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19 Signal Processing Based on Hidden Markov
Models for Extracting Small Channel Currents

Vikram Krishnamurthy and Shin-Ho Chung

19.1 Introduction

The measurement of ionic currents flowing through single channels in cell mem-
branes has been made possible by the giga-seal patch-clamp technique (Neher and
Sakmann, 1976; Hamill et al., 1981). A tight seal between the rim of the elec-
trode tip and the cell membrane drastically reduces the leakage current and extra-
neous background noise, enabling the resolution of the discrete changes in con-
ductance that occur when single channels open or close. Although the noise from
a small patch is much less than that from a whole-cell membrane, signals of in-
terest are often obscured by the noise. Even if the signal frequently emerges from
the noise, low-amplitude events such as small subconductance states can remain
below the noise level and there may be little evidence of their presence. It is de-
sirable, therefore, to have a method to measure and characterize not only relatively
large ionic currents but also much smaller current fluctuations that are obscured by
noise.

Extracting the real signal from a limited set of imperfect measurements is a
problem that commonly occurs in scientific experiments and techniques have been
developed to overcome this difficulty. Following digitization, a single-channel record
consists of a sequence of data points. Each data point contains a mixture of the signal
and extraneous noise. The challenge is to remove the noise leaving the biological
signal untouched. Some of the methods that have been used to do this are linear
and nonlinear filtering (Chung and Kennedy, 1991) and transition detectors (Patlak,
1988, 1993; Tyerman et al., 1992; Queyroy and Verdetti, 1992). Although both
linear and nonlinear filtering suppress noise and nonlinear filtering produces little
distortion of rapid transitions in underlying signals, neither method utilizes all of the
knowledge available about the nature of the signal and interfering noise. Using such
information improves the probability of recovering the underlying signal accurately.
Broadly speaking, this is the strategy used in the hidden Markov models (HMM)
processing technique. The HMM processing technique has been fruitfully utilized
in electrical engineering in the disciplines of artificial speech recognition and target
tracking in defense systems. The technique was then applied for the analysis of
single-channel recordings and to extract small channel currents contaminated by
random and deterministic noise (Chung et al., 1990, 1991; Krishnamurthy et al.,
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1991, 1993; Venkataramanan et al., 1998a,b, 2000). With this signal processing
method, the underlying parameters of the HMM could be obtained to a remarkable
precision despite the extremely poor signal to noise ratio.

The aim of this chapter is to review the construction and use of HMM for
estimating the dynamics of ion channel gating. We first provide a brief intuitive
explanation and then a rigorous account of the underlying principles of the process-
ing method. We also outline state-of-the-art results in HMM that are the subject
of recent research in mathematical statistics and signal processing in electrical en-
gineering. Some of these techniques are relatively new and not yet known in the
biophysics community. These include ideas such as estimating the model order of
a HMM, jump Markov linear systems (which is a generalization of HMM to deal
with digitally filtered Markov chains and correlated noise), and recursive (online)
HMM parameter estimation. We refer the reader to Ephraim and Merhav (2002) for
a state of the art review of HMM with a stronger mathematical flavor compared to
this chapter.

An HMM is an example of a partially observed stochastic dynamical system.
Because opening and closing of an ion channel is random, recordings of single-
channel current may be modeled probabilistically as a finite-state, random realization
of a Markov chain. Since the underlying ion channel current is corrupted by large
amounts of thermal, capacitance and other deterministic noise, the underlying state
of the dynamical system is only partially observed. HMM and their generalizations
are extremely versatile in capturing the response of complex dynamical systems such
as ion channels.

19.2 General Description of the HMM Method

19.2.1 Signal Model and Assumptions

To apply a digital signal processing technique based on HMM to records of single-
channel currents contaminated by noise, we first make a plausible guess about the
origin of the observation sequence and then construct a signal model. It is assumed
that the pure single-channel signal, not contaminated by noise, can be represented
as a Markov process with the following characteristics.

In this chapter we deal exclusively with discrete time HMM. By discrete time,
we mean that the noisy ion channel current is observed at discrete time instants
k = 0, 1, 2, . . . after suitable anti-aliasing filtering and sampling. The advantage of
using discrete time HMM is that powerful algorithms can be derived with a fairly
elementary background in probability (Papoulis and Pillai, 2002) involving manip-
ulation of conditional probability density functions and Bayes’ rule. An analogous
theory can be developed for continuous time HMM although the mathematical tools
are more difficult since they require the use of stochastic differential equations for
a unifying treatment of both discrete and continuous time HMM (see, James et al.,
1996).
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For each discrete time k, the signal sk is assumed to be at one of the finite
number of states, q1, q2, . . . , qN . Each qi , where i = 1, 2, · · · , N , is called a state
of the process and such a process is called an N -state Markov chain. In the context
of channel currents, the Markov state, sk , represents the true conductance level
(or current amplitude) uncontaminated by noise at time k. The observed value at
time k, yk , contains the signal, sk , random noise wk , and possibly deterministic
interferences dk , such as sinusoidal interferences from electricity mains and baseline
drift. We note here that the meaning of the term state differs from that adopted in the
Colquhoun–Hawkes model of channel dynamics (Colquhoun and Hawkes, 1981),
in which state refers to a hypothetical, not directly observable, conformation of the
channel macromolecule.

We also assume that the probability of the current being at a particular level
(state) at time k + 1 depends solely on the state at time k and that the transition
probabilities are invariant of time k. In other words, the process is construed as a
first-order, homogenous Markov chain. The transition probabilities of passing from
state level qi at time k to state level q j at time k + 1 are expressed as

ai j = P(sk+1 = q j |sk = qi ) (19.1)

and form a state transition probability matrix A = {ai j }. Thus, A is an N × N
stochastic matrix, with its diagonal elements denoting the probabilities of remaining
in the same state at time k + 1 as at time k.

Finally, we define the noise, know also as the probabilistic function of the
Markov chain or the symbol probability as B = bi (yk). It is convenient to assume
that the noise is Gaussian. In reality, noise superimposed on single-channel currents is
not white but tends to be colored. Its spectral power, instead of being flat, rises steeply
at high frequencies. This issue was addressed by use of an autoregressive noise model
to represent temporal correlation in the background noise contained in patch-clamp
recordings and then the algorithm for handling such correlated and state-dependent
excess noise was formulated (Venkataramanan et al., 1998a,b; Venkataramanan and
Sigworth, 2002). It was demonstrated that the performance of the algorithm was
markedly improved when the background noise was modeled realistically.

19.2.2 Example of a Signal Model

Suppose we know that a record contains four current levels but we are not sure of the
exact levels nor the exact signal sequence. We can set up an initial model with the
following assumed characteristics. First, we make a reasonable guess, and say that
the baseline level is 0 pA and that there are three open states at −1, −2, and −3 pA.
Second, we assume that the noise is zero-mean Gaussian, with a standard deviation
of, say, 0.25 pA. Third, we provide our initial guesses of transition probabilities from
one state level at time k to another state level at time k + 1. For a four-state Markov
chain, these transition probabilities form a 4 × 4 transition probability matrix. In
the example given here, the first entry of the first row of the matrix represents the
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Table 19.1 An example of the signal model.

State levels q1 = 0 pA
q2 = −1 pA
q3 = −2 pA
q4 = −3 pA

Noise characteristics Gaussian with � = 0.25 pA

Transition matrix a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Initial probability �1 = �2 = �3 = �4 = 0.25

probability that the process remained in the closed state at time k + 1 given that
it was closed at time k, whereas the second entry of the first row represents the
probability of transiting to the first open level at time k + 1 given that it was closed
at time k. Similarly, the last entry of the last row represents the probability that the
process remained in the fourth level, or the −3 pA level, at time k + 1 given that
it was at this level at time k. Finally, we stipulate that the probability of the signal
being at each one of the four levels at time k = 1 is 0.25.

These assumptions can be represented as shown in Table 19.1.
We can also stipulate, if needed, that there is AC hum (50 or 60 Hz and its

odd harmonics) embedded in the data but, for simplicity, this is not included in this
example. We compactly write all these initial guesses as:

�(0) = (q, A, B, �), (19.2)

our first signal model.

19.2.3 Iterative Algorithm for Estimating HMM Parameters

Here we explain in simple terms how the expectation maximization (EM) algorithm
can be used to estimate the HMM parameters. A more rigorous formulation together
with other numerical algorithms is given in Section 19.5. The signal model is com-
pared with the data. Essentially, the probabilities of all possible pathways between
adjacent data points are calculated, both forward and backward, and the true current
levels derived from the highest probabilities. Because the initial parameters we have
supplied (e.g., the transition probability matrix and conductance levels) are only
guesses, there is going to be a mismatch between the model and data. The model
is revised so that it will be more consistent with the data. Using the revised model,
the observation sequence is compared again with the new model, and the model is
again revised. This iterative process continues, as shown in Fig. 19.1.
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Fig. 19.1 A block diagram of processing method. On the basis of the initial signal model �,
the observation sequence YT is processed, and the forward and backward variables, �k and �k

are computed for each discrete time k and each Markov state qi . By using these variables, the
parameters of the signal model are revised according to the reestimation formulas. The entire
process is repeated many times.

In this iterative process, the HMM processing technique utilizes two mathe-
matical principles. The first is the forward–backward procedure, known also as the
E Step of the EM algorithm, to be discussed in detail in Section 19.5.2 For each
data point k, the algorithm evaluates, using Bayes’ rule, the forward and backward
variables, � and �. In words, the forward variable �k(i) is the joint probability of the
past and present observations with the present signal in state qi , given the model �,
and �k(i) is the probability of the future observation given that the present state is
qi and given the model �. The forward variable is calculated in a forward recursion
and the backward variable in a backward recursion.

Then, using the forward and backward variables, the initial model �(0) is rees-
timated, using the Baum–Welsh reestimation formulas, the M Step of the EM algo-
rithm. Estimation formulas stipulate how the model parameters should be revised,
given the forward and backward variables. Loosely stated, the E step of the EM
algorithm maximizes the expectation of the likelihood function if the parameters of
the initial model �(0) are replaced by a new model �(1). The same segment of data is
now processed with the second signal model, and then the parameters of this model
are replaced, again according to the reestimation formulas, in the third signal model
�(2). This process is iterated again and again until the difference in the estimates �(n)

and �(n+1) in two successive iterations is sufficiently small.
After each iteration, we can compute from the forward variables a numerical

value that we call the likelihood function—that is, how likely are the model pa-
rameters given the data sequence. The closer the model parameters are to the true
parameters, the higher the likelihood function. If the likelihood functions were to
increase or decrease erratically with successive iterations, this procedure would have
been a waste of time. The rationale behind the iterative procedure rests on the elegant
reestimation theorem formulated by Baum and colleagues (Baum and Petrie, 1966; Au: The year

“1996” has
been changed
to “1966” as
per the ref.
list. Is this OK

Baum et al., 1970; Baum, 1972), which states:

P(YT |�n+1 ≥ P(YT |�n). (19.3)
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In words, the probability of the observation sequence YT , given the reestimated
signal model, is greater than or equal to the probability of YT , given the previous
signal model. Thus, the signal sequence estimated using the revised model is more
consistent with the data than that estimated using the previous signal model. When
the iterative procedure converges, then P(YT |�n+1) = P(YT |�n), and �n is termed
the maximum likelihood estimate of the HMM. This important theorem, the proof
of which is based on Jensen’s inequality (Baum and Petrie, 1966), is the core of the
HMM processing scheme.

There is a choice of numerical methods of calculating the maximum likelihood
estimates, as discussed in Section 19.5.1. One approach is the Newton–Ralphson
(NR) algorithm, which, when it converges, does so quadratically and thus rapidly.
The EM algorithm, on the other hand, converges linearly, and so convergence can
be slow. However, successive iterations with the NR algorithm do not necessarily
improve the likelihood function. In contrast, the EM algorithm is simple to implement
and has the appealing property that the likelihood function is always improved after
each iteration.

19.2.4 Estimating the Number of States

Perhaps the most subjective part of the HMM processing method, like any other
parameter estimation scheme, is finding the state dimension—or the number of
conductance states in our example—in hidden Markov chain processes. The error in
fitting a model to a given set of data decreases with the number of free parameters
in the model. Thus, it makes sense, in selecting a model from a set of models with
different numbers of parameters, to penalize models having too many parameters.
The question of how to penalize HMM for having an excessive number of free
parameters is an area of current research (see, for example, Poskitt and Chung, 1996)
and one proposed criterion for model-order selection is the compensated likelihood
approach (Finesso, 1990; Liu and Narayan, 1994; Rydén, 1995). See Section 19.6.2
for further discussion of this issue.

In practice, however, it is relatively easy to identify the number of states present
in the underlying Markov chains. One of the several ways of doing this is by con-
structing the most likely amplitude histogram. Here we assume that the signal can
be represented as a Markov chain with a large number of equally spaced states, say
100 states, and then estimate the most likely signal sequence. We construct an am-
plitude histogram from the estimated signal sequence under this assumption. After
a number of iterations, the maximum likelihood histogram clearly shows prominent
peaks, even when no meaningful information can be gleaned from the amplitude
histogram of the original record.

Alternatively, we can appeal to the principle of parsimony in deciding the
number of conductance states. We measure the goodness of fit by evaluating the
likelihood of the model, and weigh this against what is to be gained by increasing
the number of parameters, which generally increases the likelihood. Thus, we process
the same data segment under the assumption that the underlying signal has a different
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number of conductance states. If a plot of log likelihood against model order (the
number of states) shows a “knee” for a certain model order, we would prefer this
model to one of higher order. This approach has been used to determine the number
of conductance substates in channel currents activated � -aminobutyric acd (Gage
and Chung, 1994).

19.3 HMM Formulation and Estimation Problems

What follows is a rigorous formulation of the HMM processing techniques. We begin
by formalizing the definition of a HMM process.

19.3.1 Definitions

A discrete time HMM process is a stochastic process comprising two ingredients:

1. A stochastic dynamical system modeled as an S state discrete time Markov chain
s with state space

S = {1, 2, . . . , S}. (19.4)

This Markov chain evolves probabilistically according to the S × S transition
probability matrix A. The elements of A are the transition probabilities

ai j = P(sk+1 = j |sk = i), 0 ≤ ai j ≤ 1,

S∑
j=1

ai j = 1, i, j ∈ {1, . . . , s}.
(19.5)

The Markov chain s is initialized at time k = 0 with

�0 = (�0(i), i ∈ S) = P(s0 = i). (19.6)

The Markov chain s models the actual pure, unobserved ion channel current.
2. Partially observed state: In an HMM, the Markov chain state (i.e., channel current

not contaminated by noise) s is not directly observed. Instead, the observation
process y is a noisy corrupted version of s. The observation y is modeled as a ran-
dom process generated from the conditional probability density (or the probability
mass function if yk is discrete valued)

bi (yk) = p(yk |sk = i). (19.7)

This conditional probability density is called the observation likelihood function
in the statistical inference literature. Throughout this chapter we assume that the
observation likelihood function p is parameterized. More precisely, � denotes
the sufficient statistic for the probability density p by some finite vector �. For
example, as described below, if the observation likelihood b is Gaussian, then �
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comprises the mean and variance since the mean and variance completely specify
a Gaussian probability density function.

The above HMM is thus completely modeled by initial probability distribution
�0, the transition probability matrix A, and observation likelihoods b (or equiva-
lently �). Since we are primarily interested in the evolution and estimation of the
HMM over long time scales, the initial distribution �0 is unimportant. Indeed it can be
shown that most HMM forget their initial condition geometrically fast. Most HMM
estimation algorithms also forget their initial condition geometrically fast—this is a
consequence of “geometric ergodicity” and requires that the transition probability
be aperiodic and irreducible (LeGland and Mevel, 2000). To summarize, an HMM
is completely parameterized by the model parameter

� = (A, �). (19.8)

In this chapter we are interested in estimating � given a sequence of N observations
of the HMM, where N > 0 is a large positive integer denoting the data size (typically
several thousand or larger). Denote this N -length HMM observation sequence as

YN = (y1, y2, . . . , yN ). (19.9)

19.3.2 Modeling Ion Channel Current as an HMM

Here we illustrate how to model the noisily observed ion channel current from a
patch clamp experiment as an HMM.

A typical trace of the ion channel current measurement from a patch-clamp
experiment (after suitable anti-aliasing filtering and sampling) shows that the channel
current is a piecewise constant discrete time signal that randomly jumps between two
values—zero amperes, which denotes the closed state of the channel, and q amperes
which denotes the open state. Figure 19.2 shows a computer-generated example of
a patch-clamp record. To the pure channel current (Fig. 19.2A), noise from various
sources is added to mimic the observation sequence, shown in Fig. 19.2B. The open-
state current level is denoted as q. Sometimes the current recorded from single ion
channel dwells on one or more intermediate levels, known as conductance substates.
The pure ion channel current, uncontaminated by noise, is modeled as the Markov
chain s with state space S = {1, 2, 3}. These states correspond to the physical ion
channel current of

q = (q(1), q(2), q(3))′ = {C, O1, O2} (19.10)

corresponding to the physical states of closed state, partially-open state and fully-
open state. Subsequently, we will refer to q as the physical state levels of the Markov
chain. When the channel is in the closed state, no currents flow across it. In the open
state, the ion channel current has a value of q pA. Figure 19.2 also shows a computer
simulated clean ion channel current s.
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Fig. 19.2 A computer-generated patch-clamp record. To a three-state Markov chain (A), a
Gaussian noise was added to mimic a channel current contaminated by amplifier and other
noises (B).

The (3 × 3) transition probability matrix A of the Markov chain s, which gov-
erns the probabilistic behavior of the channel current, is given by

A =
C O1 O2

C a11 a12 0
O1 a21 a22 a23

O2 0 a32 a33

(19.11)
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The elements of A are the transition probabilities ai j = P(sn+1 = j |sn = i) where
i, j ∈ S or equivalently the physical state of the ion channel in {C, O1, O2}. The zero
probabilities in the matrix A, given as an example, state that an ion channel current
cannot directly jump from the close state to the fully-open state, or vice versa.

The observed noisy ion channel current y from a patch-clamp experiment can
be modeled as the Markov chain s corrupted by additive thermal noise with noise
variance depending on the state of the ion channel:

yk = q(sk) + wk, k = 0, 1, . . . . (19.12)

Here q(sk) ∈ {C, O1, O2}, given in (Eq. 19.10), are the physical state levels of the
ion channel current, and wk is a zero mean independent and identically distributed
(iid) Gaussian scalar noise process with variance �2

w. That is, the probability density
function of wk is

pW (w) = 1√
2��w

exp

(
−1

2

w2

�2
w

)
.

In terms of the HMM observation likelihood (Eq. 19.7),

bi (yk) = 1√
2��w

exp

(
−1

2

(yk − q(i))2

�2
w

)
. (19.13)

In summary, the noisily observed ion channel current y is modeled as a Hidden
Markov model sequence parameterized by the model

� = {A, q, �2
w}. (19.14)

Our aim is to devise algorithms for estimating � given an N length sequence of noisy
ion channel observations YN [defined in (Eq. 19.9)].

Remarks. It is possible to extend the above HMM in several ways.

1. Higher-order Markov chains: The model assumption (Eq. 19.5) that sk depends
probabilistically only on its state at the previous time instant, i.e., sk−1 means
that s is a first-order Markov chain. This assumption can be straightforwardly
generalized to higher-order Markov chains with sk depending probabilistically on
the previous � time points sk−1, sk−2, . . . , sk−� where � ≥ 1. Then define a new
first order Markov chain s̄k = (sk, sk−1, . . . , sk−�+1) on the state space S × S ×
S. The HMM processing algorithms presented in this chapter straightforwardly
apply to this Markov chain.

2. Correlated observations: A critical assumption in constructing an HMM is that
the observation process y is “conditionally independent.” This means that the
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conditional probability density

p(yk |sk, past values of s, y) = p(yk |sk), (19.15)

i.e., given sk , the HMM yk is independent of the past. This conditional indepen-
dence holds for the HMM ion channel observations (Eq. 19.12) providing that the
corrupting noise wk is an iid process. It is possible to generalize this conditional
independence to allow yk to depend on � past values of the observation and state.
Such a generalization facilitates dealing with correlated noise. In such a case the
observation likelihood of (Eq. 19.7) generalizes to

p(yk |sk−1, sk−2, . . . , sk−�, yk−1, yk−2, . . . , yk−�).

Such generalized HMM are widely used in, for example, econometric model-
ing and fault tolerant systems and are called Markov modulated autoregressive
processes or jump Markov autoregressive processes (Krishnamurthy and Rydén,
1998).

3. State-dependent noise variance: A generalization of the observation equation
(Eq. 19.12) is to model the thermal noise as wk(sk), where the noise variance �2

w

is a function of the state sk of the Markov chain. This generalization can easily
be incorporated in the HMM.

4. Additional deterministic interference: Often the recorded ion channel currents
have a deterministic drift and sinusoidal alternating current hum, which corrupts
the Markov chain, in addition to the thermal noise. The observation equation
(Eq. 19.12) can be formulated as

yk = q(sk) + wk + dk(�), (19.16)

where dk(�) is the deterministic interference parameterized by some parameter
vector �. For example, in the case of deterministic sinusoidal interference, � would
include the amplitudes, phases and frequencies of the odd harmonics comprising
the sinusoidal signal. The observation likelihood (Eq. 19.13) now becomes

bi (yk) = 1√
2��w

exp

(
−1

2

(yk − q(i) − dk(�))2

�2
w

)
. (19.17)

The HMM parameter is then � = {A, q, �, �2
w}.

5. Continuous state space: The implicit assumption in the above HMM is that the
underlying ion channel current s is a finite state process that randomly jumps
between a finite number of values according to a Markov chain. It is worthwhile
mentioning that there is an equivalently well defined theory for continuous valued
states s. For example, if s is represented as a Gaussian continuous-state Markov
process, then the Kalman filter and associated parameter estimation algorithms
can be used.

633



SVNY290-Chung July 25, 2006 16:23

Vikram Krishnamurthy and Shin-Ho Chung

19.3.3 Estimation Problems for HMM

Given an N point noisily observed ion channel current sequence YN defined in (19.9),
there are two HMM estimation problems that are of interest:

Problem 1. Bayesian state estimation problem. Compute the optimal state estimate
sk at each time k = 1, 2, . . . , T . The term Bayesian reflects the fact that the optimal
estimator (defined below) is based on the a posteriori density function of the state
and this a posteriori density function is computed via Bayes’ rule.

Problem 2. Maximum likelihood parameter estimation problem. Compute the model
parameter � that best fits the HMM data YN with respect to the maximum likelihood
criterion.

In the application to patch-clamp recordings, we are primarily interested in
Problem 2 since our ultimate goal is to estimate the model � that best fits this data.
In particular, the transition probability matrix A and state level q yield important
information about the kinetics of the ion channel gating. However, Problems 1 and
2 are intimately linked in HMM. Solving Problem 2 involves solving Problem 1 as
an intermediate step.

In solving Problem 2, we are looking for the best model � within the class of
models � where

� = {A}, q(i) ∈ [−M, M], �2
w ∈ [�2

min, �2
max],

where A is the transition probability matrices satisfying Eq. 19.5 and M , �2
min and

�2
max are finite positive constants. Mathematically speaking, for the maximum of a

continuous function to exist, the function needs to be defined over a compact set. The
above restriction merely restricts the likelihood function to a compact set. Naturally,
there are several cost functions that can be used to define the “best” model. The
most widely used criterion is the model log likelihood criterion. The log likelihood
is more convenient to work with compared to the likelihood. Naturally, since log is a
monotone function, maximizing the likelihood is equivalent to maximizing the log
likelihood. The log likelihood of a model � given YN is

L N (�) = log p(YN |�). (19.18)

The maximum likelihood estimate (MLE) is defined as the model �∗ that max-
imizes L N (�), i.e.,

�∗ = arg max
�∈�

L N (�). (19.19)

The log likelihood is the most widely used criterion for estimating HMM be-
cause under quite general conditions it has two asymptotic properties that are attrac-
tive from a statistician’s point of view. First, the MLE is asymptotically consistent,
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i.e., as N → ∞, the MLE �∗
N converges to the true model with probability one

(Leroux, 1992). Second, the asymptotic error (i.e., as N → ∞) between the true
model and the estimate �∗

N has a Gaussian distribution—this property is called
asymptotic normality (Bickel et al., 1998). This further implies that the MLE of an
HMM is an asymptotically efficient estimator.

The formulation of the MLE problem is essentially an off-line estimation prob-
lem. We collect a batch of observations YN and then aim to compute the MLE �∗

N .
Given that the MLE is a useful parameter estimate, how does one compute

the MLE �∗
N given a block of data YN of a HMM? For HMM it is not possible

to explicitly solve the maximization problem (Eq. 19.18) and one must resort to a
numerical optimization algorithm to compute the MLE. There are two widely used
classes of numerical optimization algorithms for computing the MLE, namely the
EM algorithm and the NR algorithm. An essential requirement for carrying out any
numerical optimization algorithm for optimizing a function (log likelihood in our
case) is to be able to evaluate the function at any value. That is, we first need to figure
out a way of evaluating the log likelihood L N (�) for any valid model � ∈ �. It turns
out that evaluating L N (�) involves solving the state estimation Problem 1.

19.4 Problem 1: Bayesian State Estimation of HMM

At any time k = 1, 2, . . . , N , define the observation history of the HMM as

Yk = (y1, . . . , yk). (19.20)

The aim is to compute an estimate of the Markov chain sl at any time l = 1, 2, . . .

given the observation sequence Yk . More precisely, the aim is to construct a state
estimator (function) �l(Yk) where �l ∈ � denotes the estimation algorithm and �

denotes the space of all possible estimation algorithms. By an optimal state estimator
or Bayesian state estimator for an HMM, we shall mean an estimator �∗

l ∈ � that
minimizes the mean square state estimation error, i.e.,

E{sl − �∗
l (Yk)}2 ≤ E{sl − �l(Yk)}2, �l ∈ �.

Here E{·} denotes mathematical expectation. Since the metric E{sl − �l(Yk)}2 is
simply the variance of the state estimation error, the optimal state estimator is also
called the minimum variance state estimator or minimum mean square error (MMSE)
state estimator.

We denote the optimal filtered state estimate as

ŝl|k = �∗
l (Yk). (19.21)

The subscript l|k is a reminder that the estimate at time l involves observations up
to time k. At first sight it may appear that computing the optimal �∗ to minimize
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E{sk − �(Yk)}2 is a formidable task. However, by the mean square optimality prop-
erty of conditional expectations (Jazwinski, 1970) it turns out that the optimal state
estimate is

ŝl|k = �∗
l (Yk) = E{sl |Yk}. (19.22)

In words: the optimal estimate ŝl of the state sl of the HMM at any time l, given the
observation history Yk (Eq. 19.20), is the conditional mean (conditional expectation)
of the state sl given Yk . For such a simple result, Eq. 19.22 is quite profound. All of
recursive Bayesian estimation, optimal filtering theory merely deals with computing
this conditional mean recursively. Indeed the Kalman filter, HMM filter, and particle
filter are simply numerical algorithms for computing this conditional mean for differ-
ent types of partially observed stochastic dynamical systems. The term “Bayesian”
reflects the fact that in recursively computing ŝl|k = E{sl |Yk}, Bayes’ rule is
used.

Depending on the choice of k and l, there are three types of optimal Bayesian
state estimators:

� Filtering: If k = l, then the estimate ŝk|k is the Bayesian estimate of the state at
time k given observations up to time k. Such an estimate is called the filtered state
estimate.

� Prediction: If k < l, then ŝl|k is the Bayesian state estimate at some future time
l, given observations up to time k. Such an estimate is called a predicted state
estimate.

� Smoothing: If k > l, then ŝl|k is the Bayesian state estimate of the problem and
involves computing the state estimate at some past time l, given the past, present,
and future observations up to time k.

In fact to solve Problem 2 (HMM parameter estimation problem), we will
require solving the smoothing problem for estimating sl , l = 1, 2, . . . , N , given the
observation sequence YN . However, as we show below, the smoothing problem is
easily solved once we can solve the filtering problem.

19.4.1 HMM Filtering

The aim here is to derive a real time algorithm for estimating the filtered state
estimate sk|k = E{sK |Yk}. The resulting HMM filter evolves recursively over time k.
For notational convenience, we denote ŝk|k = ŝk for the filtering problem.

Computing the filtered estimate ŝk can be naturally broken into two steps:

� Step 1: Recursively compute the joint probability density �k(i) defined as

�k(i) = p(sk = i, Yk), k = 1, 2, . . . , N (19.23)
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for the HMM Eqs. 19.5 and 19.7. This can be implemented recursively according
to the following algorithm:

�k+1( j) = b j (yk+1)
S∑

i=1

ai j �k(i), (19.24)

initialized by �0(i) = �0(i), i = 1, 2, . . . , S. The derivation of Eq. 19.24 uses ele-
mentary algebra of marginal, conditional probabilities and Bayes’ rule as follows:

�k+1( j) = p(sk+1 = j, Yk+1) = p(sk+1 = j, yk+1, Yk)

= p(yk+1|sk+1 = j, Yk)p(sk+1 = j, Yk)

= p(yk+1|sk+1 = j, Yk)
S∑

i=1

P(sk+1 = j |sk = i, Yk)p(sk = i, Yk)

(19.25)

Then, using the conditional independence of the observations Eq. 19.15, the
Markovian property Eq. 19.5 and noting that �k(i) = p(sk = i, Yk), directly yields
Eq. 19.24.
Recall that b j (yk+1) are the observation likelihoods defined in Eq. 19.7 and are
explicitly evaluated in the Gaussian noise case as Eq. 19.13 and deterministic in-
terference case as Eq. 19.17. The above recursion is popularly termed the “Forward
algorithm” or the “hidden Markov model state filter.”

� Step 2: Compute the conditional mean estimate from �k(i) by summation over all
the Markov chain states:

ŝk+1|k+1 = E{sk+1|Yk+1} =
S∑

i=1

q(i)p(sk+1|Yk+1) =
∑S

i=1 q(i)�k+1( j)∑S
j=1 �k+1( j)

.

(19.26)

It is convenient to express the HMM filter Eq. 19.24 in matrix vector notation.
Let B(yk) denote the S × S diagonal matrix with (i, i) elements p(yk |sk = i), i =
1, . . . , S. Then the above HMM filter can be conveniently expressed as

�k+1 = B(yk+1)A′�k, �0 = �0. (19.27)

Here at each time k �k = (�k(1), . . . , �k(S))′ is an S-dimensional column vector
with nonnegative elements. Also, applying Step 2 in Eq. 19.26 yields the conditional
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mean estimate of the HMM filter as

ŝk+1 = E{sk+1|Yk+1} =
∑S

i=1 q(i)�k+1(i)∑S
i=1 �k+1(i)

= �k+1

1′�k+1
= B(yk+1)A′�k

1′ B(yk+1)A′�k
,

(19.28)
where 1 denotes the S-dimensional vector of ones.

Before one can implement the above equations on a computer, one slight mod-
ification is required. It is necessary to scale �k to prevent numerical underflow. The
numerical underflow occurs because �k+1 is the product of the transition probabilities
and observation likelihood, which are smaller than one in magnitude. Performing
the above recursion, thus, leads to all the components of �k decaying to zero ex-
ponentially fast—eventually leading to an underflow error on a computer. Since
we are ultimately interested in the normalized filtered density P(sk = i |Yk) and the
state estimate ŝk = E{sk |Yk}, the underflow problem is straightforwardly remedied
by scaling all the elements of �k by any arbitrary positive number. Since ŝk involves
the ratio of �k with 1′�k , this scaling factor cancels out in the computation of ŝk

and hence can be chosen arbitrarily. One particularly convenient scaling factor is
obtained by normalizing �k at each iteration. This results in the HMM filter

�̄k+1 = B(yk+1)A′�̄k

1′ B(yk+1)A′�̄k
, �̄0 = �0. (19.29)

ŝk+1 = q′�̄k+1, (19.30)

where q are the physical state levels of the Markov chain as defined in Eq. 19.10. The
HMM filter, defined in Eqs. 19.29 and 19.30, is straightforwardly implementable on
a computer. The main computational cost is in evaluating �̄k at each iteration. This
requires O(S2) multiplications at each time k.

19.4.2 HMM Smoothing

So far we have shown how to compute the HMM filtered estimate ŝk = E{sk |Yk}.
Here we show how to compute the HMM smoothed estimate ŝk|N = E{sk |YN } given
a batch of data YN .

The smoothing algorithm involves the forward (filtering) recursion given in
Eq. 19.23, or equivalently Eq. 19.29, and a backward recursion. Define the smoothed
state density as

�k|N (i) = P(sk = i |YN ), i = 1, 2, . . . , S. (19.31)

Then similar to Eq. 19.26, the smoothed state estimate is computed as

ŝk|N = E{sk |YN } =
S∑

i=1

q(i)�k|N (i) (19.32)
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Our task is now to present the forward–backward algorithm for computing �k|N .
By elementary application of Bayes’ rule, this density is computed as

�k|N (i) = �k(i)�k(i)∑S
i=1 �k(i)�k(i)

, (19.33)

where �k is computed via the forward algorithm given in Eq. 19.24, and the backward
density �k(i) for i = 1, 2, . . . , S is defined as

�k(i) = p(Yk+1,N |sk = i) (19.34)

By using a similar argument to Eq. 19.25 it can be shown that �k can be computed
via the backward recursion

�k(i) =
S∑

j=1

�k+1( j)ai j b j (yk+1), k = N , N − 1, . . . 1 (19.35)

initialized with �N (i) = 1, i = 1, 2, . . . , S. The above recursion is termed the “Back-
ward algorithm.”

In summary, the forward algorithm (Eq. 19.23) together with the backward
algorithm (Eq. 19.35) substituted into Eq. 19.33 yields the smoothed density �k|N (i).
For N data points, the forward–backward algorithm requires O(S2 N ) computations
and O(SN ) memory.

19.5 Problem 2: HMM Maximum Likelihood
Parameter Estimation

Here we present two classes of algorithms for solving Problem 2, i.e., computing
the MLE �∗ defined in Eq. 19.19. As mentioned previously, the algorithms use the
estimates generated by Problem 1 as an intermediate step.

19.5.1 Newton–Raphson and Related Algorithms

The NR algorithm is a general purpose numerical optimization algorithm that can be
used to optimize the likelihood function and thus compute the MLE �∗. It proceeds
iteratively as follows:

� Initialize �(0) ∈ �.
� For iterations n = 1, 2, . . . ,

– Update parameter estimate as:

�(n+1) = �(n) + [∇2
� L(�)

]−1 ∇�L(�)

∣∣∣∣
�=�(n).

(19.36)
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Here ∇�L(�) and ∇2
� L(�) denote the first and second derivatives of the likeli-

hood function with respect to the parameter vector �. The matrix ∇2
� L(�) is called

the Hessian matrix.
The main advantage of the NR algorithm is that it has a quadratic convergence

rate. One of its main disadvantages is that the Hessian ∇2
� L(�(n)) needs to be evaluated

and inverted. Moreover, additional constraints need to be introduced to ensure that
the transition probabilities are nonnegative and add up to one, i.e., Eq. 19.5 holds
for the estimates obtained from the NR algorithm.

Two variations of the above NR algorithm that avoid this inversion are:

(i) First-order gradient descent: The first-order gradient algorithm is a special case
of Eq. 19.36 with the Hessian matrix step size

[∇2
� L(�(n))

]−1
replaced by a

scalar step size of the form 1/n. Naturally, the convergence rate using a scalar
step size is much slower.

(ii) Quasi–Newton–Raphson: The inverse of the Hessian is replaced by a matrix
that is easier to compute and invert.

The NR algorithm, Eq. 19.36, requires evaluation of the likelihood function
L(�) and its first and second derivatives at � = �(i), i = 1, . . . , I . These can be
evaluated in terms of the optimal HMM filter as follows: Consider the HMM fil-
tered density �k(i) = p(sk = i, Yk) defined in Eq. 19.23 and computed recursively
according to Eq. 19.24. At time N (and showing the explicit dependence of � on �):

��
N (i) = p�(sN = i, YN ).

The likelihood can then be computed by summing the unnormalized filtered density
and time N :

L(�) = p�(YN ) =
S∑

i=1

��
N (i). (19.37)

Indeed, this is precisely the normalization term in Eq. 19.26.
Consider now evaluating the derivative in Eq. 19.36. Define the sensitivity of

the HMM filter as

R�
k (i) = d

d�
��

k (i), k = 1, . . . , T .

From Eq. 19.37, assuming sufficient regularity to bring the derivative inside the
integral

∇�L(�) =
S∑

i=1

R�
k (i). (19.38)
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This can be evaluated recursively by differentiating the optimal filter:

R�
k+1(i) = (∇�(b�

j (yk+1)
) S∑

j=1

a�
i j �

�
k (i) + b�

j (yk+1)
S∑

i=1

(∇�a�
i j

)
��

k (i)

+ b�
j (yk+1)

S∑
i=1

a�
i j

)
R�

k (i).

The second-order derivative (Hessian) can be evaluated similarly.

19.5.2 Expectation Maximization Algorithm

The EM algorithm is one of the most widely used numerical methods for computing
the ML parameter estimate of a partially observed stochastic dynamical system. The
seminal paper by Dempster et al. (1977) formalizes the concept of EM algorithms.
Actually, before EM algorithms were formalized in 1977, it was applied in the 1960s
by Baum and colleagues (Baum and Petrie, 1966; Baum et al., 1970) to compute the
ML parameter estimate of HMM—thus when applied to HMM, the EM algorithm
is also called the Baum–Welch algorithm.

Similar to the NR algorithm, the EM algorithm is an iterative algorithm. How-
ever, instead of directly working on the log likelihood function, the EM algorithm
works on an alternative function called the auxiliary or complete likelihood at each
iteration. The nice property of the EM algorithm is that by optimizing this auxiliary
likelihood at each iteration, the EM algorithm climbs up the surface of the log like-
lihood, i.e., each iteration yields a model with a better or equal likelihood compared
to the previous iteration.

Starting from an initial parameter estimate �(0), the EM algorithm iteratively
generates a sequence of estimates �(n), n = 1, 2, . . . as follows.
Each iteration n consists of two steps:

� Expectation step: Evaluate auxiliary (complete) likelihood

Q(�(n), �) = E{log p(X N , YN ; �)|YN , �(n)}.

The auxiliary likelihood Q(�(n), �) for a HMM can be computed as

Q(�(n), �) = − N

2
ln �w − 1

2�w

N∑
t=1

S∑
i=1

E{(yk − q(i))2}��(n)

k (i)

+
N∑

t=1

S∑
i=1

S∑
j=1

��(n)

k (i, j) log ai j ,

where ��(n)

k (i) = P(xk = q(i)|YN ; �(n)) denotes the smoothed state estimate
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(see, Eq. 19.31) computed using model �(n) via the forward–backward recur-
sions (Eq. 19.33). ��(n)

k (i, j) = P(sk = i, sk+1 = j |YN ; �(n)) is computed using the
forward and backward variables according to the following equation:

��(n)

k (i, j) = �k(i)ai j �k+1( j)b j (yk+1)∑
i

∑
j �k(i)ai j �k+1( j)b j (yk+1)

. (19.39)

� Maximization step: Maximize auxiliary (complete) likelihood, i.e, compute

�(n+1) = max
�

Q(�(n), �).

This maximization is performed by setting ∂ Q/∂� = 0, which yields

ai j =
∑N

k=1 ��(n)

k (i, j)∑N
k=1 ��(n)

k (i)
= E{#jumps from i to j |YN , �(n)}

E{#of visits in i |YN , �(n)} (19.40)

q(i) =
∑N

k=1 ��(n)

k (i)yk∑N
t=1 ��(n)

k (i)
(19.41)

�2
w = 1

N

N∑
k=1

S∑
i=1

��(n)

k (i)(yk − q(i))2. (19.42)

19.5.3 Advantages and Disadvantages of EM

The EM Algorithm described above has several advantages compared to the NR
algorithm.

� Monotone property: The estimate generated in any iteration n is always better or
equal to the model in the previous iteration, i.e., L(�(n+1)) ≥ L(�(n)) with equality
holds at a local maximum (see Eq. 19.3). NR does not have monotone property.
We refer the reader to Wu (1983) for a rigorous convergence proof of the EM
algorithm.

� In many cases, EM is conceptually simpler to apply than NR. For example, the
transition probability estimates generated by Eq. 19.40 are automatically nonnega-
tive and add to one. In other words, Eq. 19.5 holds. Similarly, the variance estimate
Eq. 19.42 is automatically nonnegative by construction.

� EM is often numerically more robust than NR; inverse of Hessian is not required
in EM.

� There are recent variants of the EM that speed up convergence, such as SAGE, AECM

(Meng and van Dyk, 1997).

The following are some of the disadvantages of EM Algorithm.

� Typically the convergence of EM can be excruciatingly slow. In comparison, NR
often has a quadratic convergence rate, which is much faster than EM. However,
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with increasing computing power, the slow convergence is usually not a problem
for moderately sized HMM.

� NR automatically yields estimates of parameter estimate variance, i.e., the Hessian,
whereas EM does not.

19.6 Discussion

In this chapter we have shown how HMMs can be used to model the noisily observed
ion channel current. We then described HMM signal processing algorithms for esti-
mating the state and parameters (such as transition probabilities) of the HMM given
the noisy observations.

A key advantage of the HMM approach is that it has rigorously provable per-
formance bounds rooted in deep results in mathematical statistics. From a practical
point of view, the HMM approach uses all the macroscopic information about the
underlying dynamics of the ion channel current to compute the state and parameter
estimates: that is, it uses the fact that the underlying ion channel current is piecewise
constant, that the gating is approximately Markovian, and that the Markov chain is
corrupted by noise with a known distribution. The HMM approach is in contrast to
the more ad hoc approach of plotting dwell time histograms, which does not sys-
tematically use the above information. In addition, the ML parameter estimate of a
HMM is known to be statistically efficient, i.e., it achieves the Cramer–Rao bound
(Bickel et al., 1998)—or equivalently for large data lengths N , the resulting ML pa-
rameter estimate has the smallest error covariance among the class of asymptotically
unbiased parameter estimators.

The conventional approach for processing patch-clamp ion channel current data
comprises first eyeballing the noisy ion channel current and rounding off the noisy
current to a finite number of values. Then dwell-time histograms are constructed of
how long the rounded off process spends in the various states. Such a histogram,
plotted on a logarithmic scale, reveals how many exponential functions are needed
to fit the observed distributions, or the number of hidden states in the open or closed
conformation. The same information can be derived more reliably by adopting the
HMM approach. By representing the observed currents as an aggregated Markov
chain, the number of hidden states and their transition probability can be directly
estimated.

Given the power and elegance of the HMM processing technique, it is not sur-
prising that it has been an active area of research in statistics, electrical engineering,
and other areas during the last 15 years. Below we summarize recent developments
and extensions.

19.6.1 Recent Developments

The EM algorithm has been the subject of intense research during the last 20 years.
We briefly summarize some of the recent developments.
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� It has been shown that the EM algorithm can be implemented using a forward step
only, i.e., without computation of the backward variable � (Elliott et al., 1995;
James et al., 1996). This saves memory requirements, but the computational cost
becomes O(S4 N ) compared to the forward–backward EM computational cost of
O(S2 N ) per iteration.

� EM algorithm, like all hill climbing algorithms, converges to a local maximum
of the likelihood surface. Thus, one needs to initialize and run EM from several
starting points in order to determine the global optimizer of the MLE. During the
last 10 years, Markov Chain Monte Carlo methods have been developed that can
be combined with the EM algorithm to yield algorithms that converge to the global
optimum. For further details, we refer the reader to Liu (2001).

19.6.2 Extensions

Model-order estimation: Throughout this chapter, we have assumed that the model
order, i.e., the number of states S of the Markov chain is known. However, in
reality there could be several substates when the ion channel is open—and the
number of states of the Markov chain may not be known a priori. One way of
estimating the number of states of the Markov chain is to introduce a penalized
likelihood function

L N (�, S) = L N (�) + p(S), (19.43)

where the penalty function p(S) is a decreasing function of the number of states
S of the Markov chain. This function penalizes by choosing a large-dimensional
Markov chain. The penalized MLE is then

(�∗, S∗) = arg max
�,S

L N (�, S). (19.44)

Conventionally, for model-order estimation, different penalty functions such as
the Akaike information criterion (AIC), Bayesian information criterion (BIC),
and Minimum description length (MDL) are widely used. Rydén (1995) and Liu
and Narayan (1994) present different choices of the penalty function that result
in asymptotically consistent model-order estimates.

On-line (recursive) HMM parameter estimation: The algorithms we have proposed
so far are off-line. They operate on a batch of data YN and assume that there is
a fixed underlying model � that does not change with time. However, in some
cases the transition probabilities of the ion channel gating evolve slowly with
time. In such cases, it is necessary to devise on-line (recursive) HMM parameter
estimation algorithms that operate in real time and adaptively track the slowly
time varying parameters of the HMM.

Several such recursive HMM estimators have been proposed (Krishnamurthy
and Moore, 1993; Collings et al., 1994; Dey et al., 1994; Krishnamurthy and Yin,
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2002). The algorithms are based on applying a stochastic gradient algorithm to
either maximize the expected likelihood or the expected prediction error. They
are of the form

�k+1 = �k + 	∇�ek(�k). (19.45)

Here, �k denotes the HMM parameter estimate at time k, ek is either the instanta-
neous log likelihood or prediction error (computed in terms of the forward variable
�), 	 is a step size, and ∇� denotes the derivative with respect to the model param-
eter �. Choosing 	 as a small positive constant results in the algorithm tracking
slowly time varying parameters. A rigorous weak convergence proof is given by
Krishnamurthy and Yin (2002). Such recursive algorithms fall under the General
class of “stochastic approximation” algorithms and have been the subject of much
research during the last 20 years. We refer to Kushner and Yin (1997) for a math-
ematically rigorous treatment of stochastic approximation algorithms and their
convergence.

Jump Markov linear systems: Jump Markov linear systems are a significant gener-
alization of HMM. They permit modeling correlated noise with linear dynamics
and also filtered Markov chains. For example, miniature end-plate potentials in a
muscle fiber or neuronal cell body recorded with an intracellular electrode com-
prised of exponentially decaying signals (modeled as a digitally filtered Markov
chain) corrupted by noise as follows:

zk = azk−1 + 
(sk − sk−1)q(sk)

yk = zk + wk,

where 
(sk − sk−1) = 1 if sk = sk−1 and 0 otherwise. Fig. 19.3 shows an example
of an exponentially-decaying Markov process embedded in noise, yk .

For the above model, the conditional independence assumption (Eq. 19.15)
does not hold as yk given sk depends on the entire history of previous states. The
above model is a special case of a jump Markov linear system of the form

xk+1 = a(sk)xk + b(sk)vk (19.46)

yk = c(sk)xk + d(sk)wk, (19.47)

where xk is a continuous valued state, sk is a finite state Markov chain (Eq. 19.5),
and vk and wk are iid noise processes typically assumed to be Gaussian. In such
models given the observation sequence {yk}, the aim is to construct estimates
of the finite state Markov chain sk and continuous state process xk . Note that the
above dynamical system is a linear system whose parameters a(s), b(s), c(s), d(s)
evolve in time according to the realization of the jump Markov chain s—hence
the name jump Markov linear system. It is clear that in the special case a(s) = 1,
b(s) = 0, then yk is a HMM. Also, in the special case s is a 1 state Markov chain

645

u8809509
Cross-Out

u8809509
Inserted Text
g

u8809509
Note
lower case g.



SVNY290-Chung July 25, 2006 16:23

Vikram Krishnamurthy and Shin-Ho Chung

0 100 200 300 400 500 600 700 800
1

0.5

0

0.5

1

1.5

2

2.5

3
M

ea
su

re
d 

cu
rr

en
t

Time k

Fig. 19.3 A computer-generated intracellular record. An exponentially-decaying Markov chain,
mimicking intracellularly recorded miniature end-plate potentials, is embedded in noise.

(i.e., a constant), the above model becomes a linear state space model. In this
special case, if vk and wk are Gaussian noise, the conditional mean state estimator
of xk given the observation history is given by the Kalman filter.

Unlike the special cases of the HMM and linear Gaussian state space model,
for general jump Markov linear models the optimal Bayesian state estimation
problem requires exponential computational complexity (exponential in the data
length N ). However, there are several high performance non-Bayesian schemes
such as maximum a posteriori state estimators which can be used to compute
the maximum a posteriori state estimate, rather than the Bayesian conditional
mean state estimate (see, Logothetis and Krishnamurthy, 1998). Alternatively,
Markov chain Monte Carlo methods can be used to compute approximations of
the Bayesian state estimate (see, Ducet et al., 2000, 2001). In particular, Ducet et al.
(2001) proposes the so-called “particle filter” which is a sequential Markov chain
Monte Carlo algorithm for computing the approximate Bayesian state estimate.
Particle filters are widely used in complex Bayesian state estimation problems
(Arulampalam et al. 2001).

Automatic control of patch-clamp experiments: Another extension of the basic HMM
problem in this chapter is to dynamically control the HMM. For example, it is of
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interest to dynamically control the patch-clamp experiment to estimate the Nernst
potential of the current–voltage curve of an ion channel. The Nernst potential is
the applied external potential at which the ion channel current is zero—i.e., it
is the applied external potential difference required to maintain electrochemical
equilibrium across the ion channel. We refer the reader to Krishnamurthy and
Chung (2003) for discrete stochastic optimization-based control algorithms for
efficiently estimating the Nernst potential of an ion channel. More generally,
the control of HMM with discrete valued observations falls under the class of
problems called partially observed Markov decision processes (see for further
details, Lovejoy, 1991).
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