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We present a method for estimating the ‘best-fit’ potential of mean force encountered by an ion
permeating across the gramicidin-A ion channel. The proposed method does not require explicit
use of a dielectric constant and can be applied to other ion channels. The potential of mean force is
parameterized and its parameters are estimated using a stochastic optimization algorithm that con-
trols Brownian dynamics simulations. A loss function measuring the differences between currents
simulated using Brownian dynamics and currents observed at various applied potentials and ionic
concentrations is calculated to compare between possible candidate parameters of the potential
of mean force. The results obtained indicate that several possible potentials of mean force with
barrier-heights and well-depths in the vicinity of 6 kT and 4�5 kT provide optimal fits to the observed
currents. Using both “brute-force” search and stochastic optimization, a sensitivity analysis is con-
ducted to show the effect of potential of mean force (PMF) parameter variations on the simulated
currents fit to the observables. We illustrate the methods using the gramicidin channel as a test
case and show that the results closely match the profiles of potential of mean force reported in the
literature.

Keywords: Adaptive Control, Brownian Dynamics, Stochastic Optimization, Stochastic Search
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1. INTRODUCTION

One of the aims of constructing a theoretical model of
an ion channel is to elucidate how individual ions prop-
agate across the pore at a femtosecond time scale. The
dimensions of certain constricted segments of typical ion
channels are mesoscopic, in that the individual ions are
comparable in radius to the ion channel. Inferences made
from macroscopic electrostatics are valid only in the
regions that are large compared to the diameters of ions and
water molecules. In the narrow constricted region of the
channel, whose radius may be nearly equal to or less than
that of a monovalent ion with its first hydration shell, the
representation of the dielectric as a continuous medium and
an ion as a point charge may be a poor approximation.1�2

Thus, there is a pressing question in applying electro-
statics to a mesoscopic system that needs to be addressed.
What is the value of the effective dielectric constant, �c, of
the water-filled pore formed by a protein wall and does a

∗Author to whom correspondence should be addressed.

uniform value of �c exist at all? In the gramicidin channel,
where the radius of the ion conducting path is only 2 Å,3–6

continuum electrostatics fails to describe ion permeation
owing to the long single-file chain of water molecules in
the pore.7 In the selectivity filter of the potassium chan-
nel, a potassium ion is solvated by carbonyl oxygen atoms
and a water molecule at each end along the filter. Thus,
Coulombic force experienced by the ion by other charged
particles will be attenuated substantially. In other words,
the effective dielectric constant �c, if one exists, is likely
to be higher than that in the interior of the protein, but the
precise value to be used for solving Poisson’s equation is
not yet determined.

Here we present a method of estimating the PMF for
any arbitrary channel based on a stochastic optimization
algorithm. Given a three-dimensional shape of the pore
and experimentally-determined currents across the chan-
nel under various conditions, our scheme calculates the
PMF encountered by permeating ions that minimizes the
discrepancies between measured and simulated currents.
We first make a guess of several feasible PMF ’s that are
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parameterized by mixtures of Gaussian basis functions.
After randomly selecting one such PMF as our initial guess,
the target currents at different applied potentials and differ-
ent ionic concentrations are specified, and the results of the
simulations obtained by using the initial, guessed PMF are
compared with the target currents. The stochastic search
algorithm then evaluates the loss function between the two
sets of measurements and modifies the parameters of the
Gaussian mixture to be used in the next iteration. This pro-
cess is repeated many times until the updated PMF con-
verges. We illustrate this method for deducing the profile of
the PMF encountered by a sodium ion as it traverses across
the gramicidin pore.

The equilibrium PMF calculated in this way, using the
adaptive controlled Brownian dynamics, incorporates the
atomic fluctuations, which are believed to be intrinsic fea-
tures of any channel proteins. The profile also incorporates
the effective dielectric constant of the pore. Because the
profile is engineered to match all the macroscopic observ-
ables, it reflects the closest approximation within a class of
functions to the true force encountered by a permeating ion
at each discrete conduction step across the molecular pore.

The paper is organized as follows. We first give the for-
malism of the Brownian dynamics algorithm, which can be
construed as a continuous-time stochastic dynamical sys-
tem satisfying the Langevin equation. Then, we introduce a
novel, learning-based dynamic algorithm for estimating the
profile of PMF, which we call adaptive controlled Brownian
dynamics. Adaptive controlled Brownian dynamics entails
the use and evaluation of a loss function in which we
incorporate some prior knowledge, namely the linearity of
the current–voltage curve in gramicidin-A. We report our
results on the optimal PMF as well as on the loss surface for
all candidate PMF’s obtained using the proposed algorithm.
We compare these results to the analogous results obtained
using a brute-force search approach conducted on a grid
of parameters, and note that both approaches agree on the
optimal PMF and on the loss surface. We also observe that
there are several PMF’s with low values of the loss func-
tion, indicating that possibly more than one set of parame-
ters can produce conduction that fits the observables well.

2. OVERVIEW OF BROWNIAN DYNAMICS

We first outline the traditional Brownian dynamics method
for estimating ionic currents across a model channel and
compare it with the new method we introduce, which we
call adaptive controlled Brownian dynamics.

The computational steps involved in the Brownian
dynamics algorithm are as follows. First, initial estimates
of the structural information of the channel, namely, the
channel geometry and charges on the ionizable residues
in the protein, are used to determine the parameters of
Poisson’s equation. Numerically solving Poisson’s equa-
tion yields the energy profile or PMF an ion traveling
through the ion channel will experience. This in turn feeds
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Fig. 1. Block diagram of the adaptive controlled Brownian dynamics
algorithm.

into the Brownian dynamics simulation that governs the
stochastic evolution of all the ions. As a result of ions
modeled by Brownian dynamics permeating through the
ion channel, a simulated ion channel current is obtained.
This simulated ion channel current is compared with the
experimentally observed ion channel current. The differ-
ence between the two currents is used to refine or modify
the model of the channel geometry and charges and the
process is repeated until the error between the simulated
(predicted) ion channel current and experimentally deter-
mined ion channel current is minimized.

The method of adaptive, controlled Brownian dynamics
we propose here is designed to circumvent the limitations
posed by the traditional simulation approach outlined
above. In this method, we solve the inverse problem. That
is, given the 3-dimensional shape of a channel, we deduce
the potential of mean force encountered by an ion travers-
ing the channel that correctly replicates the experimental
findings. To achieve this aim, we first make a guess of
several feasible PMF’s, representing each with a Gaussian
basis function characterized by a multi-dimensional param-
eter vector. We then randomly select one of them as our
initial guess and successively refine the initial guess using
a stationary stochastic optimization algorithm. In this way,
we derive the PMF that minimizes the mean square error
between the simulated current and the actual observed
experimental current. The steps involved in this algorithm
are schematically shown in Figure 1.

2.1. The Brownian Dynamics Formalism

To make this paper self-contained, we briefly overview
the notation and the setup of the simulation assembly. We
also give a complete formulation of the permeation of ions
across the membrane pore as a continuous-time stochastic
dynamical system that satisfies the Langevin equations.

Two reservoirs �1 and �2 are connected to the ion
channel �. Each reservoir comprises of N K+ ions (inde-
xed by i = 1�2� � � � �N ) and N Cl− ions (indexed by i =
N + 1� � � � �2N . Let t ≥ 0 denote continuous time. With
no loss of generality, throughout we illustrate our scheme
using the gramicidin-A channel as an example. An exter-
nal potential �ext

� 	x
 is applied along the z axis of the
setup, i.e., with x = 	x� y� z
, �ext

� 	x
= �z�� ∈�. Due to
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this applied potential, K+ ions drift across the ion chan-
nel. Let Xt =

(
x	1
′t �x	2
′t �x	3
′t � � � � �x	2N
′t

)′ ∈ �2N denote
the positions and Vt =

(
v	1
′t �v	2
′t �v	3
′t � � � � �v	2N
′t

)′ ∈ �6N

denote the velocities of all the 2N ions. The position x	i
t =
	x

	i

t � y

	i

t � z

	i

t 


′ and velocity v	i
t of each of 2N ions in the
simulation assembly evolves as

x	i
t = x	i
0 +
∫ t

0
v	i
s ds (1)

m+v	i
t = m+v	i
0 −
∫ t

0
m+�+	x	i
s 
v

	i

s ds+

∫ t

0
F
	i

���	Xs
ds

+
∫ t

0
b+	x	i
s 
dw

	i

s � i∈�1�2�����N � (2)

m−v	i
t = m−v	i
0 −
∫ t

0
m−�−	x	i
s 
v

	i

s ds+

∫ t

0
F
	i

���	Xs
ds

+
∫ t

0
b−	x	i
s 
dw

	i

s � i∈�N+1�N+2�����2N�

(3)

where the frictional coefficient m±�±	x	i
s 
=m±�± = kT
D± ,

if x	i
s ∈�1 ∪�2. Here D+ = 1�96×10−9 m2/s is the dif-
fusion coefficient of K+ ions within a bulk solution, and
D− = 2�03 × 10−9 m2/s is the diffusion coefficient for
Cl− ions.

Equations (2) and (3) are the Langevin equations. The
process w	i


t denotes a 3-dimensional Brownian motion,
which is component-wise independent. The terms b+	x	i
s 

and b−	x	i
s 
 are, respectively,

b+
2
	x	i
s 
= 2m+�+	x	i
s 
� b−

2
	x	i
s 
= 2m−�−	x	i
s 
 (4)

Finally, the noise processes w	i

t and w	j


t , that drive any
two different ions, j �= i, are assumed to be statistically
independent. Here, F

	i

���	Xt
 = −q	i
 x	i
t

�
	i

���	Xt
 repre-

sents the systematic force acting on ion i, where the scalar
valued process �	i


���	Xt
 is the total electric potential expe-
rienced by ion i given the position Xt of the 2N ions.
The subscript � is the applied external potential. The sub-
script � is a parameter vector that characterizes the PMF
defined below. To implement the above system on a digi-
tal computer we utilize a discretized version of the above
equations.

The potential �	i

���	Xt
 experienced by each ion i com-

prises of the following five components:

�
	i

���	Xt
 = U�	x

	i

t 
+�ext

� 	x	i
t 
+�IW	x	i
t 


+�C�i	Xt
+�SR� i	Xt
 (5)

Here U�	x
	i

t 
 denotes the PMF, �ext

� 	x	i
t 
 denotes the
external potential applied along the z axis of the grami-
cidin-A channel, �IW	x	i
t 
 denotes the ion-wall interac-
tion potential, also called the #/r9 potential, �C�i	Xt

denotes the inter-ion Coulomb potential and �SR� i	Xt

denotes the short range ion–ion potential. The PMF U�

is a smooth function of the ion position x	i
t and depends
on the structure of the ion channel. Therefore, estimating
U�	·
 yields structural information about the ion channel.
For the gramicidin-A channel, we will represent U�	·
 by a
Gaussian mixture with parameter vector � and then present
a stochastic algorithm to estimate �.

2.2. Systematic Force Acting on Ions

As mentioned after Eq. (4), the systematic force experi-
enced by each ion i is

F
	i

���	Xt
=−q	i
 x	i
t

�
	i

���	Xt


where the scalar valued process �	i

���	Xt
 denotes the total

electric potential experienced by ion i given the position
Xt of all the 2N ions.

Just as �
	i

���	Xt
 is decomposed into 5 terms, we can

similarly decompose the force F 	i

���	Xt
=−q x	i
t

�
	i

���	Xt


experienced by ion i as the superposition (vector sum) of
5 force terms, where each force term is due to the cor-
responding potential in Eq. (5)—however, for notational
simplicity we describe the scalar valued potentials rather
than the vector valued forces.

Note that the first three terms in Eq. (5), namely
U�	x

	i

t 
, �ext

� 	x	i
t 
, �IW	x	i
t 
 depend only on the posi-
tion x	i
t of ion i, whereas the last two terms in Eq. (5)
�C�i	Xt
, �

SR� i	Xt
 depend on the distance of ion i to all
the other ions, i.e., the position Xt of all the ions. We will
now define the potential of mean force in Eq. (5).

Potential of mean force (PMF), denoted U�	x
	i

t 
 in

Eq. (5), comprises of electric forces acting on ion i when
it is in or near the ion channel. The PMF U� is a smooth
function of the ion position x	i
t and depends on the struc-
ture of the ion channel. Therefore, estimating U�	·
 yields
structural information about the ion channel. The main aim
of paper is to estimate the PMF U�	·
. Indeed, we will
represent U�	·
 by a Gaussian mixture with parameter vec-
tor � and then present a provably convergent stochastic
algorithm to estimate �.

The PMF U� originates from two different sources.
First, there are fixed charges in the channel protein and the
electric field emanating from them renders the pore attrac-
tive to one ionic species and repulsive to another. Some of
the amino acids forming the ion channels carry the unit or
partial electronic charges. Secondly, when any of the ions
in the assembly comes near the protein wall, it induces
surface charges of the same polarity at the water–protein
interface. This is known as the induced surface charges.

2.3. Brownian Dynamics Algorithm

We run the BD simulation algorithm for L iterations. Each
iteration proceeds until an ion crosses the channel. We
denote these random times as %̂ 	l
�1��2

if the ion has crossed
from �1 to R2 and %̂

	l

�2��1

if the ion has crossed from �2
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to R1. We also count the number of times L�1��2
that K+

ions have crossed from �1 to �2, and the number of times
L�2��1

that K+ ions have crossed from �2 to �1. Note that
L�1��2

+L�2��1
=L. We only consider passage of positive

K+ ions i = 1� � � � �N across the ion channel since in a
cationic channel the ion channel current is caused only by
positive ions. Finally, we compute the mean first passage
time and mean current estimate after L iterations as

%̂
	���

�1��2

	L
 = 1
L�1��2

L�1��2∑
l=1

%̂
	l

�1��2

%̂
	���

�2�R1

	L
 = 1
L�2��1

L�2��1∑
l=1

%̂
	l

�2��1

(6)

Î 	���
	L
= q+
(

1

%̂
	���

�1��2

	L

− 1

%̂
	���

�2�R1

	L


)
(7)

In terms of the mean first passage times %
	���

�1��2

� %
	���

�2�R1

,
the mean current flowing from �1 via the gramicidin-A
channel � into �2 is defined as

I 	���
 = q+
(

1

%
	���

�1��2

− 1

%
	���

�2�R1

)
(8)

However, it is not possible to obtain explicit closed form
expressions for I	�
 in Eq. (8). The aim of Brownian
dynamics simulation is to obtain estimates of these quanti-
ties by directly simulating the stochastic dynamical system
of Eqs. (1), (2), and (3). In particular, the following result,
the proof of which is given by Krishnamurthy and Chung,8

shows that the estimated current Î 	���
	L
 obtained from
the above Brownian dynamics simulation algorithm is
strongly consistent.

Theorem 1. For fixed PMF � ∈ * and applied external
potential � ∈�, the ion channel current estimate Î 	���
	L

obtained from the Brownian dynamics simulation algo-
rithm over L iterations is strongly consistent, i.e.,

lim
L→�

Î 	���
	L
= I 	���
 w.p.1 (9)

where I 	���
 is the mean current defined in Eq. (8).

3. ADAPTIVE CONTROLLED
BROWNIAN DYNAMICS

3.1. Formulation of PMF Estimation Problem

With the above setup summarized briefly in the previ-
ous section, we are now ready to tackle our main goal
of estimating the PMF U� of a gramicidin-A channel. We
first approximate the PMF U� with a finite basis function
approximation. Here we chose the basis functions to be a
mixture of Gaussian functions that is characterized by a
5-dimensional parameter vector �. Then we formulate the

PMF estimation problem as a stationary stochastic opti-
mization problem. We also give an explicit construction of
how the simulated current through the ion channel can be
computed via Brownian dynamics simulation. The main
contribution below is to formulate the problem of estimat-
ing the PMF U� as a discrete stochastic optimization prob-
lem involving minimizing the mean square error between
the Brownian dynamics simulated current (ÎT 	���
) and
the actual observed experimental current I .

3.2. Parameterization of Gramicidin-A
Channel PMF with Gaussian Mixture

The PMF U�	x
 of the gramicidin-A channel can be
approximated with a Gaussian basis function. The PMF
structure of the gramicidin-A channel is well known.9–13

Hence a basis function approximation of the gramicidin-A
PMF U�	x
 needs to capture the following important prop-
erties of the gramicidin-A channel:
(1) The K+ ion moves along the center of the ion channel,
i.e., its coordinates x = 	x� y� z
 = 	0�0� z
. The PMF
U�	x
 (where x = 	0�0� z
) experienced by the ion within
the gramicidin-A channel is symmetric with respect to
z, i.e.,

U�	x
= U�	0�0� z
= U�	0�0�−z
 for all x ∈�

(2) For z < −20 Å or z > 20 Å, U�	0�0� z
 should be
close to 0—since the PMF only acts on ions in or near the
ion channel.

Since the PMF U�	x
 is a continuously differentiable
function of x, it can be uniformly approximated arbitrarily
closely by a set of Gaussian basis functions or some other
radial basis function. By using physiological data of the
gramicidin-A channel, we find that the following scaled
Gaussian mixture comprising of a linear combination of
3 Gaussian density functions gives an excellent fit:

U�	-0�0�z.
 = mexp
(
−1

2
	z−W
2

#2

)

+mexp
(
−1

2
	z+W
2

#2

)
+m0 exp

(
−1

2
z2

#2
0

)
(10)

where
� = 	W�#2�m�#2

0 �m0

′ (11)

The above Gaussian mixture comprises of two Gaussian
functions with identical weighting factors m and iden-
tical variance #2, centered about z = W and z = −W ,
respectively—and a third zero mean Gaussian centered
about z = 0 with variance #2

0 and weighting factor m0.
It is obvious that the above parameterization satisfies the
symmetry property 1 above. Also for suitable choice of
the parameter vector � in Eq. (11), property 2 holds.

It is worth noting that by using a linear combination
of more than 3 Gaussian basis functions parameterized
appropriately, one could approximate the PMF arbitrarily
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closely. However, using 3 Gaussian basis functions seems
to provide a good compromise between quality of fit and
the complexity of the optimization problem to be solved.

The structure of the gramicidin-A channel, implies that
the parameters � defined in Eq. (11) need to constrained
to the set * defined as follows:

* = ��0W ∈ -0�30 Å.� #2 ∈ -0�#2
max.� m ∈ -0�M.�

#2
0 ∈ -0�#2

max.� m0 ∈ -0�M.� (12)

where M and #max are positive bounded constants.
Edwards et al.7 deduce the PMF for the gramicidin-A

channel, which when incorporated into a non-equilibrium
permeation model, best fits the observed physiological data.
Their best-fit PMF U�, fitted with the Fermi function,
has two potential wells of 7 kT along the z-axis, one at
z=−9 Å, the other at z= 9 Å. Also at z= 0, the poten-
tial barrier is 5 kT (with respect to the potential wells).
For mathematical convenience, we fit U� with a mixture
of Gaussian basis functions (Eq. (10)). Using the Nelder-
Mead simplex (direct search) optimization algorithm in
Matlab, we obtained the best least squares fit over the
interval z ∈ -−20 Å�20 Å. as

�∗ = 	9�00�16�00�−7�11�12�25�−1�41
′ (13)

Figure 2 shows the PMF generated by the Gaussian mix-
ture approximation Eq. (10) with parameter �∗.
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Fig. 2. PMF U� of gramicidin-A ion channel obtained by a 3 component
Gaussian mixture. The two basic parameters characterizing U�	-0202 z.

are the depths of the two wells Uw and the height of the barrier Ub .
The width of the barrier is approximately 10 A. The PMF shown (solid
curve) with Uw = 6 kT and Ub = 4�5 kT gives the best description
of the physiological data on gramicidin-A ion channels, while the PMF
(dashed curve) with Uw = 5 kT and Ub = 4�5 kT is the state of the
algorithm after 3 iterations.

3.3. Parameterization of Multi-Ion Channel
PMF with Gaussian Mixture

So far we have assumed a single ion channel, i.e., that
only one ion travels through the ion channel at any given
time instant. However, in more complicated ion channels
typically two, three, or more ions can be present in the
ion channel simultaneously. The purpose of this subsection
is to show that subject to some minor modifications, the
single ion PMF can still be used to characterize the PMF
of multi-ion channels.

Assume that the shape and structure of the channel are
not altered by the presence of a second ion, and that two
ions are present in the ion channel at a given time instant.
Let their position vectors be x1 and x2, respectively and let
U�	x1�x2
 denote the PMF of this two-ion channel. This
two ion PMF can be broken down as follows:

U�	x1�x2
= U�	x1
+U�	x2
+UI	x1�x2


where U�	x1
 and U	x2
 denote the single ion PMF and
UI denotes the interaction term between the two ions.
In a similar manner, if three ions are present in the ion
channel,

U�	x1�x2�x3
 = U�	x1
+U�	x2
+U�	x3
+UI	x1�x2


+UI	x1�x3
+UI	x2�x3
+UI3	x1�x2�x3


where UI denotes the pairwise interaction between any two
of the three ions, and UI3	x1� x2� x3
 is the triple ion inter-
action. We assume that UI3 (and any higher order interac-
tions in the case of more than three ions) is zero. Thus the
general formula for a multi-ion PMF is

U�	x1�x2� � � � �xn
=
n∑
i=1

U�	xi
+
n∑

i� j=12 i �=j
UI 	xi�xj 


The single ion PMF can be parameterized as described
above, but the interaction potential still needs to be esti-
mated. The interaction potential can be described by a two-
dimensional PMF, with a functional form and initial guess
based on that described above, but subject to modification
by the adaptive controlled Brownian dynamics algorithm.
The parameters of the interaction potential would be added
to the set of possible parameters � to be optimized, and
the process would be exactly as described in the rest of
the paper, only with a larger set of parameters.

3.4. PMF Estimation as a Stochastic Optimization
Problem: Adaptive Controlled Brownian
Dynamics

We will estimate the PMF U� parameterized by �, by
computing the � that optimizes the fit between the mean
current I 	���
 (defined above in Eq. (8)) and the experimen-
tally observed current y	�
 defined below. Unfortunately, it
is impossible to explicitly compute I 	���
 from Eq. (8). For
this reason we resort to a stochastic optimization problem

706 J. Comput. Theor. Nanosci. 3, 702–711, 2006
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formulation below, where consistent estimates of I 	���
 are
obtained via the Brownian dynamics algorithm. The main
algorithm presented in this section is the adaptive con-
trolled Brownian dynamics simulation Algorithm 1 which
solves the stochastic optimization problem and yields the
optimal PMF.

The Brownian dynamics simulation algorithm is run in
batches indexed by batch number n = 1�2� � � � . In each
batch n, the PMF parameter �n is selected (as described
below), a number of external potentials � at various ionic
concentrations [K] are applied, and the Brownian dynam-
ics algorithm is run over L iterations. The estimated cur-
rent Î 	���
n is then computed using Eq. (8). In estimating
the PMF with our adaptive Brownian dynamics algorithm,
we typically use 12 target currents y	�
 distributed across
4 different concentrations [K].

Knowing that the current in the gramicidin-A channel, at
a given concentration [K] increases linearly with potential
�, we can model the true current as y	�� -K.
= â	-K.
��
within a range of voltages (� ∈ -�1��2.), where â	-K.

is unknown. Assuming that the experimentally recorded
currents at concentration [K] closely approximate the true
current, we can now seek the straight line that best fits the
data available to us. Equivalently we want to find its slope
(the conductance)

â	-K.
= arg min
a

∑
�∈�-K.

	y	�
−a�
2 (14)

Similarly, we can find the straight line that best fits the
simulated data available to us at batch n, i.e., Î 	���
n

d̂n	�� -K.
= arg min
d

∑
�∈�-K.

	Î 	���
n −d�
2 (15)

where ∪-K.∈��-K. =� and � is the set of concentrations at
which potentials are applied to obtain experimental read-
ings on the current. This leads to the following evaluated
loss function, measuring the mean square error between
the line derived from the experimental current and the one
derived from the simulated Brownian dynamics current at
a fixed concentration [K]:

�n	�� -K.
 =
∫ �2� -K.

�1� -K.

	d̂n	�� -K.
�− â	-K.
�
2 d� (16)

= �3
2� -K.−�3

1� -K.

3
	d̂n	�� -K.
− â	-K.

2 (17)

where �1� -K. and �2� -K. are the smallest and largest applied
potentials at concentration [K], respectively. We can now
rewrite the loss function as

�	�� -K.
= E
{
�n	�� -K.


}
� �	�
= ∑

-K.∈�
w-K.�	�� -K.


(18)
where w-K. are weights that we can manually assign to the
different available concentrations at which we have values

for the current. Generally, one may want to assign differ-
ent weights to the different concentration levels based, for
example, on a subjective assessment of the quality of data
or the number of recordings available. Finally, the optimal
PMF U�∗ is determined by the parameter �∗ that minimizes
the above loss function, i.e., �∗ = arg min�∈* �	�
.

3.5. Discrete Optimization: Conservative Stochastic
Search Algorithm for Estimating the PMF

A feasible approach to solving the optimization prob-
lem presented above is to use discrete optimization. Here,
the aim is to utilize an efficient optimization algorithm
for computing the best PMF parameters from a discrete
set of candidates. We present a conservative stochastic
search algorithm, motivated by the work of Krishnamurthy
et al.,14 where the state of the algorithm becomes more and
more conservative as time moves on and converges almost
surely to the optimal state. This is achieved by utilizing
the average currents Î 	����mean


n and Î 	�̃���mean

n at each con-

centration and voltage. This average is calculated over all
the visits to both the current state and the alternative state
including the latest batch. Hence we define *d as follows

*d = ��i0Wi ∈ -0�30 Å.� #2
i ∈ -0�#2

max.� mi ∈ -0�M.�

#2
0� i ∈ -0�#2

max.� m0� i ∈ -0�M.� (19)

where i = 1�2� � � � � S and S = #*d the cardinality of the
set of parameters. The optimization problem becomes

�∗ = arg min
�∈*d

�	�
 (20)

Moreover, the algorithm described in this section is recur-
sive and requires batch Brownian dynamics indexed by
batch number n = 1�2� � � � as before. In the algorithm,
�n denotes the state at batch n associated with a neigh-
borhood ��n

= *d − ��n�. Also em�m = 1�2� � � � � S is a
S dimensional unit vector with one at the mth dimen-
sion and zeros elsewhere. The aim of discrete stochas-
tic approximation is to devise an efficient adaptive search
allowing us to find �∗, the optimal solution, with as few
Brownian dynamics (samples) as possible by not making
unnecessary observations at non-promising values of �.15

With those goals in mind, we now present the following
algorithm.

Algorithm 1. Conservative Stochastic Search Adaptive
Brownian Dynamics Algorithm for PMF Estimation

Redefine the loss function by replacing Î 	���
 with
Î 	����mean
 in Eq. (15).
• Step 0 (Initialization): Set batch index n = 0, initialize
�0 ∈ *d randomly, initialize the state occupation proba-
bilities 70 = e�0

, and initialize the optimal state �∗ = �0.
Initialize the S-dimensional vector K to one.
• Step 1 (Sampling and Evaluation): At batch n, eval-
uate loss function �n	�n
 by conducting � independent

J. Comput. Theor. Nanosci. 3, 702–711, 2006 707



Delivered by Ingenta to:
Shin-Ho Chung

IP : 150.203.37.75
Wed, 31 Jan 2007 23:26:55

R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Estimating the Potential of Mean Force Using Brownian Dynamics Simulations Krishnamurthy et al.

Brownian dynamics simulation runs. Generate an alterna-
tive state �̃n by sampling uniformly from ��n

and evaluate
�n	�̃n
. Update the occupation times and the estimates of
the mean currents

K	�n
= K	�n
+1� K	�̃n
= K	�̃n
+1 (21)

K	�n
Î
	�n���mean

n = 	K	�n
−1
Î 	�n���mean


n−1

+Î 	���
n � Î
	����mean

0 = 0 (22)

K	�̃n
Î
	�̃n���mean

n = 	K	�̃n
−1
Î 	�̃n���mean


n−1

+ Î 	�̃� �
n � Î
	�̃� ��mean

0 = 0 (23)

• Step 2 (Conditional Acceptance): If �n	�̃n
 < �n	�n
,
set �n+1 = �̃n, otherwise set �n+1 = �n.
• Step 3 (Occupation Probabilities Update): Update empi-
rical state occupation probabilities:

7n+1 =7n+8n	e�n+1
−7n
� 70 = e�0

� 8n = 1/n (24)

• Step 4 (Update Estimate of PMF): �∗n = �m∗ where m∗ =
arg maxm∈�1�2� ����K� 7n+1	m

• Step 5: Set n to n+1 and go to Step 1.

It is noteworthy that Algorithm 1 is conservative since
acceptance of a state is based on the average currents
calculated over the batches of Brownian dynamics sim-
ulations run using the parameters of that state. More-
over, the algorithm converges with probability one because
the Brownian dynamics algorithm provides unbiased esti-
mates of the currents for the different states at each batch.
Thus, by the strong law of large numbers, and for any
� ∈*d,

lim
n→� Î

	����mean

n = E

{
Î 	���


}= I 	���
 (25)

4. RESULTS

Consider the parameterization � = 	W�#2�m�#2
0 �m0


′

defined in Eq. (11) for the PMF U�. Since the position
of the potential wells for the gramicidin-A channel are
known to be around −9 Å and +9 Å,9�11�12�16 we fix
the components W = 9, #2 = 16, and #2

0 = 12�25 in �.
In our numerical study, we have assumed, for sim-
plicity, prior knowledge of the position and number of
binding sites. Note that this assumption is not essen-
tial since our algorithm can also estimate these param-
eters. Thus, our aim is to estimate the two components
	m�m0
 which determines the depth of the two poten-
tial wells of the gramicidin-A channel and the height of
the potential barrier between the wells. This is obtained
by estimating the parameter �∗ that optimizes the fit
between the Brownian dynamics simulated current and
experimentally determined current. We thus construct

*d to contain 25 possible values for 	m�m0
 correspond-
ing to well depth ∈ �5 kT �6 kT �7 kT �8 kT �9 kT � and
barrier height ∈ �4 kT �4�5 kT �5 kT �5�5 kT �6 kT �. The
particular values of these parameters were chosen after a
preliminary study showed that choices of well-depth and
barrier-height outside the given range lead to significant
degradation in performance; we thus find the best fit PMF
from this subset which comprises a reasonable range of
values.

The experimentally determined current y	�
 is evaluated
at 12 different voltages and concentrations on the current–
voltage-concentration profiles of the gramicidin-A chan-
nel. The concentration-voltage pairs used cover voltages
ranging from 25–200 mV at a concentration of 500 mM
as well as concentrations ranging from 100–1000 mM at
voltages of 100 mV and 200 mV. Specifically, the condi-
tions we used are 25, 50, 75, 100, 150, and 200 mV from
the current–voltage curve obtained with an ionic concen-
tration of 500 mM; 100, 200, 500, and 1000 mM from
the current-concentration curves obtained with the applied
potentials of 100 mV and 200 mV.

4.1. Conservative Search

The adaptive controlled Brownian dynamics simulation
algorithm (Algorithm 1) is run to estimate �∗. Figure 3
shows the evolution of the estimates ��∗k� versus batch
index n = 0�1� � � � . While we let the algorithm run for
100, batches, with each batch corresponding to 0�8 8s, in
order to verify that it has indeed converged, Figure 3 shows
that convergence to the optimal state �	7
 corresponding
to (well depth, barrier height) = 	6 kT � 4�5 kT 
 occurs
within 30 batches. In Figure 2, we plot the PMF estimate
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Fig. 3. Convergence of PMF Estimation Algorithm 1. The algorithm
arrives at the optimal PMF (candidate 7) with barrier height 4.5 kT and
well depth 6 kT within 30 iteratations and is thus substantially less costly
than the brute force approach as it requires a much smaller number of
BD simulations, each one run for a shorter period of time.
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(a) Error Surface using Algorithm 1

(b) Interpolated Version

Fig. 4. The estimated error surface �	�
 of Eq. (18) obtained using
Algorithm 1 (the conservative search algorithm), as well as an interpo-
lated version of this error surface. Note that the error surface obtained
using this method closely resembles the true one obtained using the brute
force approach, with the estimate arrived at using a much shorter com-
putation time. The minimum here as well occurs at a well depth of 6 kT
and barrier height of 4.5 kT. Several near optimal values can be seen
as well.

U�	�60
 obtained after 3 batches of running Algorithm 1
as well as the optimal PMF.

Moreover, Figure 4 illustrates the profile of the loss
function obtained using Algorithm 1 with the varying well-
depths and barrier heights in *d as well as an interpolated
version of this surface. The figure shows that the optimal
value for the loss function (in dark blue), occurs at well
depth and barrier height of 6 kT and 4�5 kT as mentioned
previously. It also suggests that there are several possible
PMF parameter values that produce near optimal values
for the loss function.

4.2. Exhaustive Search

To illustrate experimentally the success of the optimiza-
tion algorithm in converging to �∗, the optimal parameters
of the parameterized PMF, we run the Brownian dynamics
program for an extended number of steps (corresponding
to 16 8s) at each of the 25 candidate parameters � ∈ *d

and for the 12 various experimental conditions � ∈�. We
use Brownian dynamics simulations to generate estimates
of �	�� -K.
� where � ∈ *d and -K. ∈ �. We then cal-
culate �	�
 and plot the resultant estimate of this loss
function for the various values of the well depth and bar-
rier height along with an interpolated version in Figure 5.
Recalling that our objective is to find the parameters �∗

that minimize �	�
, we arrive to well depth = 6 kT and
barrier height = 4�5 kT as the optimal configuration. This
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(a) True Error Surface

(b) Interpolated Version

Fig. 5. The true error surface �	�
 of Eq. (18) obtained by running
all the candidate PMF’s, as well as an interpolated version of this error
surface. The optimal value occurs at a well depth of 6 kT and barrier
height of 4.5 kT, though several near optimal values exist.
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result, arrived at via a brute force exhaustive search tech-
nique exactly matches the result of the proposed discrete
optimization algorithm.

4.3. Comparison of Resultant Loss Function

The values of the � that produce a small value for the loss
function in the brute-force exhaustive search approach, i.e.,
those corresponding to (well depth, barrier height) pairs of
(5 kT �4 kT ), (5 kT �4�5 kT ), (6 kT �4�5 kT ), (6 kT �5 kT )
as well as (7 kT �5 kT ) and (8 kT �5 kT ) are the same
values of � that produce large 7	�
 in Algorithm 1. 7	�

denotes the proportion of time the algorithm spends in
evaluating a chosen parameter of the profile. Moreover, the
values of �	�
 that resulted from Algorithm 1 can be seen,
by comparing Figure 4 and Figure 5, to closely resemble
the estimate of the loss function obtained by running the
brute force approach.

In conclusion, the discrete optimization algorithm pro-
posed was capable of converging to the optimal param-
eters in a relatively small number of iterations and with
much lower use of computer time than the brute force
approach. For the simulation setup we used, the brute force
approach required running the Brownian dynamics pro-
gram for 25 candidate parameters and 12 experimental
points, with each simulation corresponding to 16 8s. On
the other hand, the adaptive controlled Brownian dynam-
ics scheme required running the program for 30 itera-
tions each with 2 candidate parameters at 12 experimental
points, with each simulation corresponding to 0�8 8s. In
other words, the proposed scheme requires only 12% of
the computer time used by the brute force approach.

5. DISCUSSION

We provide a novel computational scheme, which we
call adaptive controlled Brownian dynamics, for estimat-
ing the PMF encountered by a permeating ion across
an ion channel that does not require explicit knowledge
of an effective dielectric constant and that is much less
computationally expensive than an exhaustive search on a
large grid of parameters. We make an initial, reasonable
guess of a PMF, representing it by, for example, a mix-
ture of Gaussian basis functions. The currents under var-
ious conditions are calculated in parallel using Brownian
dynamics simulations. Typically, we select twelve points
from the conductance-concentration curves and current-
voltage curves. For the gramicidin-A channel, we make
use of the fact that the PMF has two prominent wells near
the entrance of the pore that is separated by a central bar-
rier. At each selected voltage or concentration value, the
currents under each condition is estimated with Brownian
dynamics runs using an initial PMF. Then another batch
of Brownian dynamics runs is carried out with different
well-depth and barrier-height selected randomly from a
finite discrete set of candidates. Thus 24 runs altogether,

are carried out in parallel at each iteration. After the com-
pletion of the first iteration, the currents obtained from
Brownian dynamics simulations are compared with the
experimental currents. To this end we use a loss function
that makes explicit use of the prior knowledge we have
on the gramicidin-A channel, namely that current–voltage
curves are linear for a given concentration. Thus, the PMF
that generates the current that better matches the experi-
mental data is kept while the other one is replaced with
a randomly selected PMF. This process is repeated many
times until the estimated profiles converge.

Analysis of numerical results: In the numerical exam-
ple we show for the gramicidin-A channel, the PMF that
accurately replicate the experimental observations, when
incorporated into a Brownian dynamics algorithm, has two
wells of 6 kT in depth and an intervening barrier of 4�5 kT
in height. The well depth here refers to the zero poten-
tial in the reservoir and the barrier height is measured
with respect to the well minimum. Previously, Edwards
et al.7 estimated the shape of the potential profile using the
brute-force inverse method. The depth of the wells and the
height of the barrier they quote are, respectively, 8 kT and
5 kT . It is of interest to compare these profiles with those
obtained by Chiu and Jakobsson.17 They replicated the
conductance properties of Na+ ions via electro-diffusion
equations using a profile with the well depth of 5�4 kT
and the barrier height of 4�2 kT . McGill and Schumaker18

also find that similar well depths and barrier heights are
required to match experimental currents using their diffu-
sion theory. Thus, the previous estimates of the parameters
set, obtained by using a variety of different methods, are
reasonably congruent to those obtained with the technique
we propose here. Furthermore, all these results match well
with the fact that according to Figures 4 and 5, there are
several possible well-depths and barrier-heights that pro-
duce ‘good’ fits to the experimentally measured currents.
These well-depths and barrier-heights all fall within 2 kT
of the optimal well depth of 6 kT and 1 kT of the optimal
barrier height of 4�5 kT that we report.

To ascertain that the optimal parameters generated by
our scheme are correct, we checked our results using an
exhaustive search BD and compared them with those
obtained with the adaptive BD algorithm (see Figs. 4
and 5). Both approaches yield the optimal PMF with
the same well-depth and barrier-height. However, several
other PMF’s with low values of the loss function are also
uncovered, indicating that possibly more than one set of
parameters can produce conduction that fits the observ-
ables well. We note here that, in estimating the parameters
of the PMF, we have only attempted to match the current–
voltage relationship at one concentration (500 mM) and
two current concentration curves obtained with a driving
voltage of 100 mV and 200 mV. If more available data
sets are used in evaluating the loss function, it is likely
that the optimal parameters will converge on one value.
For example, the binding constant Kd of ions in the two
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binding sites is known, but we have not made use of this
information in assessing the loss function.

Discrete stochastic optimization for PMF estimation:
There are several methods that can be utilized in refining
the initially guessed PMF through successive iterations. To
avoid explicit computation of the Hessian, we make use
of discrete stochastic optimization algorithms. The basic
stochastic optimization procedure starts out with an ini-
tial guess at the PMF, and this initial guess is updated on
an iteration-by-iteration basis with the aim of improving
the fit between the simulated currents and the experimen-
tal data. Minimizing the discrepancies between these two
sets of quantities involve adjustments of several variables.
In the simple test case we use in this paper, the PMF is
represented with a mixture of three Gaussian functions,
optimization involving the adjustment of only two param-
eters. We have used discrete optimization over a set of 25
different combinations of well-depth and barrier-heights.
Alternatively, one can use continuous optimization, uti-
lizing for example the Kiefer-Wolfowitz finite difference
gradient estimator.

Applicability to other ion-channels: The method
detailed here, we note, can be applied to any ionic chan-
nel, in which conduction takes place as a single or multi-
ion process. If, for example, the pore is occupied by two
or more ions and conduction takes place as a ‘knock-on’
effect, as it does in the L-type calcium channel19 and the
KcsA potassium channel,20�21 we first need to estimate the
PMF for a single ion permeating across the pore, as it is
done for the gramicidin-A channel. Multiple ions attracted
to the pore will exert the forces on each other via the
repulsive Coulomb force and induced surface charges on
the protein–water interface. These two components of the
forces, tabulated in a ‘lookup’ table, need to be added to
the PMF. Because the construction of such a table requires
an assumed value of �c, one could construct many such
tables, each with a different value of �c, and then select

one that minimizes the ‘loss function,’ and the estimated
PMF converges most rapidly. One could alternatively uti-
lize a parameterized multi-ion PMF, i.e., with no explicit
use of �c as we did with the single ion PMF, and then
solve an optimization problem to extract the multi-ion
PMF parameters.
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