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Brownian Dynamics Simulation for Modeling Ion
Permeation Across Bionanotubes

Vikram Krishnamurthy, Fellow, IEEE, and Shin-Ho Chung

Abstract—The principles underlying Brownian dynamics (BD),
its statistical consistency, and algorithms for practical imple-
mentation are outlined here. The ability to compute current
flow across ion channels confers a distinct advantage to BD
simulations compared to other simulation techniques. Thus, two
obvious applications of BD ion channels are in calculation of the
current—voltage and current—concentration curves, which can be
directly compared to the physiological measurements to assess the
reliability of the model and predictive power of the method. We
illustrate how BD simulations are used to unravel the permeation
dynamics in two biological ion channels—the KesA KT channel
and CIC C1™ channel.

Index Terms—Brownian dynamics (BD) simulation, interacting
particles, ion channels, Langevin equation.

1. INTRODUCTION

LL LIVING cells are surrounded by a thin membrane,

composed of two layers of phospholipid molecules, called
the lipid bilayer. This thin membrane effectively partitions the
external medium from the internal medium and acts as a hy-
drophobic, low dielectric barrier to hydrophilic molecules. The
dielectric constant of the interior of the membrane is about two,
whereas that of the electrolyte solutions on either side of the
membrane is 80. Thus, no charged particles, such as Nat, KT,
and CI™ ions, can jump across the membrane. The amount of
energy needed to transport one monovalent ion, in either direc-
tion across the membrane, known as the Born energy, is enor-
mously high. For a living cell to function, however, the proper
ionic gradient has to be maintained, and ions at times must
move across the membrane to maintain the potential difference
across the membrane and to generate synaptic and action po-
tentials. To do so, nature has devised specialized, large trans-
membrane protein molecules, called ion channels, and inserted
them densely across the membrane. These ion channels form
water-filled passages through which ions can freely move in and
out when the gates are open. These ion channels can be viewed
as biological nanotubes—although they are typically the size of
angstrom units (10_10 m), i.e., an order of magnitude smaller
in radius and length compared to carbon nanotubes that are used
in nanodevices.
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In the past few years, there have been enormous strides in our
understanding of the structure—function relationships in biolog-
ical ion channels. This sudden advance has been brought about
by the combined efforts of experimental and computational bio-
physicists, who together are beginning to unravel the working
principles of these exquisitely designed biological nanotubes
that regulate the flow of charged particles across the living
membranes. In recent breakthroughs, the crystal structures of
the bacterial potassium channel, mechanosensitive channel and
chloride channel have been determined from crystallographic
analysis [7], [16], [17]. It is expected that crystal structures of
other ion channels will follow these discoveries, ushering us
into a new era in ion channel studies, where predicting func-
tion of channels from their atomic structures will become the
main quest. Parallel to these landmark experimental findings,
there have been also important advances in computational
biophysics. As new analytical methods have been developed
and the available computational power increased, theoretical
models of ion permeation have become increasingly sophisti-
cated. Now it has become possible to relate the atomic structure
of an ion channel to its function through the fundamental laws
of physics operating in electrolyte solutions. Many aspects of
macroscopic observable properties of ion channels are being
addressed by molecular and stochastic dynamics simulations.
Intuitive and qualitative explanations of the permeation and
selectivity of ions are beginning to be replaced by quantitative
statements based on rigorous physical laws. The computational
methods of solving complex biological problems, such as per-
meation, selectivity, and gating mechanisms of ion channels,
will increasingly play prominent roles as the speed of com-
puters increases and theoretical approaches that are currently
underdevelopment become further refined.

Here we give a brief account of Brownian dynamics (BD),
one of the several theoretical computational methods that are
being used for treating time-dependent nonequilibrium pro-
cesses that underlie the flow of currents across biological ion
channels. The principles of and recent advances made by three
other computational approaches—the Poisson—Nernst—Planck
theory, semimicroscopic Monte Carlo method, and molecular
dynamics—are detailed in the preceding and the following
tutorial articles [11], [25], [37]. This paper is organized as
follows. In Section II, we present a detailed discussion on the
suitability of BD for modeling the permeation of ions. In Sec-
tion III, a precise formulation of the BD simulation for an ion
channel is given. Section IV, presents the actual BD algorithm
and estimators for the ion channel current. We show that these
estimators are statistically consistent. Section V describes how
the BD simulation algorithm has been employed in elucidating
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the mechanisms of ion permeation in the KcsA potassium
channel and CIC chloride channels. Finally, in Section VI, we
describe one novel extension of BD, called adaptive, controlled
BD simulations.

II. MOTIVATION FOR BD FORMULATION

The ultimate aim of theoretical biophysicists is to provide a
comprehensive physical description of biological ion channels.
Such a theoretical model, once successfully formulated, will
link channel structure to channel function through the funda-
mental processes operating in electrolyte solutions. It will also
concisely summarize the data, by interlacing all those seemingly
unrelated and disparate observations into a connected whole.
The theory will elucidate the detailed mechanisms of ion perme-
ation—where the binding sites are in the channel, how fast an
ion moves across the channel, and where the rate-limiting steps
are in conduction. Finally, it will make predictions that can be
confirmed or refuted experimentally.

The tools of physics employed in this endeavor, from fun-
damental to phenomenological, are ab initio and classical
molecular dynamics, BD, and continuum theories. These ap-
proaches make various levels of abstractions in replacing with
model the complex reality, the system composed of channel
macromolecules, lipid bilayer, ions, and water molecules. One
of the important criteria of successful modeling is that macro-
scopic observables remain invariant when the real system is
replaced by the model. Each approach has the merits and de-
merits and is capable of providing useful information about the
permeation dynamics of ion channel when applied judiciously.

At the lowest level of abstraction, we have the ab initio
quantum mechanical approach, in which the interactions be-
tween the atoms are determined from first principles electronic
structure calculations. As there are no free parameters in this
approach, it represents the ultimate approach to modeling of
biomolecular systems. But because of the extremely demanding
nature of computations, its applications are limited to very small
systems at present. A higher level of modeling abstraction is to
use classical molecular dynamics [37]. Here, simulations are
carried out using empirically determined pairwise interaction
potentials between the atoms, and their trajectories are followed
using Newton’s equation of motion. Although it is possible
to model an entire ion channel in this way, it is not feasible
to simulate the system long enough to see permeation of ions
across a model channel and to determine its conductance, which
is the most important channel property.

For that purpose, one has to go up one further step in abstrac-
tion to stochastic dynamics, of which BD is the simplest form,
where water molecules that form the bulk of the system in ion
channels are integrated out and only the ions themselves are ex-
plicitly simulated. Thus, instead of considering the dynamics of
individual water molecules, one considers their average effect
as a random force or Brownian motion on the ions. This treat-
ment of water molecules can be viewed as a functional central
limit theorem approximation. In BD, it is further assumed that
the protein is rigid and its dynamics is not considered. Thus, in
this approach, the motion of each individual ion is modeled as

the evolution of a stochastic differential equation, known as the
Langevin’s equation.

A still  higher level of abstraction is the
Poisson—Nernst-Planck  theory [11], which is based
on the continuum hypothesis of electrostatics. In this and other
electrodiffusion theories, one makes a further simplification,
known as the mean-field approximation. Here, ions are treated
not as discrete entities but as continuous charge densities that
represent the space-time average of the microscopic motion
of ions. In the Poisson—Nernst—Planck theory, the flux of an
ionic species is described by the Nernst—Planck equation that
combines Ohm’s law with Fick’s law of diffusion, and the
potential at each position is determined from the solution
of Poisson’s equation using the total charge density (ions
plus fixed charges). The Poisson—Nernst—Planck theory, thus,
incorporates the channel structure, and its solution yields the
potential, concentration, and flux of ions in the system in a
self-consistent manner.

There is one other approach that has been fruitfully em-
ployed to model biological ion channels, namely, the reaction
rate theory [24]. In this approach, an ion channel is represented
by a series of ion binding sites separated by barriers, and ions
are assumed to hop from one biding site to another, with the
probability of each hop determined by the height of the energy
barrier. Although the model parameters have no direct physical
relation to the channel structure, many useful insights have been
gleaned in the past about the mechanisms of ion permeation
using this approach.

Remark. Bionanotube Ion Channel Versus Carbon Nan-
otube: There has recently been much work in the nan-
otechnology literature on carbon nanotubes and their use in
field-effect transistors (FETs). It is worthwhile noting that our
mesoscopic BD ion channel model is more complex than that
of a carbon nanotube. Biological ion channels we consider here
have radii of between 2 to 6 A. In these narrow conduits formed
by the protein wall, the force impinging on a permeating ion
from induced surface charges on the water—protein interface
becomes a significant factor. This force becomes insignificant
only when the radius of the pore is more than two Debye lengths
or about 16 A for physiological salt solutions (150 mM). In
comparison, carbon nanotubes used in FETs have a radius of
approximately 100 A, which is large compared to the Debye
length of electrons or holes in Si. Thus the key difference is that
while in carbon nanotubes point charge approximations and
continuum electrostatics holds, in ion channels in general with
a few exceptions the discrete finite nature of each ion needs to
be taken into consideration.

III. BD SIMULATION MODEL OF AN ION CHANNEL
A. BD Simulation Setup

Fig. 1 illustrates the schematic setup of BD simulation for
permeation of ions through an ion channel. The aim is to obtain
structural information, i.e., determine channel geometry and
charges in the protein that form the ion channel. An iterative
approach is used as follows: First an initial estimate of the
structural information of the channel, namely, the channel
geometry and charges on the ionizable residues in the protein
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Fig. 1. BD simulation setup.

are used to determine the parameters of Poisson’s equation.
Numerically solving Poisson’s equation yields the potential of
mean profile (PMF) an ion traveling through the ion channel
will experience. This in turn feeds into the BD simulation that
governs the stochastic evolution of all the ions. As a result of
ions modeled by BD permeating through the ion channel, a
simulated ion channel current is obtained. This simulated ion
channel current is compared with the experimentally observed
ion channel current. The difference between the two currents is
used to refine our model of the channel geometry and charges
and the process repeated until the error between the simulated
(predicted) ion channel current and experimentally determined
ion channel current is minimized.

To carry out BD simulations of ion channels, one needs to
specify the boundaries of the system. This is a relatively simple
problem for one-dimensional (1-D) BD simulations [5], [23],
but requires addition of reservoirs to the ion channel system in
the more realistic case of three-dimensional (3-D) BD simula-
tions [2], [8], [19].

Fig. 2 shows a schematic illustration of a BD simulation as-
sembly for a particular example of an antibiotic ion channel
called a gramicidin-A ion channel [3]. The ion channel is placed
at the center of the assembly. The atoms forming the ion channel
are represented as a homogeneous medium with a dielectric con-
stant of 2 (shaded in Fig. 1). Then, a large reservoir with a fixed
number of positive ions (e.g., K™ or Na™ ions) and negative
ions (e.g., C1™ ions) is attached at each end of the ion channel.
The electrolyte in the two reservoirs comprises 55 M (moles) of
H-0 and 150-mM concentrations of Nat and C1~ ions. The di-
electric constant of the reservoirs (R and R-) and the interior
of the ion channel C is assumed to be 80. The membrane poten-
tial is imposed by applying a uniform electric field across the
ion channel. This is equivalent to placing a pair of large plates
far away from the ion channel and applying a potential differ-
ence between the two plates. When an ion strikes the reservoir
boundary during simulations, it is elastically scattered back into
the reservoir. This operation is equivalent to letting an ion enter
the reservoir whenever one leaves the simulation system. Thus,
the concentrations of ions in the reservoirs are maintained at the
desired values at all times. During simulations of current mea-
surements, the chosen concentration values in the reservoirs are
maintained by recycling ions from one side to the other when-
ever there is an imbalance due to a conduction event.

The number of ions that must be placed in each reservoir
for a chosen concentration depends on the size of the reservoir.
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Fig. 2. Gramicidin-A ion channel model comprising 2.V ions within two
cylindrical reservoirs R, R, connected by the ion channel C.

Because the computational cost is directly proportional to the
number of ions in the simulation system, it is desirable to have
a small reservoir. At the same time, it must be large enough
such that the ions in the system are in conditions similar to
those in bulk electrolyte solutions. For example, the number of
ions near the entrance of the pore should fluctuate according to
the binomial distribution. To meet these requirements, an elab-
orate treatment of boundaries using a grand canonical Monte
Carlo method was proposed [22]. Subsequently, Corry et al. [4]
showed that, provided the dimensions of the reservoirs are about
three to four Debye lengths, the simple stochastic boundary as
described above gives the same results as the more sophisticated
method proposed by Im ez al. [22].

B. Permeation Model of lon Channel

Our permeation model for the ion channel comprises two
cylindrical reservoirs R1 and Ry connected by the ion channel
C as depicted in Fig. 2, in which 2N ions are inserted (/N de-
notes a positive integer). In Fig. 2, as an example we have chosen
a gramicidin-A ion channel—although the results below hold
for any ion channel. Throughout, we index the 2V ions by ¢ =
1,2,...,2N. These 2N ions comprise the following.

* N positive charged ions indexed by ¢« = 1,2,..., N. Of
these, N/2 ions indexed by ¢« = 1,2,...N/2 are in R,
and N/2ions indexedbyi = N/2+1,...,2N arein R.
Each Na™ ion has charge ¢*, mass m(Y) = m* = 3.8 x
10~26 kg, and frictional coefficient m*~, and radius +.

* N negative charge ions. We index these by : = N +
1, N+2,...,2N.Ofthese, N/2ionsindexedbyi = N =
1,...3N/2 are placed in R, and the remaining N/2 ions
indexedby i = 3N/2+1,...,2N are placed in R,. Each
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negative ion has charge ¢() = ¢, mass m() = m~,
frictional coefficient m~~~, and radius r~.
Specifying the height of each reservoir to be N A guarantees
that the concentration of ions in them is at the physiological
concentration of 150 mM.
Thus, R = R1 U Ry UC denotes the open set composed of
the interior of the reservoirs and ion channel.

C. Mesoscopic BD Formulation

Let ¢ > 0 denote continuous time. Each ion /z moves in
3-D space over time. Let x\" = (a:@,yﬁ”,zt“)) € R and

vt(l) € R? denote the position and velocity of ion i and time .
Throughout this paper, we use ’ to denote transpose of a vector
or matrix. The three components 2\, y{", 2" of x\") € R are,
respectively, the z, y, and z position coordinates.

At time ¢ = 0, the position ng‘) and velocity v(()i) of each
of the 2N ions indexed by ¢ = 1,2...,2N are randomly ini-
tialized as follows. The positive ions {1,2,..., N/2} and neg-
ative ions N + 1,...,3N/2 are placed in the upper reservoir,
each with x((;’) ~ U[R1, Al. Similarly the remaining N/2 pos-
itive ions {N/2 + 1,..., N} and remaining N/2 negative ions
{3N/2 +1,...,2N} are placed uniformly in the lower reser-
voir. The velocities of the 2N ions are distributed according to
a 3-D Gaussian distribution with zero mean, and 3 x 3 diagonal
positive definite covariance matrix.

An external potential $$¥*(x) is applied along the z axis of
Fig. 2, i.e., with x = (z,y, 2)

I(x) = Az, A€A. (1)

Here A denotes a finite set of applied potentials. Typically A =
{-200,-180,...,0,...,180,200} mV/m. Due to this applied
external potential, the Na™ ions drift from reservoir R; to Ro
via the ion channel C in Fig. 2.

Let X; = (XE1)17 X§2)17X§3)/7 e

vgl)/

€ R?N denote

/
V§2N)/ c

l
2N)/
XE )

3

the positions and V, = 7v§2 ,Vy

RSV denote the velocities of of all the 2V ions. The position
and velocity of each individual ion evolves according to the fol-
lowing continuous time stochastic dynamical system:

. . t .
x{ =x{ 4 / vDds @)
. .. 0 t . t .
m+V§Z) :m+v(()1) - / mtytvds +/ F,(/\l)(Xs)ds
0 0
NV} 3)

+otw® ie{1,2,...

. . t . t .
m_VEZ):m—V((JZ)_/ m—7+vgz>ds+/ PO (X,)ds
J0 JO
+bw®, e {N+1,N+2,... 2N} (4

Equations (3) and (4) constitute the well known Langevin equa-

tions. The process {ng) denotes a 3-D Brownian motion,

which is component wise independent. The constants b and
b~ are, respectively,

bt = 2mttET, b = 2m kT (5)

Thus, at any time £, b+wgi) is a Gaussian random variable
with zero mean (E {b+w§L)} = 0) and 3 x 3 diagonal co-

variance matrix b+2t13X3; similarly, E {b*wti)} = 0 and

E {b’wt(i) }2 = b*Ztngg. Finally, the noise processes
{wgi)} and {wt(j )} that drive any two different ions j # ¢ are
assumed to be statistically independent. .

In (3) and (4), F,(;)(Xt) = _q(i)vx(i)Q’(;\)(Xt) represents
the systematic force acting on ion i, where the scalar valued
process @f;\)(Xt) is the total electric potential experienced by
ion 7 given the position X of the 2V ions. The subscript ) is the
applied external potential in (1). As described below, Fy(/\z)(Xt)
includes an ion-wall interaction force that ensures that position
xgl) of each ion lies in R—see (9) below.

The above system (2)—(4) can be written in stochastic differ-
ential equation form as

d¢, = Aedt + £5(&)dt + XY 2dw, (6)

where
$1/2 = block diag(0an xan, b /mH Iy, b~ /m~Iyyn)

[02nxon Lnvyen
A= 0 ’ Y Inxny  Onxn )
| 2NN Onxn -7 Inxn
[ Oanxa
£1(¢G) = | mrFAX) | . (8)
[ =FL(Xy)

We will subsequently refer to (6) and (7) as the BD equations
for the ion channel.

D. Modeling of Systematic Force Acting on lons

As mentioned after (4), the systematic force experienced by
ion 7 is

FUX0) = =40V, 00 (X))

where the scalar valued process @F;) (X) denotes the total elec-
tric potential experienced by ion ¢ given the position X; of all
the 2N ions. We now give a detailed formulation of these sys-
tematic forces. ‘

The potential CD(;)(Xt) experienced by each ion ¢ comprises
the following five 7components:

o (X,)=U (xgo) gt (x@)

LIW (xgi)) + d9(X,) + ¢5BI(X,).  (9)
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Just as @ff\)(Xt) is decomposed into five terms, we can simi-
larly decompose the force F_(;)(Xt) —qV >(I>( )(Xt) expe-
rienced by ion ¢ as the supefposition (vector sum) of five force
terms, where each force term is due to the corresponding poten-
tial in (9)—however, for notational simplicity we describe the
scalar valued potentials rather than the vector valued forces.
Note that the first three terms in (9), namely, U (xgi)),

st (xgi)), and &IV (xgi)), depend only on the position

E ) of ion 4, whereas the last two terms in (9) ®i(X,) and

®SR:i(X,) depend on the distance of ion 4 to all the other ions,
i.e., the position X, of all the ions. The five components in (9)
are now defined.

1) PMF denoted U (XSL)) in (9), comprises electric forces
acting on ion ¢ when it is in or near the ion channel (nan-
otube C in Fig. 2). The PMF U is a smooth function of
the ion position xgl) and depends on the structure of the
ion channel. Therefore, estimating U(+) yields structural
information about the ion channel. 4

2) External applied potential: For ion ¢ at position xgl) =
x = (z,y,2), P (x) = Az [see (1)] denotes the poten-
tial onion ¢ due to the applied external field. The electrical
field acting on each ion due to the applied potential is,
therefore, V_¢;) @ (x) = (0,0,)) V/m atallx € R. It
is this apphed ‘external field that causes a drift of ions from
the reservoir R to Rs via the ion channel C. As a result
of this drift of ions within the electrolyte in the two reser-
voirs, eventually the measured potential drop across the
reservoirs is zero and all the potential drop occurs across
the ion channel.

3) Inter-ion Coulomb potential: In (9), ®“+(X,) denotes the
Coulomb interaction between ion ¢ and all the other ions

i (X,) = —— S ¢ 10
( t) o TEQ j:lz_]#1 €w HXE’L) _ ng)H . ( )

4) Ion-wall interaction potential: The ion-wall potential
®™W  also called the Lennard—Jones potential, ensures
that the position xg ) of all i ions 1=1,...,2N liein R°.

with x{”) = (z@./ gD, 257)> , it is modeled as

(7.(1) + ,rw) 10

S

t

STV (X(i)) _H
9

(11)
where for positive ions 7() = r* (radius of Na™ atom)
and for negative ions ) = = (radius of C1™ atom),

ro = 1.4 A is the radius of atoms making up the wall,
r. denotes the radius of the ion channel, and Fy = 2 X
10~ 19N, which is estimated from the ST2 water model
used in molecular dynamics [39]. This Lennard—Jones po-
tential results in short-range forces that are only signifi-
cant when the ion is close to the wall of the reservoirs R
and Ro or anywhere in the ion channel C (since the ion
channel is comparable in radius to the ions).
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5) Short-range potential: Finally, in (9)

‘ F, 2 (0 4,0
ey =2y TRy
j=1,j%i xg‘) — XEJ)

denotes the short-range Coulomb interaction between two
ions when their electron clouds overlap. Similar to the
Lennard-Jones potential, @57+ is significant only when
ion ¢ gets very close to another ion. It ensures that two op-
posite charge ions attracted by inter-ion Coulomb forces
(10) cannot collide and annihilate each other.

Remark: As discussed previously, the above BD approach
does not explicitly model the water molecules the surround an
ion. Instead the average effect of the water molecules is consid-
ered as two terms in (3) and (4)

1) The friction term m~yv, @) gt captures the average effect
of the ions driven by the applied external electrical field
bumping into the water molecules every few femtosec-
onds. The frictional coefficient is given from Einstein’s
relation.

2) The Brownian motion term w( ? also captures the effect of
the random motion of ions bumping into water molecules
and is given from the fluctuation—dissipation theorem.

IV. STATISTICAL CONSISTENCY OF BD SIMULATIONS FOR ION
CHANNEL CURRENTS

Assume that the system (6) comprising 2N ions has attained
stationarity with the ion channel C closed. It can be proved [27]
that the system (6) is exponentially ergodic and converges to its
stationary distribution geometrically fast. Then the ion channel
is opened so that ions can diffuse into it. Let 7'7(2’?,)712 denote
the mean minimum time for any of the N/2 Na™ ions in R;
to travel to R, via the ion channel C, and T;é:\?Rl denote the
minimum time for any of the N/2 Na™ ions in R to travel to
Ry: 7'7(2>‘)R =E{t3} and 7'7(2’2,)121 = E {t.}, where

by & inf {t i (Z§1)7zt(z)7 - .7Z§N/2>) > /3}

f {t : min (ZEN/Z-H), ZEN/2+2), e ,zt(2N)) < oz}.
(13)

A .
to =10

It can be shown that 77(2)‘)72 and 7'7(2/\)}2 satisfy a boundary

valued partial differential equation. In terms of the mean first
passage times 7'7(2?)712 , 7'7(2;‘)& defined in (13), the mean current
flowing from R, via the ion channel C into R is defined as

1 1
_ t
) =q <<,A> Y )
TR1,Ra TRy, Ry

However, it is not possible to obtain explicit closed form ex-
pressions for the mean first passage times T7(2)\)R and 77%?,)&
and, hence, the current I() in (14). The aim of BD simula-
tion is to obtain estimates of these quantities by directly sim-
ulating the stochastic dynamical system (6). In this section, we

show that the current estimates 7, (\) (defined below) obtained

(14)
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from a L-iteration BD simulation are statistically consistent, i.e.,
limz oo In(A) = I() ass

Due to the applied external potential ®$** [see (9)], ions drift
from reservoir Ry via the ion channel C to the reservoir R,
thus generating an ion channel current. In order to construct
an estimate for the current flowing from R; to Rs in the BD
simulation, we need to count the number of up-crossings of ions
(i.e., the number of times ions cross from R to Ry across the
region C) and down-crossings (i.e., the number of times ions
cross from Ry to Ry across the region C). Recall from Fig. 2
that z = a = —12.5 A denotes the boundary between R; and
C,and z = 3 = 12.5 A denotes the boundary between R, and
C.

Time Discretization: The BD simulation Algorithm 1 de-
scribed below propagates the 2N ions over a period of T' =
10~* seconds according to a time discretization of (6). Consider
aregular partition 0 = tp < t] < --- < tp—1 < tp < --- with
constant time step A = t;, — t;_; = 10715 (femto) seconds.
There are several possible methods for discretizing a stochastic
differential equation; see [26] for a detailed exposition. Here
we adopt the method of [20] which can be straightforwardly
explained as follows: assuming f ((;) to be approximately
constant over the short time interval [t tx11], the solution of
(6) satisfies

trtt
Gropr = eABRTIIG, 4 / AT (G )dr

Jt
ey
+ / At =TIy 2 0w (15)
Jt
The last integral above is merely a Gauss—Markov process. For
notational convenience, we denote the above discretized system

as the following discrete-time system with £ = 0,1,... de-
noting discrete-time
0, =T 19 () 4w a6

Here k corresponds to time ¢y, {(gl)} denotes the discrete-

time state, and I' = exp(AA), W](cd) is a discrete-time vector
Gauss—Markov process.

BD Simulation Algorithm: In the BD simulation Algorithm
1 below, we use the following notation:

The algorithm runs for L iterations where L is user specified.
Each iteration [, [ = 1,2, ..., L runs for a random number of
discrete-time steps until an ion crosses the channel. We denote
these random times as %7(2[3 R, if the ion has crossed from Ry to

R5 and 7. ( ) 2R if the ion has crossed from R5 to R;. Thus
Agz R, = min {k ¢ () ¢ Pr}
A7(€lz,721 = min {k C(d) } .
N/2} are in R4 at steady state
2N} are in Ro at

The positive ions {1,2,...,
75, and the positive ions {N/2 + 1,...,
steady state.

Lz, ®r, is a counter that counts how many Na™ ions have
crossed from R to Ro and Ly, %, counts how many Na™ ions
have crossed from R» to Rq. Note Lg, r, + Lz, r, = L.

In the algorithm below, to simplify notation we only con-

sider passage of positive Na™ ions 4 = 1,..., N across the

ion channel (for example, in a gramicidin-A channel, the ion
channel current is caused only by Na* ions).

Algorithm 1: Brownian Dynamics Simulation Algorithm
(for fixed and 1))

e Input parameters for PMF and A for applied ex-
ternal potential.

e For =1 to L iterations:

— Step 1.

tionary distribution w(}) .

Initialize all 2N ions according to sta-

Open ion channel at discrete time k¥ =0 and set k =
1.

— Step 2.
time discretized Brownian dynamical system (16)

Propagate all 2N ions according to the

until time k* at which an ion crosses the channel.

* If ion crossed ion channel from R; to Ra,

i.e., for any ion * € {1,2,...,N/2}, ~k1) > 3 then
set T7(-.l)1 Ry = K7
Update number of crossings from R; to Ro:

Lz, ry = Lr, ry, +1.
+ If ion crossed ion channel from R. to Ry,

i.e., for any ion ¢* {N/2 +1,..., , N}, M,‘_x < « then
set 5'7(11)7 r, = K.

Update number of crossings from R, to Ri:
Lp,r, = Lr,nr, +1.

— End for loop.
e Compute the mean first passage time and mean cur-

rent estimate after L iterations as

1 LRlyRQ
~(N\) _ O]
730k, (D) = T ; e my (17)
1 Lry Ry
() _ )
#30 r, (L) = Tro ; ) ®, (18)
. 1 1
IL(A):q+( N - ) (19)
7(11)722(L) T7(12)R1(L)

The following result shows that the estimated current I (A
obtained from a BD simulation run over L iterations is strongly
consistent.

Theorem 1: For applied external potential A € A, the ion
channel current estimate | .(A) obtained from the BD simula-
tion Algorithm 1 over L iterations is strongly consistent, i.e.,

Jim Ir(A) =I()) wp.1 (20)

where I(\) is the mean current defined in (14).
Proof: Since by construction in Algorithm 1, each of the

(o)

} are finite by Kolmogorov’s strong law of large

L iterations are statistically independent, and E
~ (1)

E {TRZ yR1

numbers

R, (L) =75,

(L) =7 g,

Thus, ¢+ ((1/7721 R, (L )) (/7(22\)131( ))) -

as L — oo.

hm T

(>\)

hm TR)7 w.p. L.

I(A) wp. 1
]
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V. BD STUDIES ON ION CHANNELS

Here we highlight some of the computational studies carried
out on two important classes of biological ion channels—the
KcsA potassium channel and CIC C1™ channel. In the absence
of structural information for biological ion channels, the grami-
cidin pore has been the main focus of theoretical investigations
for a long time [3]. The recent determinations of the crystal
structures of several biological ion channels [16], [17], [18],
[41] have now shifted the attention away from the gramicidin
channel. For detailed accounts of recent advances in the field of
computational biophysics, the reader is referred to several re-
view articles [10], [28], [36], [40].

A. KcsA Potassium Channel

The unraveling of the crystal structure of the KcsA potassium
channel by Doyle et al. [16] is a landmark event that will have
a lasting impact on ion channel studies. This is the first biolog-
ical ion channel whose X-ray structure is elucidated. Thus, it
has prompted a flurry of theoretical investigations on the mech-
anisms underlying the permeation of ions across the channel,
the basis of ion selectivity, and the conformational changes that
occur in the KcsA protein when the channel opens.

To determine currents flowing across the channel, Chung
et al. [8], [9] and others [6], [30] have performed BD simula-
tions on the KcsA channel using the experimentally determined
channel structure. In these simulations, water is treated implic-
itly as a continuum, and the protein atoms forming the channel
are assumed to be rigid. With these simplifications, they were
able to relate the channel function to its structure.

The shape of the ion-conducting pathway across the KcsA
protein is illustrated in the inset of Fig. 3. The KcsA structure
determined from X-ray diffraction consists of 396 amino
acid residues, or 3504 atoms excluding polar hydrogens. The
channel is constructed by four subunits of a tetramer of peptide
chains, each subunit consisting of an outer helix, inner helix,
pore helix and a threonine-valine-glycine-tyrosine-glycine
(TVGYG) amino acid sequence that forms the selectivity filter.
The protein atoms form a central pore between theses subunits.
An outline of the pore reveals that the channel is composed
of three segments—a long intracellular region of length 20 A
lined with hydrophobic amino acids extending toward the intra-
cellular space (left-hand side in the inset), a wide water-filled
chamber of length 10 A, and a narrow selectivity filter of length
12 A, extending toward the extracellular space. The selectivity
filter is the most important element in this structure as it can
distinguish K ions from those of Na™ on the basis of their
sizes (crystal radius of KT is 1.33 A and that of Na™ is 0.95
A). BD simulations show that there are three regions in the
selectivity filter and cavity where K™ ions dwell preferentially,
as illustrated in the inset of Fig. 3 (indicated as dark balls).
There is also another prominent binding site near the intracel-
lular entrance of the channel. The preferred position where ions
dwell preferentially are in close agreement with the positions
observed in Rb™ X-ray diffraction maps [16].

To illustrate the permeation mechanism across the potassium
channel, the channel is bisected such that ions in the chamber
and filter are consigned to the right side, and the rest to the
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Fig. 3. KcsA potassium ion channel: shape of ion channel, current voltage,
and current concentration curves.

left side. The most common situation in the conducting state
of the channel has one ion on the left half, and two ions in the
right half. This configuration is referred to as the [1, 2] state. A
typical conduction event consists of the following transitions:
[1,2] — [0,3] — [0,2] — [1,2]. In other words, the ion waiting
near the intracellular mouth overcomes a small energy barrier in
the intracellular pore to enter the chamber region. Because this
system is unstable in the presence of an applied potential, the
rightmost ion is ejected from the channel. Another ion enters the
intracellular mouth, leaving the system in its original configu-
ration. The precise sequence of events taking place for conduc-
tion of ions depends on their concentration, applied potential,
and the ionization state of charged residues at the intracellular
gate, and many other states can be involved in the conduction
process depending on the values of these variables.

In Fig. 3(a) and (b), we show the current—voltage and
current—concentration curves obtained from BD simulations
[9]. The results of BD simulations are in broad agreement
with those determined experimentally [13], [15], [21], [29],
[31], [38]. The conductances at +150 mV and —150 mV are,
respectively, 172 4+ 15 and 93 &+ 12 pS. The relationship is
linear when the applied potential is in the physiological range
but deviates from Ohm’s law at a higher applied potential,
especially at high positive potentials. The current saturates with
an increasing ionic concentrations, as shown in Fig. 3(b). This
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arises because ion permeation across the channel is governed by
two independent processes: the time it takes for an ion to enter
the channel mouth depends on the concentration while the time
it takes for the ion to reach the oval chamber is independent of
the concentration but depends solely on the applied potential.

BD studies reveal that permeation across the filter is much
faster than in other parts of the channel. That is, once a third
ion reaches the oval cavity, the outermost ion in the selectivity
filter is expelled almost instantaneously. Thus, although the filter
plays a crucial role in selecting the K™ ions, its role in influ-
encing their conductance properties is minimal.

B. CLC CI™ Channel

Dutzler et al. [17], [18] determined the X-ray structure of a
transmembrane protein in bacteria, known as the CIC channel,
that has subsequently been shown to be a transporter, not an
ion channel [1]. Nevertheless, many amino acid sequences of
the bacterial CIC protein are conserved in their eukaryotic CIC
relatives, which are selectively permeable to C1~ ions. The pro-
totype channel, known as CIC-0, first discovered and character-
ized by Miller [32], is found in Torpedo electroplax. Since then,
nine different human CIC genes and four plant and bacterial C1C
genes have been identified. The CIC family of C1™ channel is
present in virtually all tissues—in muscle, heart, brain, kidney,
and liver—and is widely expressed in most mammalian cells.
By allowing Cl1™ ions to cross the membrane, CIC channels per-
form diverse physiological roles, such as control of cellular ex-
citability, cell volume regulation, and regulation of intracellular
pH [35].

The availability of the X-ray structure of the bacterial CIC
CI™ channel has prompted several theoretical investigations
using a novel computational approach based on the Metropolis
Monte Carlo method [33], molecular dynamics, [12] and BD
[14]. Because the bacterial CIC protein shares many signature
sequence identities with the eukaryotic CIC channels, it is
possible to build homology models of these channels based on
the structural information provided by Dutzler et al. [17], [18].
With this aim in mind, Corry et al. [14] first altered the X-ray
structure of the bacterial CIC protein using molecular dynamics
to create an open-state configuration. They then converted the
bacterial CIC structure to the CIC-0 structure (see, for details,
[14]). Incorporating this homology model into BD, as shown
in the inset of Fig. 4, they determined the current—voltage—con-
centration profile of CIC-0. These are illustrated in Fig. 4(a)
and (b). The current—voltage relationship determined from BD
simulations is linear (filled circles in Fig. 4(a), with the slope
conductance of 11.3 £ 0.5 pS. The experimental measurements
obtained from CIC-0 [32] (open circles) are superimposed on
the simulated data. The slope conductance determined from
the experimental data is 9.4 £ 0.1 pS. In Fig. 4(b), the currents
obtained from BD simulations, under the applied potential of
—80 mV, are plotted against the concentration of Cl™ ions
in the reservoirs. The experimental data obtained from CIC-0
by T.-Y. Chen (personal communication) are shown in open
circles. The lines fitted through the data points are calculated
from the Michaelis—Menten equation. There is a reasonable
agreement between the simulated data and experimental mea-
surements for CIC-0.
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Fig. 4. CIC CI~ channel ion channel: shape of ion channel, current—voltage,
and current—concentration curves.

BD simulations also reveal the steps involved in permeation
of C1™ ions across the CIC channel. The pore is normally oc-
cupied by two C1™ ions. When a third ion enters the pore from
the intracellular space (left-hand side in the inset of Fig. 4), the
stable equilibrium is disrupted, and the outermost C1~ ion is ex-
pelled to the extracellular space.

VI. CONTROLLED BD FOR PMF ESTIMATION

In this section, we briefly describe a new extension of BD
simulation for estimating the PMF of an ion channel. This ex-
tension involves a novel simulation-based learning control al-
gorithm that dynamically adapts the evolution of the BD sim-
ulation. It is based on our current and ongoing research. The
complete formalism, convergence proofs, and numerical results
will be presented elsewhere [27].

We will estimate the PMF Uy parameterized by some finite
dimensional parameter 6 (e.g.,  are the means variances and
mixture weights of a Gaussian basis function approximation),
by computing the parameter 6 that optimizes the fit between the
mean current /(6, A) [defined above in (14)] and the experimen-
tally observed current y() defined below. There are two reasons
why estimating the PMF Uy is useful. First, it allows us to deter-
mine the position and depth of the potential wells and barriers
in the ion channel. Second, estimating the PMF permits us to
compute the effective surface charge density along the protein
of the inside surface of the ion channel that reproduces the PMF
Uy along the central z axis of the ion channel; see [27] for de-
tails.
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Unfortunately, it is impossible to explicitly compute (6, )
from (14). For this reason we resort to a stochastic optimiza-
tion problem formulation below, where consistent estimates of
1(60, \) are obtained via the BD simulation Algorithm 1.

From patch clamp experimental data, an accurate estimate
of the I-V curve of an ion channel can be obtained. This I-V
curve depicts the the actual current y(\) flowing through an ion
channel for various external applied potentials A € A. For fixed
applied field A € A, define the square error loss function be-
tween the mathematically defined mean current (6, \) in (14)
and the true current y(\) as

Q0. A) = 11(6,2) — y(N)I*.

Define the total loss function obtained by adding the square error
over all the applied fields A € A on the I-V curve as

Q) =" Q8. \).

AEA

2y

(22)

The optimal PMF Uy- is determined by the parameter * that
best fits the mean current 1(#, \) to the experimentally deter-
mined /-V curve of an ion channel, i.e.,

6% = arg min (). (23)

However, the deterministic optimization (21) and (23) cannot
be directly carried out, since it is not possible to obtain explicit
closed form expressions for the current 7(#, A) in (21). This
motivates us to formulate the estimation of the PMF as a sto-
chastic optimization problem where I(6, ) is replaced by esti-
mates from the BD simulation.

Suppose that the BD simulation Algorithm 1 is run in
batches indexed by batch number n = 1,2, .... In each batch
n, the PMF parameter 6,, is selected (as described below), the
BD Algorithm 1 is run over L iterations, and the estimated
current I,,(6,\) is computed using (19). Since as proved in
Theorem 1 these estimates are asymptotically unbiased, i.e.,
E {IAn(H7 )\)} = I(6, \), we can reexpress the objective func-

tion Q(A,\) = |I(#,\) — y(\)|? in (21) as

(0, )) = (E{1u(0.0)} - y()\))Q, Q) =S Q8. \).

(24
To summarize, (23) and (24) defines the stochastic optimization
problem we will solve in this section.

To solve the stochastic optimization problem by a simulation
based optimization approach, we need to evaluate unbiased es-
timates Q,,(6, A) of the loss function and derivative estimates
V6Q.. (0, \). The estimation of the derivative VQ,,(6, \) in-
volves using recent sophisticated techniques in Monte Carlo
gradient estimation [34]. In [27] we present several such algo-
rithms, including the Kiefer—Wolfowitz algorithm, which eval-
uates derivate estimates as finite differences, the Simultaneous
Perturbation Stochastic Approximation (SPSA), which evalu-
ates the derivatives in random directions (and, thus, saves com-
putational cost), and pathwise infinitesimal perturbation anal-
ysis (IPA) gradient estimators.

The controlled BD simulation algorithm for estimating the
PMF is schematically depicted in Fig. 5. Recalln = 0,1,...
denotes batch number.

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 4, NO. 1, MARCH 2005

0, Brownian | I,(6,)) |Loss function| @, (6, \)
Dynamics evaluation
Simulation
Stoche.lstic @99’1 (0, Grgdient
Gradient Estimator
Algorithm

Fig. 5. Controlled BD simulation for estimation PMF.

Algorithm 2: Controlled BD Simulation Algorithm for
estimating PMF

o Step 0: Set batch index n = 0,
0 € O.

e Step 1 (Evaluation of loss function): At batch n,

and initialize

evaluate loss function Q,(6,\) for each external po-
tential A € A.

e Step 2 (Gradient Estimation):
timate 699,1(9,)\).

Compute gradient es-

e Step 3 (Stochastic Approximation Algorithm): Up-
date PMF estimate:
Oni1 =00 —€ni1 Yy VQu(6,,6) (25)

AEA

where €, = l/I'L denotes a decreasing step size.
e Set n to n+1 and go to Step 1.

A crucial aspect of the above algorithm is the gradient estima-
tion Step 2. In this step, an estimate VQ,,(6, A) of of the gra-
dient V9 Q,,(#, \) is computed. This gradient estimate is then
fed to the stochastic gradient algorithm (Step 3), which updates
the PMF.

It is proved in [27] that the above algorithm converges with
probability one to the optimal PMF 6*.
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