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Adaptive Brownian Dynamics Simulation for
Estimating Potential Mean Force in

Ion Channel Permeation
Vikram Krishnamurthy�, Fellow, IEEE, and Shin-Ho Chung

Abstract—Ion channels are biological nanotubes formed by
large protein molecules in the cell membrane. This paper presents
a novel multiparticle simulation methodology, which we call
adaptive controlled Brownian dynamics, for estimating the force
experienced by a permeating ion at each discrete position along
the ion-conducting pathway. The profile of this force, commonly
known as the potential of mean force, results from the electrostatic
interactions between the ions in the conduit and all the charges
carried by atoms forming the channel the protein, as well as the in-
duced charges on the protein wall. The current across the channel
is solely determined by the potential of mean force encountered
by the permeant ions. The simulation algorithm yields consistent
estimates of this profile. The algorithm operates on an angstrom
unit spatial scale and femtosecond time scale. Numerical simula-
tions on the gramicidin ion channel show that the algorithm yields
the potential of mean force profile that accurately reproduces
experimental observations.

Index Terms—Brownian dynamics, Gramicidin, ion channel, ion
permeation, potential mean force, stochastic optimization.

I. INTRODUCTION

ALL living cells are surrounded by a cell membrane, com-
posed of two layers of phospholipid molecules, called the

lipid bilayer. Ion channels are water-filled pores formed by large
protein molecules in the cell membrane. These pores are protein
nanotubes that permit the diffusion of ions across the cell mem-
brane into or out of the cell. Although we use the term protein
nanotube, ion channels are typically the size of angstrom units
10 m , i.e., an order of magnitude smaller in radius and

length compared to carbon nanotubes that are used in nanode-
vices. All electrical activities in the nervous system, including
communications between cells and the influence of hormones
and drugs on cell function, are regulated by ion channels. There-
fore, understanding their mechanisms and structure at a molec-
ular level is a fundamental problem in biology.

The setting of this paper is the so-called permeation problem
in ion channels [1], [2]. The permeation problem seeks to
explain the working of an ion channel at an spatial scale
by studying the propagation of individual ions through the
ion channel at a femto -second time scale. This setup
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is said to be at a mesoscopic scale, since the individual ions
(e.g., Na ions which are 0.95 in radius) are comparable in
radius to the nanotube. At this mesoscopic level, point charge
approximations and continuum electrostatics break down for
narrow ion channels such as gramicidin-A ion channels. The
discrete finite nature of each ion needs to be taken into consid-
eration. Also, failure of the mean field approximation in narrow
ion channels implies that any theory that aspires to relate ion
channel structure to its function must treat ions explicitly [3].

The aim of this paper is to estimate the profile of the force
experienced by the ion traversing the pore such that the simu-
lated ion channel current using mesoscopic Brownian dynamics
simulations matches experimentally measured channel cur-
rents under various conditions. In the mesoscopic Brownian
dynamics simulation of an ion channel, an interacting mul-
tiparticle system of ions is simulated where the dynamics of
each individual ion follows Langevin’s stochastic differential
equation [4]. As a result of the external applied potential to the
ion channel and the charges of the atoms in the protein lining
the inner wall of the nanotube, there is a drift of ions from
outside to inside the cell via the ion channel resulting in the
simulated current. For each ion that enters the protein nanotube,
the force experienced by the ion is a function of the charges of
the atoms lining the inner wall of the nanotube. Thus, the mean
passage time for an ion to traverse the nanotube and hence the
simulated ion channel current is a function of the structure of
the atoms lining the nanotube. By optimizing the fit between
the Brownian dynamics simulated current with experimen-
tally observed ion channel currents, one can then estimate the
charges of the atoms lining the nanotube. The main idea of this
paper is to formulate this stochastic optimization problem and
present a provably convergent adaptive algorithm that controls
the behavior of the large scale multiparticle Brownian dynamics
simulation to estimate the effective charge structure.

The effective charge structure of the atoms lining the
nanotube is conveniently summarized by the potential of mean
force (PMF) which comprises electrostatic forces acting on
each ion when it is in or near the ion channel. Our aim is
to estimate the PMF profile of the ion channel, i.e., how the
PMF varies along the length of the nanotube at an spatial
resolution. Determining the PMF profile that optimizes the
fit between the mesoscopic simulated current and observed
current yields useful information and insight into how an ion
channel works at a mesoscopic level. Determining the optimal
PMF profile is important for several reasons. First, it yields
the effective charge density in the peptides that form the ion
channel. Second, for theoretical biophysicists, the PMF profile
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yields information about the permeation dynamics including
the locations of binding sites where the ions in the channel are
likely to be trapped, the mean velocity of propagation of ions
through the channel and the conductance of the ion channel.

A. Main Results

The method of adaptive controlled Brownian dynamics we
propose in this paper is designed to circumvent the limitations
posed on the conventional Brownian dynamics simulation
approach. Conventionally, the electrostatic force experienced
by an ion attempting to traverse the pore is first calculated by
solving Poisson’s equation, which requires a prior knowledge
of the channel structure, the charge state of each ionizable
residue, and the dielectric constants of the protein and the
pore. In the learning-based dynamic control algorithm pro-
posed here, we solve the inverse problem. That is, given the
three-dimensional (3-D) shape of an ion channel, we deduce
the PMF encountered by an ion traversing the channel that
correctly replicate experimental findings. To achieve this aim,
we first make an initial guess of the PMF, representing it with
a Gaussian mixture basis function or other basis function,
characterized by a multidimensional parameter vector, and then
successively refine the initial guess using a stationary stochastic
optimization algorithm. In this way, we derive the PMF that
minimizes the mean square error between the simulated current
and the actual observed experimental current.

The main results of this paper are as follows.
1) To set the stage for devising the adaptive controlled

Brownian dynamics algorithms proposed in this paper, we
first provide a mathematically complete formulation and
statistical analysis of the Brownian dynamics simulation
for tracing the trajectories of ions across the protein nan-
otube. This mathematical formalism is essential to devise a
statistically consistent adaptive Brownian dynamics algo-
rithm. We give a complete formulation of the permeation
of ions across the membrane pore as a continuous-time
stochastic dynamical system that satisfies Langevin’s
equation.

2) We then carry out a probabilistic analysis of the dynamics
of the ions. We show that the multiple ions propagating
via the Langevin equation achieve a stationary distribu-
tion (steady-state) exponentially fast (Theorem 1). For
Brownian dynamics simulation to yield a statistically valid
estimate of the ion channel current, it is essential for the
system to achieve stationarity at an exponential rate. We
show that the current flowing through the ion channel can
be formulated in terms of mean first passage times of ions
(Theorem 3)—and these mean first passage times satisfy a
boundary valued partial differential equation.

3) Because the partial differential equation for the mean first
passage times cannot be solved explicitly, it is necessary
to solve it numerically via Brownian dynamics simulation.
We present the Brownian dynamics simulation algorithm
as a randomized (stochastic simulation) algorithm for
solving this partial differential equation, yielding statisti-
cally consistent estimates of these passage times and hence
the ion channel current. We show the statistical consis-
tency of the current obtained from the Brownian dynamics
simulation algorithm (Theorem 4). More specifically, this

theorem shows that the simulated current converges to the
solution of the partial differential equation.

4) With the above foundation, we present a novel adaptive
controlled Brownian dynamics simulation for estimating
the PMF of the ion channel. The algorithm controls the
interacting multiparticle Brownian dynamical system and
yields a provably convergent estimate of PMF profile of
the nanotube for any arbitrary ion channel. We show in
numerical examples implemented on a supercomputer that
for gramicidin-A ion channels, the controlled Brownian
dynamics simulation yields the PMF profile estimate that
is consistent with other methods.

B. Context and Background

Brownian Dynamics Simulation: In modeling biological
ion channels, Brownian dynamics (BD) so far has proved to
be a powerful tool, directly linking macroscopic observables
to the atomic details of the protein macromolecules through
the fundamental processes operating in electrolyte solutions.
Because water molecules are ubiquitous in biological systems,
their explicit modeling is usually very costly. The effect of the
surrounding water molecules that form the bulk of the system is
represented in BD by an average frictional and random force via
a functional central limit theorem approximation. An implicit
treatment of water in this way reduces the simulation time of an
assembly consisting of the channel protein and spherical ions
in the reservoirs by many orders of magnitude. Also, the atoms
forming the channel are assumed to be rigid. With these two
simplifying assumptions, it is possible to calculate conductance
of an ion channel.

One-dimensional Brownian dynamics was introduced by
Jakobsson and coworkers for the gramicidin channel and
potassium channel [5], [6]. More recently, 3-D BD has been
widely used for modeling biological ion channels incorporating
a large reservoir attached to each end of the channel. This 3-D
semimicroscopic simulation technique has been widely applied
to study the permeation dynamics in a range of physiological
systems, such as the KcsA potassium channel [7], calcium
channels [8], gramicidin-A channel [3], and porin [9]. These
studies provide detailed information about mechanisms under-
lying the permeation of ions across the nanotubes formed by
the protein walls—see also [2] for further details.

Gramicidin-A ion channels: We illustrate the performance
of the controlled Brownian dynamics simulation algorithm
on gramicidin-A ion channels in this paper. Gramicidin-A is
an antibiotic produced by Bacillus brevis [10, pp. 130]. Since
the structure of gramicidin-A ion channels are simple, well
known and have been studied in great detail, they form a useful
benchmark for theoretical models that seek to explain how ions
conducted through a cell membrane cause ion channel currents.
Another reason why we consider gramicidin-A ion channels
is that their radius is much smaller than other biological ion
channels. As a result, it has been recently been shown that
the determination of the PMF by solving Poisson’s equation
does not yield accurate results that fit experimental data [3].
Poisson’s equation assumes that the ion is a point charge and
therefore works well in wide ion channels where the size of the
ion relative to the ion channel radius does not play a significant
role. However, in gramicidin-A ion channels, the channel is
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Fig. 1. Simulation assembly composed of gramicidin-A (hatched) and two
cylindrical reservoirs R , R containing 2N ions. The ion conducting path is
denoted as C.

very narrow and comparable to the size of the ions. As a result
the point charge assumption breaks down. The charges appear
as finite dimensional particles. Furthermore also due to the
mesoscopic nature of the gramicidin-A ion channel, molecular
dynamics do not yield a satisfactory fit to experimental data
[11].

II. BROWNIAN DYNAMICS SIMULATION MODEL OF

GRAMICIDIN-A ION CHANNEL

In this section, we formulate a BD simulation model for a
gramicidin-A ion channel at a mesoscopic time scale.

A. Permeation Model of Gramicidin-A Ion Channel

All the atoms forming an ion channel are placed in the center
of the simulation assembly. The channel protein is assumed to
have a rigid structure corresponding to the average positions of
atoms forming it. Despite this necessary simplification imposed
on the model, it has been shown previously that BD captures the
salient conduction properties of a number of ion channels. This
is because the most essential features that govern the permeation
of ions across a narrow pore are captured in the model. There are
minor details that can be neglected in the model for the purpose
of BD simulations. For example, small variations in the radius of
the ion conducting pathway have no perceptible effects on elec-
trostatic calculations and BD results. In contrast, such variations
would have a drastic effect on molecular dynamics results. To
carry out BD simulations of ion channels, one needs to specify
the boundaries of the system.

Fig. 1 shows a schematic illustration of a simulation assembly
for a generalized ion channel. The ion channel, shown here as a
cylindrical tube with irregular boundaries, is placed at the center

of the assembly. We use the atomic coordinates stored in the
Protein Data Bank with accession code IMAG. To define the sur-
face of the channel, and hence the dielectric boundary, the radii
of atoms in the gramicidin peptide are required. We used the
same radii as in [3]. The gramidicin dimer is embedded in a neu-
tral membrane of length 33 A, modeled as a uniform dielectric
medium (with dielectric constant equal to that of the gramicidin
peptide) without any charges or dipoles. The atoms forming the
ion channel are represented as a homogeneous medium with a
dielectric constant of 2 (shaded area in Fig. 1). Then, a large
reservoir with a fixed number of K (or Na ) and Cl ions is
attached at each end of the ion channel. The electrolyte in the
two reservoirs comprises 55 M of implicit water and 150-mM
concentrations of K and Cl ions. The dielectric constants of
the reservoirs ( and ) and the interior of the ion channel
are assumed to be 80 and 60, respectively. The membrane po-
tential is imposed by applying a uniform electric field across the
ion channel. This is equivalent to placing a pair of large plates
far away from the ion channel and applying a potential differ-
ence between the two plates. When an ion strikes the reservoir
boundary during simulations, it is elastically scattered back into
the reservoir. This operation is equivalent to letting an ion enter
the reservoir whenever one leaves the simulation system. Thus,
the concentrations of ions in the reservoirs are maintained at the
desired values at all times. During simulations of current mea-
surements, the chosen concentration values in the reservoirs are
maintained by recycling ions from one side to the other when-
ever there is an imbalance due to a conduction event.

The number of ions that must be placed in each reservoir for
a chosen concentration depends on the size of the reservoir. Be-
cause the computational cost is proportional to the square of the
number of ions in the simulation system, it is desirable to have
a small reservoir. At the same time, it must be large enough
such that the ions in the system are in conditions similar to
those in bulk electrolyte solutions. For example, the number of
ions near the entrance of the pore should fluctuate according to
the binomial distribution. To meet these requirements, an elab-
orate treatment of boundaries using a grand canonical Monte
Carlo method was proposed [9]. Subsequently, [8] showed that,
provided the dimensions of the reservoirs are about 3–4 Debye
lengths, the simple stochastic boundary as described above gives
the same results as the method proposed in [9].

The permeation model comprises ions, where denotes
a positive integer. Throughout, we index the ions by

. These ions comprise the following.
• positive charged K ions indexed by

initially placed in the reservoirs. Of these K ions,
ions indexed by are in and ions
indexed by are in . Each K ion
has charge C, mass

kg and frictional coefficient ,
where from the Einstein–Smoluchowski relation

m s (1)

Here denotes the diffusion coefficient of the K ion
within a bulk solution. Also J/T denotes
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the Boltzmann constant and denotes the temperature in
Kelvin. K ions have a radius . (Note: 1
angstrom m).

• negative charge Cl (Chloride) ions initially placed
in the reservoirs. We index these by

. Of these, Cl ions indexed by
are placed in and the remaining Cl

ions indexed by are placed in .
Each Cl ion has charge C,
mass kg and frictional coeffi-
cient where m/s .
Cl ions have a radius .

The cylindrical reservoirs and in Fig. 1 are each 30
in radius and in height. Specifying the height of each reser-
voir to be guarantees that the concentration of ions in
them is 300 mM. For example, the gramicidin-A ion channel

is modeled as cylindrical nanotube with diameter 4 and
length 25 [3] that connects the two reservoirs. Thus,

denotes the open set composed of the interior of
the reservoirs and ion channel.

B. Mesoscopic Brownian Dynamics Model Formulation

Let denote continuous time. Each ion moves in 3-D
space over time. Let and
denote the position and velocity of ion at time . Here and
throughout this paper all vectors are column vectors and de-
noted by the boldface font. Also we use to denote transpose
of a vector or matrix. The three components , , of

are, respectively, the , , and position coordinates.
Similarly, the three components of are the , , ve-
locity components.

At time , the position and velocity of each
of the ions in the two reservoirs are randomly initialized
as follows: The upper reservoir is divided into cells of equal
volume. In each cell is placed either one K or one Cl ion, each
with probability half. The initial position of ion is chosen
according to the uniform distribution within its cell. Similarly
the remaining Na ions and remaining

Cl ions are placed uniformly in the
lower reservoir. This initialization of emulates the BD com-
puter software and also is necessary to ensure that two particles
are not placed too close to each other. The initial velocity vec-
tors of the ions are typically initialized according to a
3-D Gaussian distribution with zero mean, and 3 3 diagonal
positive definite covariance matrix. Thus, the distribution of the
magnitude of the initial velocity has a Maxwell density.

From time onwards, an external potential is
applied along the axis of Fig. 1, i.e., with

(2)

where is the external field in V/m in direction. Applied
potential is related to by , where is a
length of the channel, and . Here denotes a finite set of

applied experimental conditions such as applied voltages. For
example,

mV (3)

Due to this applied external potential, the Na ions drift from
reservoir to via the ion channel in Fig. 1.

Let denote the
positions and ,
denote the velocities of all the ions at time . The posi-
tion and velocity of each individual ion evolves according to the
following continuous time stochastic dynamical system (recall

denote positive ions and
denote negative ions):

(4)

(5)

(6)

where [defined in (1)] if , i.e., if
the ion is in the reservoir, and is determined by molec-
ular dynamics simulation when the ion is in the ion channel [12].
Equation (4) merely says that velocity is the time derivative of
the position. Equations (5) and (6) constitute the well-known
Langevin equations. We now describe the various quantities in
the above equations.

In (5) and (6), the process denotes zero mean 3-D
Brownian motion, which is component-wise independent. The
terms and are, respectively

(7)

The noise processes and , that drive any two
different ions, , are assumed statistically independent.

In (5) and (6), represents
the systematic force acting on ion , where the scalar valued
process is the total electric potential experienced by
ion given the position of the ions. The subscript is
the applied external potential in (2). The subscript is a pa-
rameter vector that characterizes the PMF, which is an impor-
tant component of . Later in this paper, we will present
novel learning-based dynamic control algorithms for estimating

given experimentally measured ion channel currents. For now,
it may be assumed that is some constant finite dimensional
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vector. As described below, includes an ion-wall in-

teraction force that ensures that position of each ion lies in
—see (11) below.
It is notationally convenient to represent the above system

[(4), (5) and (6)] as a vector stochastic integral equation. Define
the following vector valued variables:

...

...

...
...

(8)

The above system (4), (5), (6) can be written as the following
vector stochastic dynamical system:

(9)
where

diag ,
denotes the identity matrix

...

(10)

We will subsequently refer to (9) and (10) as the Brownian dy-
namics equations for a biological ion channel.

Remark: The BD approach is a stochastic averaging theory
framework that models the average effect of water molecules:

1) The friction term captures the average effect
of the ions driven by the applied external electrical field
bumping into the water molecules every few femtoseconds.
The frictional coefficient is given from Einstein’s relation.

2) The Brownian motion term also captures the effect of
the random motion of ions bumping into water molecules
and is given from the fluctuation–dissipation theorem.

C. Modeling of Systematic Force Acting on Ions

The systematic force experienced by each ion is

where the scalar valued process denotes the total elec-
tric potential experienced by ion given the position of all
the ions. We now give a detailed formulation of these sys-
tematic forces.

The potential experienced by each ion comprises
the following five components:

(11)

Note that the first three terms in (11), namely, ,
, depend only on the position of ion

, whereas the last two terms in (11) ,
depend on the distance of ion to all the other ions, i.e., the
position of all the ions. The five components in (11) are
now defined.

1) PMF, denoted in (11), comprises electric forces
acting on ion when it is in or near the ion channel
(nanotube in Fig. 1). The PMF is a smooth function
of the ion position and depends on the structure of
the ion channel. The main aim of controlled Brownian
dynamics simulation algorithm proposed in Section V
of this paper is to estimate the PMF .

The PMF originates from two different sources.
First, there are fixed charges in the channel protein and
the electric field emanating from them renders the pore
attractive to one ionic species and repulsive to another.
Some of the amino acids forming the ion channels carry
the unit or partial electronic charges.

Second, when any of the ions in the assembly comes
near the protein wall, it induces surface charges of the
same polarity at the water-protein interface. This is
known as the induced surface charges. To understand
the origin of these induced surface charges, consider
a K ion placed in a solution. Water molecules near
the ion align themselves such that the oxygen atoms,
with their partial negative charges positioned nearest
to the ion. Each water molecule has a strong dipole
moment of 1.84 Debye. Polar or carbonyl groups on the
protein wall cannot rotate as freely as water molecules,
and therefore at the water-protein interface, there are
excesses of hydrogen atoms. These excess hydrogen
atoms at the boundary appear as surface charges.

2) External Applied Potential: In the vicinity of living cells,
there is a strong electric field resulting from the mem-
brane potential, which is generated by diffuse, unpaired,
ionic clouds on each side of the membrane. Typically,
this resting potential across a cell membrane, whose
thickness is about 50 , is 70 mV, the cell interior being
negative with respect to the extracellular space. In sim-
ulations, this field is mimicked by applying a uniform
electric field across the channel. Because the reservoirs
are filled with electrolyte solutions, each reservoir is in
iso-potential, and the potential drop occurs across the
channel conduit.

For ion at position ,
[see (2)] denotes the potential on
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ion due to the applied external field. The electrical
field acting on each ion due to the applied potential is
therefore V/m at all .
It is this applied external field that causes a drift of ions
from the reservoir to via the ion channel . As
a result of this drift of ions within the electrolyte in the
two reservoirs, eventually the measured potential drop
across the reservoirs is zero and all the potential drop
occurs across the ion channel.

3) Interion Coulomb Potential: In (11), denotes
the Coulomb interaction between ion and all the other
ions.

(12)

4) Ion-Wall Interaction Potential: The ion-wall potential
, also called the potential, ensures that the

position of all ions lie in . With
, it is modeled as

(13)

where for positive ions (radius of Na atom)
and for negative ions (radius of Cl atom),

is the radius of atoms making up the wall,
denotes the radius of the ion channel, and

N which is estimated from the ST2 water
model used in molecular dynamics. This ion-wall poten-
tial results in short range forces that are only significant
when the ion is close to the wall of the reservoirs and

or anywhere in the ion channel (since the narrow
segment of an ion channel can be comparable in radius
to the ions).

5) Short-Range Potential: Finally, at short ranges, the
Coulomb interaction between two ions is modified by
adding a potential , which replicates the
effects of the overlap of electron clouds. Thus

(14)

Similar to the ion-wall potential, is significant
only when ion gets very close to another ion. It en-
sures that two opposite charge ions attracted by interion
Coulomb forces (12) cannot collide and annihilate each
other. Molecular dynamics simulations show that the hy-
dration forces between two ions add further structure to
the repulsive potential due to the overlap
of electron clouds in the form of damped oscillations
[13], [14]. [8] incorporated the effect of the hydration

forces in (14) in such a way that the maxima of the ra-
dial distribution functions for Na Na , Na Cl
and Cl Cl would correspond to the values obtained
experimentally.

III. FORMULATION OF PMF ESTIMATION PROBLEM

Our goal is to estimate the PMF of a gramicidin-A
ion channel. As mentioned in Section I, estimating gives
useful information about the structure of the ion channel. In
this section, we first present a Gaussian mixture basis func-
tion approximation of the PMF that is characterized by a
five-dimensional (5-D) parameter vector . Then we formulate
the PMF estimation problem as a stationary stochastic opti-
mization problem. Section III-B gives a theoretical foundation
to show that the stationary stochastic optimization problem
is well posed, i.e., that the particle system (9) eventually
attains a stationary distribution. In Section IV, we given an
explicit construction of how the simulated current (denoted

below) through the ion channel can be computed
via BD simulation. Finally, in Section V-A, we formulate the
problem of estimating the PMF as a stochastic optimization
problem involving minimizing the mean square error between
the BD simulated current ( ) and the actual observed
experimental current .

A. Gaussian Mixture Parameterization of Potential Mean
Force (PMF)

In this subsection we propose a Gaussian basis function ap-
proximation to the PMF of a gramicidin-A ion channel.
The PMF structure of a gramicidin-A ion channel is well known
[11]. Hence, a basis function approximation of the gramicidin-A
PMF needs to capture the following important properties
of the gramicidin-A ion channel.

1) The ion moves strictly along the center of the ion channel,
i.e., its coordinates . The PMF

(where ) experienced by the ion within
the gramicidin-A ion channel is symmetric with respect to

, i.e.,

for all

2) For or , i.e., in either reservoir at
more than 20 from the center of the ion channel,

should be close to zero—since the PMF only acts
on ions in or near the ion channel.

Since the PMF is a continuously differentiable function
of , it can be uniformly approximated arbitrary closely by a set
of Gaussian basis functions or some other radial basis function.
By using physiological data of a gramicidin-A ion channel, we
found that the following scaled Gaussian mixture comprising a
linear combination of three Gaussian density functions gives an
excellent fit:

(15)
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The above Gaussian mixture is parameterized by the 5-D pa-
rameter vector

(16)

The above Gaussian mixture comprises two Gaussian functions
with identical weighting factors and identical variance ,
centered about and , respectively—and a third
zero mean Gaussian centered about with variance and
weighting factor . It is obvious that the above parameteriza-
tion satisfies the symmetry property 1 above. Also for suitable
choice of the parameter vector in (16), property 2 holds.

The structure of the gramicidin-A ion channel, implies that
the parameters defined in (16) need to constrained to the set

defined as follows:

(17)

where and are positive bounded constants.
By using physiological data of a gramicidin-A ion channel,

we computed the parameter that best fits the curve (15) to
the physiological data (in terms of a least squares fit). This
physiological data shows that for a gramicidin-A ion channel,

has two potential wells of 7 kT along the -axis, one at
, the other at . Also at , the potential

barrier is 5 kT (with respect to the potential wells). Using the
Nelder–Mead simplex (direct search) optimization algorithm in
Matlab, we obtained the best least squares fit over the interval

as

(18)

Fig. 2 shows the PMF generated by the Gaussian mixture ap-
proximation (15) with parameter .

B. Probabilistic Characterization of Ion Channel Current in
Terms of Mean Passage Time

Thus far (9), (10), and (11) give a complete description of the
stochastic dynamics of the ions. In addition, there are two key
requirements that the BD dynamical simulation should take into
account:

1. Physiological concentration constraint: The concentra-
tion of ions in each reservoir and should remain
approximately constant and equal to the physiological con-
centration. Note that if the system was allowed to evolve
for an infinite time with the channel open, then eventually
due to the external applied potential, more ions will be in

than , This would violate the condition that the con-
centration of particles in and remain constant.

2. Two-time scale constraint: The dynamics of the BD sim-
ulation has an inherent two-time scale property. Typically
the time for an ion to enter and propagate through the ion
channel is at least an order of magnitude larger compared
to the time it takes for an ions to move within a reservoir.
That is the time constant for the particles in the reservoirs

Fig. 2. PMF U of gramicidin-A ion channel obtained by a three-component
Gaussian mixture. The two basic parameters characterizing U ([0; 0; z]) are
the depths of the two well U and the height of the barrier U . The width
of the barrier is approximately 10 �A. The PMF shown with U = 8 kT and
U = 5 kT gives the best description of the physiological data on gramicidin-A
ion channels.

to attain steady state is much smaller than the time it takes
for a particle to enter and propagate through the channel.

The following two-step probabilistic construction formalizes
the above two requirements and ensures that they are satisfied.

Procedure 1: Probabilistic construction of Brownian dy-
namics ion permeation in ion channel

1) Step 1: The ions in the system are initialized as de-
scribed before in (2) and the ion channel is closed. The
system evolves and attains stationarity. Theorem 1 below
shows that the probability density function of the parti-
cles converges exponentially fast to a unique stationary dis-
tribution. Theorem 2 shows that in the stationary regime,
all positive ions in reservoir have the same stationary
distribution and so are statistically indistinguishable (sim-
ilarly for ).

2) Step 2: After stationarity is achieved, the ion channel is
opened. The ions evolve according to (9). As soon as an
ion from crosses the ion channel and enters , the
experiment is stopped. Similarly if an ion from crosses

and enters , the experiment is stopped. Theorem 3
gives partial differential equations for the mean time an ion
in takes to cross the ion channel and reach (and for
the time it takes an ion to cross from to ). From this
a theoretical expression for the mean ion channel current
is constructed (25).

Remark: The above construction is a mathematical idealiza-
tion. In actual BD algorithms, the ion channel is kept open and
ions that cross the channel are simply removed and replaced in
their original reservoir. However, as described later (following
Algorithm 1), the above mathematical construction is an excel-
lent approximation due to the fact that by virtue of Step 1, the
system of particles with the newly replaced ion converges expo-
nentially fast to its stationary distribution, and by virtue of the
two-time scale property, the time taken to attain this stationary
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distribution is much smaller than the time it takes for a single
ion to cross the ion channel.

Let denote the joint probability density func-
tion of the position and velocity of all the ions at time .
We explicitly denote the dependence of the probability den-
sity functions, since they depend on the PMF and applied
external potential . Note that the marginal probability density
function of the posi-
tions of all ions at time is obtained as

The following result proved in the appendix states that for the
above stochastic dynamical system, converges
exponentially fast to its stationary (invariant) distribution

. That is, the ions in the two reservoirs attain
steady state exponentially fast.

Theorem 1: Consider Step 1 of the Brownian dynamics
probabilistic construction in Procedure 1. For the Brownian
dynamics system, represented in (9) and (10), comprising

ions, with , there exists a unique stationary
distribution , and constants and ,
such that

(19)

Here is a measurable function on .
Proof: We show below that the system when all the

ions are in the reservoirs (Step 1 of probabilistic construction
Section III-B) is V-uniform ergodic. This implies exponen-
tial ergodicity (see, for details, [15]). To prove V-uniform
ergodicity, we invoke the following sufficient condition for
V-uniform ergodicity [15]; is V-uniform ergodic if there
exists a twice differentiable Lyapunov function such
that

(20)

for positive constants and , and some compact nonempty set
. Here denotes the backward operator defined in (29),

denotes the indicator function for the set , i.e.,
if and 0 otherwise, and is defined in (29). For our
Brownian dynamics model (9), when all ions are in the reservoir,

and hence and are constants; see discussion below (6).
The following choice of satisfies (20):

(21)

The next result to establish is, under the conditions of
Step 1, the ions in the two reservoirs are statistically indistin-
guishable. Denote the stationary marginal density of ion as

.

Theorem 2: Consider Step 1 of the Brownian dynamics prob-
abilistic construction in Procedure 1. Then all the positive ions
in reservoir have identical stationary marginal density and
all negative ions in have identical stationary marginal den-
sity. The same result hold for .

Theorem 2 is not surprising—as (4), (5), and (6) are sym-
metric in , one would intuitively expect that once steady state
as been attained, all the positive ions behave identically—sim-
ilarly with the negative ions. Due to the above result, once the
system has attained steady state, any positive ion is represen-
tative of all the positive ions, and similarly for the negative
ions.

Having described the main theorems of Step 1, we now pro-
ceed to Step 2 of the BD construction of Procedure 1. Assume
that the system (9) comprising ions has attained stationarity
with the ion channel closed according to Step 1. Now in Step 2
of Procedure 1, the ion channel is opened so that ions can diffuse
into it. Our key result below is to give a boundary valued par-
tial differential equation for the mean passage time for an ion to
cross the ion channel—this immediately yields an equation for
the ion channel current.

Let denote the “mean first passage time” for any of
the K ions in to travel to via the channel , and

denote the minimum time for any of the K ions
in to travel to

(22)

where

(23)

In cationic channels, for example, only K or Na ions flow
through to cause the channel current—so we do not need to con-
sider the mean passage time of the Cl ions. To give a partial
differential equation for and , it is convenient to
define the closed sets

(24)

Then it is clear that is equivalent to
, since either ex-

pression implies that at least one ion has crossed
from to . Similarly, is equivalent to

. Thus, and
defined in (23) can be expressed as ,

.
In terms of the mean first passage times , de-

fined in (23), the mean current flowing from via the ion
channel into is defined as

(25)
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In Section IV we show that this current can be estimated by
counting the number of ions going thorough the ion channel via
a Brownian dynamics simulation.

The following result adapted from [16, pp. 306] shows that
the mean passage times and satisfy boundary
valued partial differential equations. In particular, the expres-
sions for the mean passage time below together with (25) give
a complete characterization of the ion channel current. Of
course, the partial differential equation cannot be solved in
closed form—so later on in this paper we use BD simulation
as a randomized numerical method for solving this partial
differential equation.

Theorem 3: Consider the two-step BD probabilistic construc-
tion in Procedure 1. Then the mean first passage times

and [defined in (25)] for ions to diffuse through the ion
channel are obtained as

(26)

(27)

where

Here and satisfy the following boundary
value partial differential equations

(28)

where for any test function , denotes the backward elliptic
operator (infinitesimal generator)

Tr (29)

Furthermore, and are finite.

IV. BROWNIAN DYNAMICS SIMULATION FOR ESTIMATION OF

ION CHANNEL CURRENT

It is not possible to solve the boundary valued PDEs (28) to
obtain explicit closed form expressions. The aim of BD simula-
tion is to obtain estimates of these quantities by directly simu-
lating the stochastic dynamical system (9). Thus, BD simulation
can be viewed as a simulation based (randomized) numerical
method for solving this partial differential equation.

A. Time Discretization of Ion Dynamics

To implement the BD simulation algorithm described below
on a digital computer, it is necessary to discretize the contin-
uous-time dynamical equation (9) of the ions. A two-time
scale time discretization is used in the BD simulation algorithm.
For dynamics of ions within the ion channel, the BD simulation

algorithm uses a sampling interval of s. For
dynamics of ions within the reservoirs a sampling interval of

s is used in the reservoirs. These choices of are
based on extensive numerical testing of the BD simulation algo-
rithm. There are several possible methods for time discretization
of the stochastic differential equation (9); see [17]. Our BD sim-
ulation algorithm uses the second-order discretization approxi-
mation of [18].

B. Brownian Dynamics Simulation Algorithm

In the BD simulation Algorithm 1 below, we use the following
notation.

The algorithm runs for iterations where is user specified.
Each iteration , , runs for a random number of
discrete-time steps until an ion crosses the channel. We denote
these random times as if the ion has crossed from to

and if the ion has crossed from to . Thus

min

min

The positive ions are in at steady state ,
and the positive ions are in at steady
state.

is a counter that counts how many K ions have
crossed from to and counts how many K ions
have crossed from to . Note .

In the algorithm below, to simply notation, we only consider
passage of K ions across the ion channel.

Algorithm 1: Brownian Dynamics Simulation Algorithm
(for fixed and )

• Input parameters for PMF and for applied external
potential.

• For to iterations:
— Step 1. Initialize all ions according to stationary

distribution .
Open ion channel at discrete time and set .

— Step 2. Propagate all ions according to the time
discretized Brownian dynamical system until time
at which an ion crosses the channel.
• If ion crossed ion channel from to , i.e., for

any ion , then set
.

Update number of crossings from to :
.

• If ion crossed ion channel from to , i.e., for
any ion , then set

.
Update number of crossings from to :

.
— End for loop.



KRISHNAMURTHY AND CHUNG: ADAPTIVE BROWNIAN DYNAMICS SIMULATION FOR ESTIMATING POTENTIAL MEAN FORCE 135

• Compute the mean first passage time and mean current
estimate after iterations as

(30)

(31)

The following result shows that the estimated current
obtained from a BD simulation run over iterations is strongly
consistent.

Theorem 4: For fixed PMF and applied external po-
tential (3) the ion channel current estimate ob-
tained from the BD simulation Algorithm 1 over iterations
is strongly consistent, i.e., w.p. 1
where is the mean current defined in (25).

Proof: Since by construction in Algorithm 1, each of
the iterations are statistically independent, and ,

are finite (see Theorem 3), it then follows by
Kolmogorov’s strong law of large numbers

w.p.

Thus w.p. 1 as
.

Implementation Details and Variations of Algorithm 1: Al-
gorithm 1 is an idealization where all ions are reset to in
Step 1 when any ion crosses the channel. In our actual numerical
implementation of the BD simulation the following approxima-
tion of Algorithm 1 was used. Instead of Step 2b and 3b, only
remove the crossed ion denoted as and put it back in its reser-
voir with the stationary marginal probability—see Theorem 2.
The other particles are not reset. Since as described in the prob-
abilistic construction above, the time it takes for the ions in the
reservoir to attain steady state is much faster than the time for an
ion to cross the channel, the above approximation does not af-
fect the statistical properties of the BD simulation (such as mean
passage time).

V. CONTROLLED BROWNIAN DYNAMICS MESOSCOPIC

SIMULATION OF GRAMICIDIN-A ION CHANNEL

We will estimate the PMF parameterized by , by com-
puting the that optimizes the fit between the mean current

[defined above in (25)] and the experimentally observed
current defined below. Unfortunately, it is impossible to
explicitly compute from (25). For this reason we resort
to a stochastic optimization problem formulation below, where
consistent estimates of are obtained via the Brownian dy-
namics simulation Algorithm 1. The main algorithm presented
in this section is the controlled Brownian Dynamics Simulation
Algorithm 2 which solves the stochastic optimization problem
and yields the optimal PMF.

A. Formulation of PMF Estimation as Stochastic
Optimization Problem

Suppose that the BD simulation Algorithm 1 is run in batches
indexed by batch number . In each batch , the
PMF parameter is selected (as described below), an external
potential is applied, and the BD Algorithm 1 is run
over iterations, and the estimated current is computed
using (31). From experimental data, an accurate estimate of the
current–voltage concentration profiles of an ion channel can be
obtained. These curves depict the actual current flowing
through an ion channel for various external applied potentials

and ionic concentrations. For fixed applied field
at a given concentration, define the square error loss function
for the th batch as

(32)

and the expected loss functions

Note that the total loss function is obtained by adding the
square error over all the applied fields on the current-
voltage or current-concentration curve. The optimal PMF
is determined by the parameter that minimizes the above loss
function: .

B. Stochastic Gradient Algorithms for Estimating PMF and
the Need for Gradient Estimation

We now give a complete description of the controlled
Brownian dynamics simulation algorithm for computing the
optimal PMF estimate . The algorithm is schematically
depicted in Fig. 3. Recall , denotes batch number.

Algorithm 2: Controlled Brownian Dynamics Simulation
Algorithm for Estimating PMF

• Step 0: Set batch index , and initialize .
• Step 1 (Evaluation of Loss Function): At batch , evaluate

loss function for each external potential .
• Step 2 (Gradient Estimation): Compute gradient estimate

either as a finite difference (35) below, or
according to the SPSA algorithm (see discussion below).

• Step 3 (Stochastic Approximation Algorithm): Update
PMF estimate

(33)

where denotes a decreasing step size (see discussion
below for choice of step size).

• Set to and go to Step 1.

A crucial aspect of the above algorithm is the gradient esti-
mation Step 2. In this step, an estimate of the gra-
dient is computed. This gradient estimate is then
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Fig. 3. Controlled Brownian dynamics simulation for estimating PMF.

fed to the stochastic gradient algorithm (Step 3) which updates
the PMF. Note that since the explicit dependence of
on is not known, it is not possible to compute .
Thus, we have to resort to gradient estimation.

Choice of Step Size: The step size is typically chosen as

(34)

where and is some positive constant. This
choice of step size satisfies the condition , which
is required for convergence of Algorithm 2.

Kiefer–Wolfowitz Finite Difference Gradient Estimator: An
obvious gradient estimator is obtained by finite differences as
follows. Suppose is a dimensional vector. Let
denote dimensional unit vectors, where is a unit vector with
1 in the th position and zeros elsewhere. Then the two-sided
finite difference gradient estimator is

...
(35)

Using (35) in Algorithm 2 yields the so-called finite difference
stochastic gradient algorithm.

The main disadvantages of the above finite gradient esti-
mator are twofold. First, the bias of the gradient estimate is

. Second, the simulation cost of implementing the above
estimator is large. It requires BD simulations, since two BD
simulations are required to evaluate and

for each .
Remark: Instead of the Kiefer–Wolfowitz algorithm, the

simultaneous perturbation stochastic approximation (SPSA)
algorithm [19] is a novel method that picks a single random
direction along which direction the derivative is evaluated
at each batch . Thus, SPSA only requires two BD simulations
per iteration, i.e., the number of evaluations is independent of
the dimension of the parameter vector . We refer the reader
to [19] and the SPSA Web site.1 There are other more sophis-
ticated gradient estimators that can be implemented—such
as weak derivative estimators and infinitesimal perturbation
analysis (IPA) estimators; see [20].

1[Online]. Available: http://www.jhuapl.edu/SPSA/

Convergence of Controlled Brownian Dynamics Simula-
tion Algorithm 2: The estimates generated by Algorithm 2
(whether using the Kiefer–Wolfowitz or SPSA algorithm) con-
verge to a local minimum of the loss function.

Theorem 5: For batch size in Algorithm 1, the se-
quence of estimates generated by the controlled Brownian
dynamics simulation Algorithm 2, converge at to a the
locally optimal PMF estimate with probability one.

Since by construction of the BD algorithm, for fixed ,
are independent and identically distributed (i.i.d.)

random variables, the proof of the above theorem involves
showing strong convergence of a stochastic gradient algorithm
with i.i.d. observations—which is quite straightforward. In [21,
Theorem 4.3, Sec. 8.4], almost sure convergence of stochastic
gradient algorithms for state dependent Markovian noise under
general conditions is presented.

VI. SIMULATION EXPERIMENTS FOR GRAMICIDIN-A
ION CHANNEL

The controlled Brownian dynamics simulation Algorithm 2
was run on the Australian Partnership for Advanced Computing
(APAC) Linux cluster supercomputer for estimating the PMF

of a gramicidin-A ion channel. This is a 800-Gflop super-
computer comprising 152 Dell Precision 350 Linux nodes, with
each node being a 2.65-GHz Pentium 4.

Consider the parameterization de-
fined in (16) for the PMF . Since the position of the potential
wells for a gramicidin-A ion channel are precisely known to be
at 9 and 9 , we fixed the components , ,
and in . Our aim is to estimate the two compo-
nents which determines the depth of the two po-
tential wells of a gramicidin-A ion channel and the height of
the potential barrier between the wells. This is obtained by esti-
mating the parameter that optimizes the fit between the BD
simulated current and experimentally determined current. The
experimentally determined current was evaluated at five
voltages pA on the I–V curve of a
gramicidin-A ion channel.

The controlled BD simulation Algorithm 2 was run to esti-
mate . The Kiefer–Wolfowitz finite difference method (35)
was used in Algorithm 2 to estimate the PMF parameter

. The step size chosen for the Kiefer–Wolfowitz es-
timator (35) was , , .
The step size chosen for the stochastic gradient algorithm (34)
was , . The algorithm was initialized with

.
Fig. 4 shows the evolution of the estimates versus batch

index , generated by the controlled BD Algorithm
2. Each iteration (batch) took approximately 3 h on the super-
computer. It can be seen that the estimates converge within 60
batches (iterations). The estimate . In
Fig. 5 we plot the PMF for parameter that was used to ini-
tialize Algorithm 2. This PMF has potential wells of depth
6 kT and potential barrier of 3 kT. In Fig. 5, we also plot the
PMF estimate obtained after 60 batches of running Al-
gorithm 2. It is seen from Fig. 5 that the PMF estimate
has a potential well of depth kT and potential barrier

kT. The well depth here refers to the zero potential in
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Fig. 4. Evolution of PMF parameter estimates � for gramicidin-A ion channel
generated by controlled Brownian dynamics simulation algorithm 2. The algo-
rithm was run on the ANU supercomputer and the Kiefer–Wolfowitz gradient
estimator was used.

Fig. 5. PMF U for initial parameter estimate � and final parameter estimate
� for gramicidin-A channel. The final parameter estimate yields the PMF es-
timate for gramicidin-A has two potential wells of depth U = �7:14 kT and
potential barrier U = 4:61 kT.

the reservoir and the barrier height is measured with respect to
the well minimum. Previously, [3] estimated the shape of the po-
tential profile for K ions using the brute-force inverse method.
The depth of the wells and the height of the barrier they quote
are, respectively, 8 kT and 5 kT. It is of interest to compare these
profiles with those of [5]. In [5], the conductance properties of
Na ions were replicated via electrodiffusion equations using a
profile with the well depth of 5.4 kT and the barrier height of
4.2 kT. Reference [22] also shows that similar well depths and
barrier heights are required to match experimental conductances
using their diffusion theory. Thus, the previous estimates of the
parameters set, obtained by using a variety of different methods,
are congruent to those obtained with the PMF estimate obtained

from the novel controlled Brownian dynamics algorithm pro-
posed in this paper.

VII. CONCLUSIONS AND EXTENSIONS

The approach of this paper can be generalized to other ion
channels. For example, in ion channels with larger radius than
gramicidin-A, the ions can be considered as point masses and
the force experienced by an ion at any position can be computed
by solving Poisson’s equation numerically. However, solving
Poisson’s equation involves assigning the dielectric constants of
the water-filled pore and the protein, as well as the prior knowl-
edge of the magnitudes of charges carried by polar and ioniz-
able residues in the protein. Instead, by using the techniques in
this paper it is possible to directly compute the optimum PMF
(i.e., estimate the solution to Poisson’s equation) that best fits
the experimental ion channel current. In our recent work, we
have used globally convergent discrete stochastic search algo-
rithms to verify that the above simulation results are accurate.
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