¼ 1

S � 1
mðiÞ 1 � mðjÞð Þ: (34)

That the process f�ng is a homogeneous aperiodic

irreducible Markov chain follows from its construction

in Algorithm 4Vindeed �n only depends probabilistically

on �n�1. From Algorithm 4, given candidate i and its

associated cost Ynði; unÞ, candidate j is accepted if its
associated cost ~Ynðj; ~unÞ is smaller. So, the probability of

the algorithm transitioning from state i to state j is

aij ¼
1

S � 1
P ~Ynðj; ~unÞ G Ynði; unÞ
� �

¼ 1

S � 1
P mnðjÞ G ~unð ÞP mnðiÞ > unð Þ:

Finally, it is straightforward to verify that


ð�Þ ¼ c 1 � mð�Þð Þ
Y
j 6¼�

mðjÞ (35)

satisfies the invariant distribution where c denotes a

normalization constant. Hence


ð�!Þ

ð�Þ ¼ mð�Þ

mð�!Þ
1 � mð�!Þð Þ
1 � mð�Þð Þ ¼ 1=mð�!Þ � 1

1=mð�Þ � 1

which is clearly 
1 since mð�!Þ is the global minimum;

therefore, mð�!Þ � mð�Þ.
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