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1  INTRODUCTION

An ion channel is a hole or pore in a nerve cell 
membrane. In physical structure, an ion channel 
is a large protein molecule whose different 
confi gurations correspond to the ion channel being 
in a closed state or open state. The measurement of 
ionic currents fl owing through single ion channels 
in cell membranes has been made possible by the 
giga-seal patch-clamp technique.18,13 This was a 
major breakthrough for which the authors of18 won 
the 1991 Nobel prize in Medicine. More recently, 
the 2003 Nobel prize in Chemistry was awarded to 
McKinnnon for determining the structure of several 
different types of ion channels from crystallographic 
analyses. Because all electrical activities in the 
nervous system, including communications between 
cells and the infl uence of hormones and drugs on cell 
function, are regulated by membrane ion channels, 
understanding their mechanisms at a molecular 
level is a fundamental problem in biology. Moreover, 
elucidation of how single ion channels work will 
ultimately help neurobiologists fi nd the causes of, 
and possibly cures for, a number of neurological and 
muscular disorders. 

This paper addresses two fundamental problems 
in ion channels from a estimation and control 
perspective: The Gating Problem and the Permeation 
Problem. 

The gating problem8, 5, 15 deals with understanding how 
ion channels undergo structural changes to regulate 
the fl ow of ions into and out of a cell. The ion channel 
currents are typically of the order of pico-amps (i.e.
10 12− , amps). The measured ion channel currents 
(obtained by sampling typically at 10 kHz, i.e, 0.1 
milli-second time scale) are obfuscated by large 
amounts of thermal noise. In Sec.2 of this paper, we 
address the following issues related to the gating 
problem: 
(i)  we present a Hidden Markov model                 

formulation of the observed ion channel 
current. 

(ii) We present a discrete stochastic optimization 
algorithm for controlling a patch clamp 
experiment to determine the Nernst potential 
of the ion channel with minimal effort. This fi ts 
in the class of so called “experimental design” 
problems. 
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(iii) We briefl y discuss dynamic scheduling 
algorithms for activating multiple ion channels 
on a biological chip so as to extract maximal 
information from them. 

The permeation problem1, 19 seeks to explain the working 
of an ion channel at an Å (10 10− m) spatial scale by 
studying the propagation of individual ions through 
the ion channel at a femto (10 15− ) second time scale. 
This setup is said to be at a mesoscopic scale since the 
individual ions (e.g., Na+ ions) are of the order of a 
few Å in radius and are comparable in radius to the 
ion channel. At this mesoscopic level, point charge 
approximations and continuum electrostatics break 
down. The discrete fi nite nature of each ion needs to 
be taken into consideration. Also, failure of the mean 
fi eld approximation in narrow channels implies that 
any theory that aspires to relate channel structure to 
its function must treat ions explicitly. In Sec.3 of this 
paper we show how Brownian dynamics simulation 
can be used to model the propagation of individual 
ions through an ion channel. 

2     THE GATING PROBLEM

2.1  Hidden Markov Model Formulation

A typical trace of the ion channel current 
measurement from a patch clamp experiment (after 
suitable anti-aliasing fi ltering and sampling) shows 
that the channel current is piecewise constant discrete 
time signal that randomly jumps between two values 
- zero amperes which denotes the closed state of the 
channel, and I v( )  amperes which denotes the open 
state.  I v( ) is called the open-state current level. 
Sometimes the current recorded from single ion 
channel dwells on one or more intermediate levels, 
known as conductance substates. 

Chung et al.6, 5 fi rst introduced the powerful paradigm 
of Hidden Markov Models (HMMs) to characterize 
patch-clamp recordings of small ion channel currents 
contaminated by random and deterministic noise. 
By using sophisticated HMM signal processing 
methods, Chung and his colleagues6, 5 demonstrated 
that the underlying parameters of the HMM could 
be obtained to a remarkable precision despite the 
extremely poor signal to noise ratio. These HMM 
parameter estimates yield important information 
into the dynamics of ion channels. Since the 
publication of6, 5, several papers have appeared in 
the neuro-biological community that generalize 
the HMM signal models in6, 5 in various ways to 
model measurements of ion channels, see24 and the 
references therein. With these HMM techniques, 
it has now possible for neurobiologists to analyze 
not only large ion channel currents but also small 
conductance fl uctuations occurring in noise.

Markov Model for Ion Channel Current: The idea 

of using Markov chains to model the piecewise 
constant fi nite state nature of ion channel currents 
was developed in detail in7, 8. Suppose a patch clamp 
experiment is conducted with a voltage v  applied 
across the ion channel. Then, as described in5, 24, 
the ion channel current { ( )}i v

n , can be modelled 
as a three state homogeneous fi rst order Markov 
chain. The state space of this Markov chain is 
{ , , ( )}0 0g b I v corresponding to the physical states 
of gap mode, burst-mode-closed and burst-mode-open. For 
convenience, we will refer to the burst mode closed 
and burst-mode-open states as the open and closed 
states, respectively. In the gap mode and the closed 
state the ion channel current is zero. In the open state, 
the ion channel current has a value of I v( ).

The ( )3 3×  transition probability matrix A v( )  
of the Markov chain { ( )}i v

n , which governs the 
probabilistic behaviour of the channel current, is 
given by

 
                                              (1)
The elements of A v( )  are the transition 
probabilities a v P i v j i v i

ij n n
( ) ( ( ) ( ) )= = | =+1

where i j
I v

, ∈ , ,{
( )}

0
0g b . The zero probabilities in the 

above matrix A v( )  refl ect the fact that a ion channel 
current cannot directly jump from the gap mode to 
the open state, similarly an ion channel current 
cannot jump from the open state to the gap mode. 
Note that in general, the applied voltage  affects both 
the transition probabilities and state levels of the ion 
channel current { ( )}i v

n . 

HMM Observations: Let { ( )}y v
n

 denote the 
measured noisy ion channel current at the electrode 
when conducting a patch clamp experiment: 

y v i v w v n …
n n n
( ) ( ) ( )= + , = , ,1 2                    (2)

Here { ( )}w v
n  is thermal noise and is modelled 

as zero mean white Gaussian noise with variance 

σ 2 ( )v . Thus the observation process { ( )}y v
n  is a 

Hidden Markov model sequence parameterized by 
the model 

λ σ( ) { ( ) ( ) ( )}v A v I v v= , , 2
                                 (3)

where  v denotes the applied voltage. We remark here 
that the formulation trivially extends to observations 
models where the noise process w v

n
( )  includes a 

time-varying deterministic component together with 
white noise - only the HMM parameter estimation 
algorithm needs to be modifi ed as in16. 
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HMM Parameter Estimation of Current Level 
I v( ) : Given the HMM mode for the ion channel 
current above, estimating I v( )  for a fixed 
voltage v, involves processing the noisy observation 
{ ( )}y v

n  through a Hidden Markov Model maximum 
likelihood parameter estimator. The most popular 
way of computing the maximum likelihood estimate 
(MLE) I v( ) is via the Expectation Maximization 
(EM) algorithm (Baum Welch equations). The EM 
algorithm is an iterative algorithm for computing the 
MLE.  It is now fairly standard in the signal processing 
and neuro-biology literature - see10 for a recent 
exposition - or5 which is aimed at neurobiologists. 
Alternatively a recursive EM algorithm can be used 
for online estimation of the parameters of the HMM 
- see17 for details. 

Let ∆ˆ ( )I v  denote MLE of I v( )  based on the
∆  -point measured channel current sequence 
( ( ) ( ))y v … y v

1
, , ∆ . For suffi ciently large batch size  

∆ of observations, due to the asymptotic normality 
of the MLE for a HMM,4

∆ − ,∆( )ˆ ( ) ( ) ( ( ))I v I v N v0 Σ                    (4)

where Σ−1( )v  is the Fisher information matrix. Thus 

asymptotically ∆ˆ ( )I v  is an unbiased estimator of 
I v( ), i.e., E{ ˆ ( )} ( )∆ =I v I v where  E{}⋅ denotes the 
mathematical expectation operator. 

2.2  Nernst Potential and Discrete Stochastic   
       Optimization

To record currents from single ion channels, the tip 
an electrode, with the diameter of about 1 µ m, is 
pushed against the surface of a cell, and then a tight 
seal is formed between the rim of the electrode tip 
and the cell membrane. A patch of the membrane 
surrounded by the electrode tip usually contains 
one or more single ion channels. The current 
fl owing from the inside of the cell to the tip of the 
electrode through a single ion channel is monitored. 
This is known as “cell-attached” confi guration of 
patch clamp techniques for measuring ion channel 
currents through a single ion channel. Fig.1 shows 
the schematic setup of the cell in electrolyte and the 
electrode pushed against the surface of the cell. 

In a living cell, there is a potential difference between 
its interior and the outside environment, known as 
the membrane potential. Typically, the cell interior is 
about 60 mV more negative with respect to outside. 
Also, the ionic concentrations (mainly Na+, Cl– and 
K+) inside of a cell is very different from outside of 
the cell. In the cell-attached confi guration, the ionic 
strength in the electrode is usually made same as that 
in the outside of the cell. Let E

i
and ß Eo, respectively, 

denote the resting membrane potential and the 
potential applied to the electrode. If E

o
 is identical 

to the membrane potential, there will be no potential 
gradient across the membrane patch confi ned by the 
tip of the electrode. Let ci denote the intra-cellular 
ionic concentration and co  the ionic concentration in 
the electrode. Here the intra-cellular concentration c

i
 

inside the cell is unknown as is the resting membrane 
potential E

i
. c

o
and E

o
are set by the experimenter 

and are known.

 
Figure 1:       Cell-Attached Patch Experimental 

Setup

Let v E E
o i

= −  denote the potential gradient. Both 
the potential gradient  v and concentration gradient  
c c
o i
− drive ions across an ion channel resulting in 

an ion channel current. This ion channel current 
{ ( )}i v

n
is a piece-wise constant signal that jumps 

between the values of zero and I v( ) , where I v( )
denotes the current when the ion channel is in the 
open state. 

The potential E
o

(and hence potential difference v ) is 
adjusted experimentally until the current I v( )  goes 
to zero. This voltage v∗  at which the current  I v( )∗

vanishes is called the Nernst potential and satisfi es 
the so called Nernst equation 

v
kT

e

c

c

c

c
o

i

o

i

∗ = − = − ,ln log ( )59
10

mV
               (5)

where e = . × −1 6 10 19 C denotes the charge of 
an k electron, denotes Boltzmann’s constant and 
T  denotes the absolute temperature. The Nernst 
equation (5) gives the potential difference  v required 
to maintain electro-chemical equilibrium when the 
concentrations are different on the two faces of the 
membrane. 

Determining the Nernst potential v∗ requires 
conducting experiments at different values of voltage 
v . In patch clamp experiments, the applied voltage  
v is usually chosen from a fi nite set. Let 

v V … M∈ = , ,{ ( ) ( )}θ θ1                       

denote the fi nite set of possible voltage values that 
the experimenter can pick. For example, in typical 
experiments, if one needs to determine the Nernst 
potential to a resolution of 4 mV, then M = 80  
and θ( )i  are uniformly spaced in 4 mV steps from 
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θ( )1 160= − mV and θ( )M =160 mV. 

Note that the Nernst potential v∗  (zero crossing 
point) does not necessarily belong to the discrete 
set V – instead we will fi nd the point in V  that 
is closest to v

∗
(with resolution θ θ( ) ( )2 1− ). With 

slight abuse of notation we will denote the element 
in V closest to the Nernst potential as v∗ . Thus 
determining  v V∗ ∈ can be formulated as a discrete 
optimization problem:                           

v I v
v V

∗

∈
= | |argmin ( ) 2

 

Discrete Stochastic Approximation Algorithm 
Learning the Nernst Potential can be formulated 
as the following discrete stochastic optimization 
problem (we refer the reader to our recent paper15

for details) 

Compute v I v
v V

∗

∈
= argmin[ { ˆ( )}]E 2

                    (6)

where ˆ( )I v  is the MLE of the parameter I v( )  of the 
HMM. Since for a HMM, no closed form expression 

is available for Σ−1( )v  in (4), the above expectation 
cannot be evaluated analytically. This motivates 
the need to develop a simulation based (stochastic 
approximation) algorithm. 

The idea of discrete stochastic approximation3 is to 
design a plan of experiments which provides more 
observations in areas where the Nernst potential 
is expected and less in other areas. More precisely 
what is needed is a dynamic resource allocation 
(control) algorithm that dynamically controls 
(schedules) the choice of voltage at which the HMM 
estimator operates in order to effi ciently obtain the 
zero point and deduce how the current increases or 
decreases as the applied voltage deviates from the 
Nernst potential. We propose a discrete stochastic 
approximation algorithm that is both consistent and 
attracted to the Nernst potential. That is, the algorithm 
should spend more time gathering observations 

{ ( )}y v
n

at the Nernst potential v v= ∗
and less 

time for other values of v V∈ . Thus in discrete 
stochastic approximation the aim is to devise an 
effi cient20 adaptive search (sampling plan) which 
allows to fi nd the minimizer v∗ with as few samples 
as possible by not making unnecessary observations 
at non-promising values of v. Here we construct 
algorithms based on the random search procedures 
in2, 3. The basic idea is to generate a homogeneous 
Markov chain taking values in V  which spends 
more time at the global optimum than at any other 
element of  V . There are other classes of simulation-
based discrete stochastic optimization algorithms 
such as nested partition methods23 which combines 
partitioning, random sampling and backtracking to 
create a Markov chain that converges to the global 
optimum. 

Let n …= , ,1 2 denote discrete time. The proposed 
algorithm is recursive and requires conducting 
experiments on batches of data. Since experiments 
will be conducted over batches of data, it is 
convenient to introduce the following notation. 
Group the discrete time into batches of length ∆  
- typically ∆ = ,10 000  in experiments. We use the 

index N …= , ,1 2  to denote batch number. Thus 
batch N  comprises of the ∆  discrete time instants 

n N N … N∈ ∆, ∆ + , , + ∆ −{ ( ) }1 1 1 .  

Let D D … D M
N N N
= , , ′( ( ) ( ))1 denote the vector 

of duration times the algorithm spends at the M  
possible potential values in m … M= , ,1 . 

Finally for notational convenience defi ne the M
dimensional unit vectors, em ,  as  m … M= , ,1

‘                  (7)

with 1 in the m -th position and zeros elsewhere.

The discrete stochastic approximation algorithm 
of2 is not directly applicable to the cost function 
(6) - since it applies to optimization problems 
of  the min { ( )}

v V
C v∈ E form.  However, (6) can 

easily be converted to this form as follows: 

Let 1ˆ ( )I v , 2ˆ ( )I v  be  two statistically  independent    
unbiased HMM estimates of I v( ).  Then defi ning 
ˆ( ) ˆ ( ) ˆ ( )C v I v I v= 1 2 , it straightforwardly follows 

that 

E E{ ˆ( )} [ { ˆ( )}] ( )C v I v I v= =| |2 2
                        (8)

The discrete stochastic approximation algorithm we 
propose is as follows: 

Algorithm 1.  [Algorithm for Learning Nernst 
Potential] 
•   Step 0: (Initialization.) At batch-time N = 0, 

select starting point X … M
0

1∈ , ,{ } randomly. 

Set D e
X0 0

= , Set initial solution estimate 

. 

•   Step 1: (Sampling.) At batch-time N , sample  

 with uniform 
distribution. 

•   Step 2: (Evaluation and Acceptance.) 
Apply  voltage  to patch clamp 
experiment. Obtain two ∆  length batches of 

HMM observations. Let  and 
denote the HMM-MLE estimates for these two 
batches which are computed using the EM 

algorithm.  Set . 

      Then apply voltage v X
N

=θ( ) . Compute 
the HMM-MLE estimates for these two 
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batches, denoted as NI v( )ˆ ( )1
 and NI v( )ˆ ( )2 . Set 

N N NC v I v I vˆ ( )) ˆ ( ) ˆ ( )( ) ( )= 1 2
. 

      If , set , else, set 

X X
N N+ =

1 . 

•   Step 3: (Update occupation probabilities of
X

N
.)                    

      
D D e

N N XN+ = +
+1 1

•   Step 4: (Update estimate of Nernst potential.)

       where 

m D m
m … M N

∗
∈ , , += argmax ( )
{ }1 1 , set 

N N→ +1, go to Step 1. 

The proof of convergence of the algorithm is given 
in15. The main idea behind the above algorithm is 

that the sequence { }X
N  (or equivalently { ( )}θ X

N ) 
generated by Steps 1 and 2 is a homogeneous Markov 
chain with state space { }1, ,… M (respectively, V ) 
that is designed to spend more time at the global 
maximizer v∗ than any other state. In the above 
algorithm, Nv

∗
ˆ denotes the estimate of the Nernst 

potential at batch N . 

In2, the following stochastic ordering assumption was 
used for convergence of the Algorithm 1. 
      (O) For any m … M∈ , , −{ }1 1 , 

I m I m

P C m

kk

kkkkkkkk

2 21

1

( ( )) ( ( ))

( ˆ( ( ))

θ θ
θ

+ > ⇒
+ > ˆ̂ ( ( )))C mθ > .0 5

I m I m

P C m

kk

kkkkkkkk

2 21

1

( ( )) ( ( ))

( ˆ( ( ))

θ θ
θ

+ < ⇒
+ > ˆ̂ ( ( )))C mθ < .0 5

Theorem 1.  Under the condition (O) above, the sequence 

{ ( )}θ X
N  generated by Algorithm 1 is a homogeneous, 

aperiodic, irreducible Markov chain with state space
 V . Furthermore, Algorithm 1 is attracted to the Nernst 

potential v∗ , i.e. , for suffi ciently large N , the sequence 

{ ( )}θ X
N  spends more time at v∗ than an other state. 

(Equivalently, if θ( )m v∗ ∗= , then D m D j
N N
( ) ( )∗ >  

for j … M m∈ , , − ∗{ } { }1 .) 

We also refer the reader to26 for a weak convergence 
analysis of an adaptive version of the above algorithm 
which can be used to learn a time-varying Nernst 
potential. 

2.2  Scheduling Multiple ion channels on a Chip 

The patch clamping method described above has 
rapidly become the “gold standard”11 for studying 
the dynamics of ion channel function by neuro-
biologists. However, patch clamping is a laborious 
process requiring precision micro-manipulation 
under high power visual magnifi cation, vibration 
damping and an experienced skillful experimenter. 
Because of this, high throughput studies required 
in proteomics and drug development have to rely 
on less valuable methods such as fluorescence-
based measurement of intra-cellular ion 
concentrations.25 There is thus signifi cant interest 
in an automated version of the whole patch clamp 
principle, preferably one that has the potential to be 
used in parallel on a number of cells. 

In 2002, Fertig, et al.11 made a remarkable invention 
- the fi rst successful demonstration of a patch clamp 
on a chip - a planar quartz based biological chip 
that consists of several hundred ion channels.21 This 
patch clamp chip can be used for massively parallel 
screens for ion channel activity thereby providing a 
high-throughput screening tool for drug discovery 
efforts. 

Typically, due to their expensive cost, most neuro-
biological laboratories have only one patch clamp 
amplifi er that can be connected to the patch clamp 
chip. As a result, only one ion channel in the patch 
clamp chip can be monitored at a given time. It is 
thus of signifi cant interest to devise an adaptive 
scheduling strategy that dynamically decides which 
single ion channel to activate at each time instant 
in order to maximize the throughput (information) 
from the patch clamp experiment. Such a scheduling 
strategy will enable rapid evaluation and screening 
of drugs. 

Here we make some brief comments on the problem 
of how to dynamically schedule the activation 
of individual ion channels using a laser beam to 
maximize the information obtained from the patch 
clamp chip for high throughout drug evaluation. 
The ion channel activation scheduling algorithm 
needs to dynamically plan and react to the presence 
of uncertain (random) dynamics of the individual 
ion channels in the chip. Moreover, excessive use of 
a single ion channel can make it de-sensitized. The 
aim is to answer the following question: How should 
the ion channel activation scheduler dynamically decide 
which ion channel on the patch clamp chip to to activate 
at each time instant in order to minimize the overall de-
sensitization of channels while simultaneously extracting 
maximum information from the channels? 
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Figure 2:       One dimensional section of planar 
biological chip

A schematic illustration of the ion channel scheduling 
problem for the patch clamp chip is given in Fig.2. 
The fi gure shows a cross section of the chip with 4 ion 
channels. The planar chip could for example consist 
of 50 rows each containing 4 ion channels. Each of 
the four wells contains a membrane patch with an ion 
channel. The external electrolyte solutions contain 
caged-ligands (such as caged-glutamate). When 
a beam of laser is directed at the well, the inert 
caged-ligands become active ligands that cause a 
channel to go from the closed conformation to an 
open conformation. Ions then fl ow across the open 
channel, and the current generated by the motion of 
charged particles is monitored with a patch-clamp 
amplifi er. The amplifi er is switched to the output 
of one well to another electronically. Typically, the 
magnitude of currents across each channel, when it 
is open, is about 1 pA (10 12− A). 

The design of the ion channel activation scheduling 
algorithm needs to take into account the following 
sub-systems. 
(i)  Heterogeneous Ion Channels (Macro-molecules) 

on Chip: In a patch clamp chip, the dynamical 
behaviour of individual ion channels that are 
activated changes with time since they can 
become de-sensitized due to excessive use. De-
activated ion channels behave quite differently 
to other ion channels. Their transition to the 
open state becomes less frequent when they are 
de-sensitized due to excessive use.

(ii) Patch Clamp Amplifi er and Heterogeneous 
Measurements: The channel current of the 
activated ion channel is of the order of pico-
amps and is measured in large amounts 
of thermal noise. Chung et al.,6, 5 used the 
powerful paradigm of Hidden Markov Models 
to characterize these noisy measurements 
of single ion channel currents. The added 
complexity in the patch clamp chip is that the 

signal to noise ratio is different at different 
parts of the chip - meaning that certain ion 
channels have higher SNR that other ion 
channels.

(iii) Ion Channel Activation Scheduler: The ion 
channel activation scheduler uses the noisy 
channel current observations of the activated 
ion channel in the patch clamp chip to decide 
which ion channel to activate at the next time 
instant to maximize a reward function that 
comprises of the information obtained from 
the experiment. It needs to avoid activating 
de-sensitized channels as they yield less 
information. 

It can be shown that optimally scheduling between 
the different ion channels on the chip can be 
formulated as a partially observed stochastic multi-
armed bandit problem. The optimal scheduling 
policy is to pick at each time the ion channel with 
the highest instantaneous Gittins index.14 

3     THE PERMEATION PROBLEM

The permeation problem seeks to explain the working 
of an ion channel at an Å (10 10− m) spatial scale by 
studying the propagation of individual ions through 
the ion channel at a femto (10 15− ) second time scale. 
This setup is said to be at a mesoscopic scale since the 
individual ions (e.g. Na+, ions) are of the order of a 
few Å in radius and are comparable in radius to the 
ion channel. At this mesoscopic level, point charge 
approximations and continuum electrostatics break 
down. The discrete fi nite nature of each ion needs to 
be taken into consideration. Also, failure of the mean 
fi eld approximation in narrow channels implies that 
any theory that aspires to relate channel structure to 
its function must treat ions explicitly. 

For convenience we focus here on gramicidin A 
channels - which are one of the simplest channels. 
Gramicidin A is an antibiotic produced by Bacillus 
brevis. It was one of the fi rst antibiotics to be isolated 
in the 1940s.12 In sub-micromolar concentrations it 
can increase the conductance of a bacterial cell 
membrane (which is a planar lipid bilayer membrane) 
by more than seven orders of magnitude by the 
formation of cation selective channels. As a result 
the bacterial cell is fl ooded and dies. This property 
of dramatically increasing the conductance of a lipid 
bilayer membrane has recently been exploited by9 to 
devise gramicidin A channel based biosensors with 
extremely high gains.

The aim of this section is to estimate the potential 
mean force (pmf) profi le for a gramicidin A channel 
that optimizes the fi t between the simulated current 
and the experimentally observed current. In the 
mesoscopic simulation of a gramicidin A channel, 
we propagate each individual ion using Brownian 
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dynamics (Langevin’s equation) and the force 
experienced by each ion is a function of the pmf. As 
a result of the pmf and external applied potential to 
the ion channel there is a drift of ions from outside 
to inside the cell via the ion channel resulting in the 
simulated current. 

Determining the pmf profile that optimizes the 
fit between the mescoscopic simulated current 
and observed current yields useful information 
and insight into how an ion channel works at a 
mesoscopic level. Determining the optimal pmf 
profi le is important for several reasons: Firstly, it 
yields the effective charge density in the peptides 
that form the ion channel. This charge density yields 
insight into the crystal structure of the peptide. 
Secondly, for theoretical biophysicists, the pmf profi le 
yields information about the permeation dynamics 
including information about where the ion is likely 
to be trapped called “binding sites”, the mean velocity 
of propagation of ions through the channel and the 
average conductance of the ion channel. 

3.1  Gramicidin Channel Model

Consider 2N  ions, where N  denotes a positive 
integer. Of these there are: 

•   N positive charged Na+ ions each with charge  

q+ −= . ×1 6 10 19
C, mass  m+ −= . ×3 8 10 26 kg 

and frictional coeffi cient m+ +γ  where from 
Einstein’s relation 

m
kT

D
D+ + −= , = . × /γ 1 33 10 9 2m s

                     
                                                                                   (9)

Na+ions have a radius of 0.95 Å . 

•   N negative charge Cl− ions each with charge  

q− −= − . ×1 6 10 19 C, mass  m− −= . ×5 9 10 26

kg and frictional coeffi cient m kT
D

− − =γ  where 

D = . × −2 03 10 9 . Cl− ions have a radius of 
1.88 Å . 

Figure 3:       Gramicidin A Channel Model

The setup comprises of 2 cylindrical reservoirs 
connected by the gramicidin ion channel as 
depicted in Fig.3. Each cylindrical reservoir is 30 
Å in radius and N  Å in height. Specifying the 
height of each reservoir to be N  Å guarantees that 
the concentration of ions in each reservoir is at the 
physiological concentration of 150 mM. (Note: 1 Å 

(angstrom) = 10 10−  m). The gramicidin A channel can 
be modelled as cylindrical nano-tube with diameter 
4 Å length 25 Å1 that connects the two reservoirs. 

Let R1  and R
2

 denote the open sets comprised of 
the interior of the reservoirs, C the interior of the 

channel. So R R R C=
1 2  denotes the open 

set comprised of the interior of the reservoirs and 

channel. The corners of R1 , R2  and their connection 
with C  are smoothed out. so that the curve defi ning 
the boundary of R  is differentiable. 

Throught, we index the 2N  ions by i … N= , , ,1 2 2 .  
Let N denote the index set of positive ions 
and  the index set of negative ions, so that 

P N … N= , , ,{ }1 2 2 . 

3.2  Mesoscopic Brownian dynamics formulation

Let t ≥ 0  denote continuous time. Each ion i , moves 

in 3 dimensional space over time. Let x R
t
i( ) ∈ 3 

and  v R
t
i( ) ∈ 3 denote the position and velocity of ion 

i  and time t . The three components xt
i( ) ( )1 , xt

i( ) ( )2

x
t
i( ) ( )3 ,  of  x R

t
i( ) ∈ 3

are, respectively, the x, y and z 
position coordinates. Similarly, the three components 

of v
t
i( )  are the x, y. z velocity components. 

At time t = 0 , the position x i
0
( )  and velocity v

i
0
( )

 of 
each of the 2N  ions indexed by i … N= , ,1 2 2  are 
randomly initialized as follows: There are N / 2  
positive ions and N / 2  negative ions in the upper 

reservoir, each with x U Ri
0 1
( ) [ ],∆ . Similarly theare 

are N / 2  positive ions and N / 2  negative ions in 



8

Australian Journal of  Electrical & Electronics Engineering Vol2, No.1

“Ion channels – estimation and control at macroscopic and nano scales” - Krisnamurthy & Chung

the lower reservoir, each with x U Ri
0 2
( ) [ ],∆ . 

The velocities of the  2N particles are distributed 
according to a three dimensional Gaussian 
distribution with zero mean, and 3 3×  diagonal 
positive defi nite covariance matrix. 

Let x x x … x
t t t t

N= , , ,( )( ) ( ) ( )1 2 2
 denote the positions of 

all the 2N  particles. The position and velocity of 
each positive ions evolve according to the following 
continuous time stochastic dynamical system 

x x v ds Z
t
i i

t

s
i

t
i x( ) ( ) ( ) ( )= + + ,∫ ,

0 0                            (10)

m v m v m v ds F x d
t
i i

t

s
i

t
i

s
+ + + += − +∫ ∫( ) ( ) ( ) ( ) ( )

0 0 0
γ ss      

+ + , ∈ ./ ,R w Z i N
t
i

t
i v1 2 ( ) ( )

                               (11)

m v m v m v ds F x d
t
i i

t

s
i

t
i

s
− − − += − +∫ ∫( ) ( ) ( ) ( ) ( )

0 0 0
γ ss

                    

+ + , ∈ ./ ,R w Z i N
t
i

t
i v1 2 ( ) ( )

                               (12)

Equation 10 merely says that velocity is the time 
derivative of the position. The reflection term 

( )( ) ( )Z Z
t
i x

t
i v, ,,  ensures that the position xt

i( )
 of each 

ion lies in R . In particular, Z
t
i x( ), and Z

t
i v( ), = 0 , if  

x R
t
i o( ) ∈ where Ro  denotes the interior of R . The 

term Zt
i v( ),  models elastic collisions at the boundary 

of R . Equations (11) and (12) are refl ected versions of 
the well known Langevin equations. 

{ }( )w
t
i

denotes a 3 dimensional Brownian motion 
process, which is component wise independent. 

Similarly, { }( )w
t
i

and { }( )w
t
j

, j i≠  are mutually 
independent. 

The systematic force  F x V xi
t x

i
t

t
i

( ) ( )( ) ( )( )= ∇ where 

the scalar valued process V xi
t

( ) ( )  is the total electric 
potential experienced by ion i  given the position 

x x
t t

i= ( )  of the 2N  ions. It is convenient to break 

the potential V xi
t

( ) ( )  into the following four 
components: 

V x U x V xi
t t

i

j i

C ij
t

( ) ( ) ( )( ) ( ) ( )= , +
≠

,∑θ

V xIW i (+ ,
tt

SR i
t

V x) ( )+ ,

                                               
                                                                                 (13)

where 

U x V x V x V x
t
i X i

t
i SE i

t
i P i

t
( ) ( ) ( ) (( ) ( ) ( ), = + +, , ,θ (( ) )i

                                                                                (14)

V x
q

x x
C ij

t
w i i

, =
−

( ) ( )
|| ||

1

4
0

πε ε  

    (Coulomb potential)                                         (15)      

V x
F R R

R x R a
IW i

t
i w

c w

, =
+
+ −

( )
( )

( ( ( )) )
0

10

99 3

(Ion - wall interaction - Lennard Jones potential)     
                                                                                 (16)

V xSR i
t

, =( ) ( )Short range                                (17) 
                                                                                        

 V xX i
t
i, =( )( )                              

(External potential due to applied fi eld)           (18)

V xSE i
t
i, =( ) ( )( ) Surface effect                        (19)

V xP i
t
i, =( ) ( )( ) Protein ion interaction          (20)

3.3. Estimation of Potential Mean Force Profi le

The electrolyte in the two reservoirs comprises of 

55 M (moles) of H O
2 , and 150 mM concetrations 

of Na+
 and  Cl− ions. An uniform electric fi eld 

of 107  V/m is applied across the reservoirs and 
channel. Note that the length of the two reservoirs 
plus channel is approximately 100 Å. So the applied 
electric fi eld results in approximately 100 mV across 
100 Å which accurately matches the physiological 
potential. 

As a result of the applied electrical fi eld the ions drift 

from R
1

 via the channel C  to R2  thus generating an 
ion channel current. Since experimental observations 
are made at the milli-second time scale, the BD 
simulation needs to be run for 1010  points at the 
slow time scale for the 2 1N −  ions in the reservoir 
and 1010  points at the fast time scale for the single 
ion in the gramicidin A channel. 

In order to construct a mathematical expression 

for the current fl owing from R1  to R2 , we need to 
count the number of upcrossings of ions (i.e., the 

number of times ions cross from R1  to R2  across 
the region C ) and downcrossings of ions. These 
are defi ned recursively by increasing sequences of 

random times { }( )σ
n
i

, { }( )τ
n
i

 as follows: 
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σ α
1

0 3( ) ( )inf{ ( ) }i
t
it x= ≥ ; ≤ ,

τ σ β
1 1

3( ) ( ) ( )inf{ ( ) }i i
t
it x= ≥ ; ≥                          (21)

and more generally for n …= , , ,1 2
         

σ τ α
n
i

n
i

t
it x+ = ≥ ; ≤ ,

1
3( ) ( ) ( )inf{ ( ) }                    

τ σ β
n
i

n
i

t
it x+ += ≥ ; ≥ .

1 1
3( ) ( ) ( )inf{ ( ) }                       (22)

Note that τ n
i( )

 denotes the time of the n th upcrossing 

and σ n
i( )

 denotes the time of the n th downcrossing 
for ion i . In terms of these variables, over a time 
period [ ]0,T , denote the total number of upcrossings  

U
T
i( ) and downcrossings  D

T
i( ) of particle i  as 

U n T D n T
T
i

n
i

T
i

n
i( ) ( ) ( ) ( )max{ } max{ }= : ≤ , = : ≤ .σ τ

Then the total current (random process) from R
1

  

to  R2 is 

I v
T

U D
T

i

N

T
i

T
i( ) lim ( ) ( )= −

→∞
=





∑1

1

2

                     (23)

The expected current is the expected value of the 
above process: 

I v
T

U D
T

i

N

T
i

T
i( ) lim { }( ) ( )= −

→∞
=





∑E

1

1

2

                  (24)

A stochastic gradient algorithm such as Smoothed 
Perturbation Stochastic Approximation (SPSA)22 

can be used to estimate the optimal profi le θ  that 
matches the above Brownian dynamics model to 
experimentally observed data. 
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