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13 Poisson–Nernst–Planck Theory of Ion Permeation
Through Biological Channels

Rob D. Coalson and Maria G. Kurnikova

13.1 Introduction

The kinetics of an assembly of charged particles such as electrons, ions, or colloids,
particularly when subjected to externally applied electric fields, has been of interest
for many years and in many disciplines. In applied physics and electrical engineering,
the motion of electrons and holes through semiconductor materials under the influ-
ence of an applied voltage plays an essential role in the function of modern electronic
components such as transistors, diodes, and infrared lasers (Peyghambarian et al.,
1993). Electrochemistry deals in large part with the motion of simple inorganic ions
(e.g., Na+, Cl−) in electrolytic solutions and how this motion is influenced when
electrodes are employed to generate an electric potential drop across the solution or
a membrane interface (Bockris and Reddy, 1998). Larger macroions such as charged
polystyrene spheres (radius 0.1–1 micron) can also be manipulated using applied
electric fields (Ise and Yoshida, 1996). Many processes in molecular biology, from
self-assembly of DNA strands into bundles (Wissenburg et al., 1995) to enzyme-
ligand docking (Gilson et al., 1994), are steered by electrostatic forces between
biological macroions which are mediated by the response of simple salt ions in the
solution.

One particularly intriguing type of biological process that falls into this general
category is the flow of ions (Na+, Cl−, K+, Ca++, etc.) through pores in lipid bilayer
membranes. Lipid bilayers (Fig. 13.1) form the cell membrane as well as internal
compartments, called organelles, in eukaryotic cells. The interior of a lipid bilayer,
composed of alkane chains, is hydrophobic, and hence ions (being hydrophilic)
cannot penetrate through it. Since many bioenergetic processes rely on separating
charge across bilayer membranes and then transducing the energy thus stored, it
is imperative that there be a mechanism for moving ions across these membranes
in a controllable fashion. Nature has solved this problem by developing proteins
which are, very roughly, cylindrical channels (pipes) possessing an aqueous pore.
They insert themselves into the lipid bilayer, spanning it in a transverse fashion, so
that ions can flow through the aqueous pore from one side of the membrane to the
other (Fig. 13.1) when driven by an electrochemical gradient. Protein channels are
extraordinary devices (Hille, 1992). In many cases, they can be opened and closed
to the flow of ions reliably and reversibly by a specific stimulus (e.g., the binding
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Fig. 13.1 Schematic picture of lipid bilayer with ion channel proteins in it.

of a specific molecule to the channel protein, or a change in the voltage across the
membrane). Furthermore, in the open state, many ion channels are selective about
the ions that they let through, sometimes passing only cations but not anions (or vice
versa), or even allowing, for example, K+ but not Na+ to permeate.

In this review [which is an extension of a recent review on the same general
topic (Coalson and Kurnikova, 2005)], we will consider the passage of ions through
a protein channel in its open state. We seek to provide a practical solution to the fol-
lowing basic problem. Given the structure of the channel protein (and an estimation
of the geometric features of the lipid bilayer), plus some details of the electrical prop-
erties of these objects (distribution of electrical charges in them and characteristic
dielectric constants), we wish to compute the rate of ion flow through the channel as
a function of experimentally controllable parameters, e.g., electric potential applied
across the membrane and concentration of ions in the bathing solutions on either
side of the membrane. That is, we want to calculate current–voltage (I –V ) curves
for the system at hand. There are several possible approaches that might be envis-
aged, including (if possible) all-atom molecular dynamics (MD) simulation (Crozier
et al., 2001a,b; Aksimentiev and Schulten, 2005) and Brownian Dynamics (Chung
et al., 1998, 1999, 2002; Graf et al., 2000; Mashl et al., 2001; Chung and Kuyucak,
2002; Burykin et al., 2002; Im and Roux, 2002; Graf et al., 2004; Noskov et al.,
2004; Cheng et al., 2005) simulation of the ion motion. Here we concentrate on the
simplest (most coarse-grained) level of treatment imaginable, namely a continuum
electrodiffusion model in which the mobile ions are treated as a concentration profile
whose distribution and motion are influenced by electrostatic forces (some of which
are generated by the polarization of the mobile ion density). In the context of ion
permeation through channel proteins, this approach is known as Poisson–Nernst–
Planck (PNP) theory. In the next sections, we will present the basic ingredients of
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this theory as well as techniques for solving the relevant equations that comprise it.
Fundamental limitations of the continuum electrodiffusion model (of which there
are many!) will be discussed. Some illustrative applications will be presented. At-
tempts to improve the basic PNP theory will be reviewed. Finally, conclusions and
prognosis for this type of analysis will be presented.

13.2 Basic (Primitive) PNP Theory (and Its Limitations)

13.2.1 The PNP Equations

In continuum theory electrolyte ions are treated as a continuous charge distribu-
tion characterized by the concentrations {ci (�r )} of the ionic species (labeled by i)
involved. It is the goal of electrodiffusion theories to determine the steady state
concentrations of all mobile ion species, the electric fields they generate, and in the
context of biological ion channels, the current of ions flowing through the channel as
a function of experimentally controllable parameters such as the bulk concentrations
of ions (electrolytes) and the electric potential applied across the embedding mem-
brane, usually by means of a microelectrode apparatus. In the present subsection we
will collect the working formulae that result from this approach, known generically
as PNP theory. In Section 13.2.2, we will explore the conceptual underpinnings of
this type of theory.

In electrodiffusion theory, the distribution of mobile ion concentrations is gov-
erned by a set of drift–diffusion equations, also called Nernst–Planck (NP) equations,
one for each ionic species i present in solution. In particular, �ji , the flux of species
iat a given point in space is given by

�ji (�r ) = −Di (�r )

[
∂ci (�r )

∂�r + ci (�r )
∂

∂�r (�� i (�r ))

]
, (13.1a)

and the concentration of species i evolves in accordance with the continuity equation
∂ci

∂t = −div �ji . In Eq. 13.1a, Di is the position-dependent diffusion coefficient of
species i , � = (kT )−1 is the inverse temperature, k is the Boltzmann constant, and
T is the absolute temperature. Finally, � i (�r ) is the free energy of ions of species i
in solution. At steady state,

div �ji = 0, (13.1b)

and thus all quantities in the NP equation (Eq. 13.1) are time-independent. The second
term on the right-hand side of (Eq. 13.1a) is the drift term due to the forces acting
on a charged particle of species i from both ion–ion interactions and other sources.
The latter include interactions with charges on the protein system and the externally
imposed electric field. Equation 13.1 is supplemented by concentration boundary
conditions that account for the external bulk ionic concentrations of species i (which
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may be different on different boundary “faces,” particularly if concentrations in the
bathing solutions on the two sides of the membrane differ).

In a continuum model, � i (�r ) depends on the electrostatic charge distribution
in the system and on the (generally position dependent) dielectric response function
ε(�r ). It is convenient to separate the ion free energy into two contributions:

� i (�r ) = qi �mobile(�r ) + �Gi
SIP(�r ), (13.2)

where qi is the charge of an ion of species i , �mobile(�r ) is the electrostatic potential due
to all mobile ions and the applied electric field associated with external electrodes,
and �Gi

SIP(�r ) is the potential of mean force (PMF) (McQuarrie, 1976; Chandler,
1987) for a single test ion [hence “Single Ion Potential” (SIP)]. In an inhomogeneous
dielectric medium �mobile(�r ) is determined by the Poisson equation1 (PE):

�∇ · (ε(�r ) �∇�mobile(�r )) = −4� �
i

qi ci (�r ), (13.3)

subject to Dirichlet boundary conditions, i.e., values of the electrostatic potential
(imposed by the electrodes) are fixed on the boundaries of the computational box
(Kurnikova et al., 1999). In the simplest approximation that was introduced in the
field of channel modeling by Eisenberg and coworkers (Barcilon, 1992) the term
�Gi

SIP(�r ) is disregarded. In an obvious generalization �Gi
SIP(�r ) may include the

electrostatic potential due to partial charges fixed on the protein and lipid atoms,
i.e., �Gi

SIP(�r ) = qi �protein(�r ) (Chen and Eisenberg, 1993a,b; Kurnikova et al., 1999;
Cardenas et al., 2000). Equations 13.1 and 13.3 are coupled nonlinearly via the ci

and �mobile variables. In the general case of a protein of arbitrary geometry and
distribution of partial charges on protein atoms, these equations have no analytical
solution and must be solved numerically to self-consistency (Kurnikova et al., 1999).
Equations 13.1–13.3 with �Gi

SIP(�r ) = qi �protein(�r ) comprise the standard PNP the-
ory, which we shall refer to here as “primitive PNP” for reasons that will become
obvious in the ensuing exposition.

13.2.2 Conceptual Framework of PNP Theory

Let us consider for the moment a somewhat simpler problem, namely motion of
a structureless particle in an external force field �F(�r ) derivable from a potential
energy function V (�r ), i.e., �F(�r ) = −∂V (�r )/∂�r . The particle is also subject to thermal
agitation arising from incessant buffeting by other particles in the system. In the
classic theory of Brownian motion (Chandrasekhar, 1943), the Brownian particle
(the one whose motion we are explicitly tracking) is much larger than that of tiny
particles which are colliding with it. For example, the Brownian particle might be

1 In equation (Eq. 13.3) CGS Gaussian units are employed. To write the Poisson equation in SI units,
substitute 4� → 1/ε0 on the r.h.s., with ε0 being the permittivity of free space (Kittel, 1996).
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a colloid sphere (radius ca. 1 micron), with water molecules (molecular radius of a
few Å) bouncing off of it in a rapid and stochastic fashion. When Brownian motion
theory is applied to describe motion of one “tagged” atom, ion or small molecule
in a condensed phase consisting of other such species, the separation of distance
scales inherent in classic Brownian motion theory is not so clear. Nevertheless, this
description seems to be quite successful for describing molecular level kinetics in
many cases [e.g., the description of ion diffusion in bulk liquids (Mamonov et al.,
2003)].

Assuming that Brownian motion theory can be applied to the case of interest,
then in the high friction limit the probability distribution for the position of the
Brownian particle (or, equivalently, the concentration profile achieved by a collection
of such independently moving particles) is given by:

∂c(�r , t)

∂t
= −div( �j) (13.4a)

with particle flux

�j(�r ) = −D(�r )

[
∂c(�r )

∂�r + c(�r )
∂

∂�r (�V (�r ))

]
(13.4b)

Here all symbols have the same meaning as in Section 13.2.1 above, except for
the obvious substitution of the potential energy function V (�r ) for the more compli-
cated (and mysterious) free energy function invoked in Eq. 13.1a. (For now we
will suppress the subscript that labels ion species and speak simply of the be-
havior of a generic species moving under a generic single-particle force-field).
Equation 13.4 is known as the Smoluchowski equation (Chandrasekhar, 1943).
The first term contributing to the flux (cf. Eq. 13.4b) is simply the concentration
gradient that constitutes Fick’s Law of diffusion. The second term, the so-called
“drift” term, represents the influence of the systematic force �F(�r ). Consistent with
the high-friction assumption underlying the Smoluchowski equation, we imagine
that at each point along its trajectory the Brownian particle is damped by the ap-
propriate friction force characterized by friction constant � and instantaneously
reaches its terminal velocity �vterm = �F/� = �D �F . [Here we assume that the Stokes–
Einstein relation D = kT/� connecting microscopic friction to macroscopic diffu-
sion applies (McQuarrie, 1976)]. The flux associated with this drift process is thus
�jdrift = c�vterm = �Dc �F . Since in general the diffusion constant and the system-
atic force are position-dependent, so is the drift flux, as indicated in the second
term on the r.h.s. of Eq. 13.4b. Note one direct consequence of the structure of the
drift–diffusion flux prescription given in Eq. 13.4b: the steady state solution to this
equation corresponding to zero particle flux, i.e., thermal equilibrium, is simply the
Boltzmann probability distribution c(�r ) ∝ exp[−�V (�r )], as it should be. However,
the most general boundary condition implies a non-equilibrium steady state, i.e.,
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a steady-state solution of the Smoluchowski equation (Eq. 13.4) for which �j �= 0
identically.

If we regard one permeating ion in the ion channel systems of direct interest
in this article as the tagged Brownian particle, then the situation is clearly more
complicated than that of Brownian motion of a collection of noninteracting particles
all moving in the same static external force field. The tagged ion experiences a force
due to each of the other moving ions, and indeed, due to each atom in the protein (and
membrane), which are also fluctuating with time. To utilize the Brownian motion
theory framework just sketched, we seek to identify an optimal effective static single
particle potential that can play the role of V (�r ) in Eq. 13.4. In the (temporary)
absence of the other mobile ions and the externally applied electrical potential, the
most reasonable candidate is the PMF (constrained free energy profile) �Gi

SIP(�r )
for a tagged particle of species i (McQuarrie, 1976). (We need to recall at this
juncture that there are generally two or more ionic species in the electrolyte, each of
which experiences different energetic interactions.) The PMF is obtained from the
Boltzmann factor for the ion and all water, protein and membrane atoms particles
in the system, given in terms of the full many-dimensional microscopic potential
energy function Ui which describes the mutual interactions between these particles,
by integrating over all degrees of freedom except those of the ion. Specifically:

exp[−��Gi
SIP(�r )] =

∫
d �R exp[−�Ui (�r , �R)]/

∫
d�r

∫
d �R exp[−�Ui (�r , �R)],

where �R represents all “environmental” coordinates in the system, i.e., those of
the water molecules and the atoms in the protein and the membrane. This choice
ensures the correct reduced probability distribution (concentration profile), namely
exp[−��Gi

SIP(�r )], for the ion at thermal equilibrium taking into account the effects
of water solvent and thermal fluctuation of the protein and membrane, but in the
absence of ion–ion interactions and the external electric potential. To this effective
potential we then add the influence of the applied external electric potential �ext(�r ),
i.e., add the term qi �ext(�r ) to � Gi

SIP(�r ). Finally, we need to account for the average
force exerted by all other mobile ions in the system on the tagged ion. We assume
that these other ions collectively generate an additional electric potential that acts on
said ion. Of course, these other mobile ions are in fact moving, so their distribution in
space with respect to the tagged ion changes with time. We ignore these fluctuations
and assume that the static average distribution of the ions other than the test ion can
be used to calculate a meaningful time-averaged electric potential �MI at point �r .
Further, we replace this conditional probability, i.e., fixing the test ion and averag-
ing over all others, with the average ion density profile (including all ions without
any constraints). These are the essential ingredients of a “mean field” approxima-
tion. [Similar strategies have long been utilized to understand the thermodynamic
properties of ferromagnets (Chandler, 1987) and polymers (Doi, 1996)].
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Within the context of this approximation, �MI can be calculated from the steady-
state concentration profiles ci (�r ) characterizing each mobile ion species. In the
case of a dielectrically uniform medium characterized by dielectric constant ε, then
�MI(�r ) = ∫

d�r ′ ∑
i qi ci (�r ′)/ε|�r − �r ′|. In fact, biological ion channels are inherently

characterized by several spatial regions with different dielectric constants. Hence,
�MI(�r ) must be obtained by solving the PE (cf. Eq. 13.3). (The relevant boundary
condition for this computation would be zero electric potential on the boundaries of
the computational box, since the polarization of +/− mobile ion charge is confined
to the channel region). The complete effective single-particle potential thus becomes:

� i (�r ) = �Gi
SIP(�r ) + qi [�ext(�r ) + �MI(�r )]

Since the external electric potential typically supplied by microelectrodes can
be computed by solving the Laplace equation [PE with zero free charge (Marion,
1965)] and fixed potential boundary conditions on the walls of the box (with a
different potential on the two faces of the computational box which run parallel to
the membrane surface), the sum (�ext + �MI) ≡ �mobile can be obtained by solving a
single PE with these “potential” boundary conditions, as specified in Section 13.2.1.
Of course, the ci (�r ) must be obtained by self-consistent solution of both NP and PE
equations. Note also that the size of the mobile ions is not taken into account in the
mean field averaging procedure invoked here.

The calculation of �Gi
SIP(�r ) is a prequel to the PNP-type calculation just out-

lined. In principle �Gi
SIP(�r ) can be computed numerically using an all-atom model

of the system (test ion, water, protein, and membrane). However, such calculations
are quite time-consuming and require a high accuracy force field. In the absence
of force fields, which include electronic polarizability effects properly, even recent
high-level all atom single ion free energy profiles appear to give unrealistic results
(Allen et al., 2004). An alternative strategy is to use semiempirical strategies based
wholly or in part on a continuum theory description of the solvent, protein and
membrane to obtain �Gi

SIP(�r ) (Mamonov et al., 2003). A hierarchy of increasingly
sophisticated strategies of this type will be presented in the course of this article. It is
clear from the brief sketch of the “derivation” of PNP above that this type of theory
is far from rigorous; the same sketch hopefully suggests ways to remove some of its
deficiencies (Schuss et al., 2001; Mamonov et al., 2003; Graf et al., 2004; Gillespie
et al., 2005; Wang et al., 2005).

13.2.3 Goldman–Hodgkin–Katz Theory of Ion Permeation
Through Channel Proteins

A principal feature of the PNP equations is that the effective potential which enters
into the NP equations, and hence determines the steady state concentration profile,
is itself a function of the (unknown) concentration of mobile ions, as reflected in the
structure of the PE (Eq. 13.3). Thus, as noted above, the NP and PEs must be solved
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self-consistently, which compounds the difficulty of solving them numerically and
may cloud insight into the properties of the resultant solutions (steady state mobile
ion distributions, ion currents, etc.). It would certainly be convenient if the effect
of mobile ion–mobile ion interactions on the effective potential felt by a “tagged”
mobile ion could be neglected, so that the NP equation for that ionic species would
be governed by a simple externally prescribed potential energy function, namely:
Vi (�r ) = �Gi

SIP(�r ) + qi �ext(�r ). One case where it is reasonable to expect such a
situation to occur is when the ion channel is so narrow that only one ion is likely to be
in it at any particular time. Numerical studies which include multi-ion kinetics at the
Brownian dynamics (BD) level (i.e., not assuming a mean-field ion–ion interaction
potential as is done in PNP theory) show that in narrow model channels ion–ion
interactions have a relatively minor effect on net ion currents (Graf et al., 2000).
Then, going one step further, since the ion channels under consideration in this
subsection are presumed to be rather narrow, we may as well assume that they are
cylindrical in nature with a cylinder radius R and a small ratio of cylinder radius
to cylinder length L [see, for example, Fig. 1 of Ref. (Kurnikova et al., 1999)].
Because the cylinder is narrow, the potential energy profile inside it can be well-
approximated as a function of the channel axis coordinate z only, i.e., Vi (z).In this
situation, the solution of the 3D NP equation yields a concentration profile that also
depends only on the channel axis coordinate, and is a solution of the 1D NP equation
(Barcilon, 1992; Barcilon et al., 1992). That is, suppressing the ionic species labels
for notational convenience:

0 = ∂

∂z

{
D(z)

[
∂c(z)

∂z
+ c(z)

∂

∂z
(�V (z))

]}
. (13.5)

This differential equation can be solved explicitly for c(z), given the values
of the concentration at the two boundaries, c(0) ≡ c0 and c(L) ≡ cL . One finds in
the case of a spatially homogeneous diffusion constant D that the current density
(aligned with the channel axis) is prescribed by:

j = −D
[cLe�VL − c0e�V0 ]∫ L

0 dz′e�V (z′)
, (13.6)

where V (0) ≡ V0 and V (L) ≡ VL . Thus the problem of computing current flow
through this class of simple model channels is reduced to a 1D quadrature for arbitrary
V (z).

Having simplified the complex phenomenon of ion permeation through a bio-
logical channel to this degree, it behooves us to ask what is the simplest meaningful
model for Vi (z) appropriate to ionic species i . In the absence of the channel (pore)
in the membrane, the electric potential drop across the channel would be essentially
linear, i.e.,�ext(z) = �0 + z(�L − �0)/L , where �(0) = �0 and �(L) = �L are the
values of the applied potential in the reservoirs abutting the channel on either side.
(Only the applied potential difference �L − �0 ≡ �ap is physically meaningful, as
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is apparent from Eq. 13.6). The channel pore represents only a tiny “pin prick” in
the membrane, so we expect that the linear drop approximation remains reasonable
inside the channel pore. By construction (of this model), we are ignoring ion–ion
interactions. This still leaves the single-ion �Gi

SIP(z) contribution to Vi (z). In an
ultra-simple model we can ignore this, assuming that it is small compared to the ap-
plied external potential term. We should emphasize that any �Gi

SIP(z) can be added
to the analysis in this section without changing its essential structure. The advan-
tage to neglecting it is that the quadrature in Eq. 13.6 can be analytically computed
in the case of the linear potential drop model, which is known historically as the
Goldman–Hodgkin–Katz (GHK) model (Hille, 1992; Sten-Knudsen, 1978).

For concreteness, let us further specialize to the case that the bathing solutions
consist of a monovalent electrolyte (e.g., NaCl). Then the GHK model predicts
current densities for +/− ions of:

j± = ∓D±�

L

[
cL

1 − e∓�
− c0

e±� − 1

]
, (13.7)

where � ≡ e0�ap/kT and e0 is the proton charge. Note also that the +/− ion species
may have different effective diffusivities D±, which describe their diffusion within
the pore (and may be different in magnitude from their corresponding bulk solution
values). To obtain absolute electric currents we simply multiply by the cross-sectional
area of the cylinder and the ion charge. If i± is the (particle) current of ± ions (i.e.,
number of particles/sec), then

e0i± ∼= ∓1000
�R2

L
D±�

[
cL

1 − e∓�
− c0

e±� − 1

]
. (13.8)

This formula gives as output current in pA, inputting D in cm2/s, c in mM, and R
and Lin Å. Finally, the experimentally observed electric current is I = e0(i+ − i−).

The GHK equations can be used to predict ion current through a channel
protein for a wide range of experimental conditions. One such plot is shown in
Fig. 13.2 for parameters specified in the figure caption. This figure illustrates several
generic characteristics of I –V curves obtained from GHK theory. In the general
case, the current is much greater when the voltage has one sign than it is when
the sense of the voltage is reversed, all other things being equal. This phenomenon,
known as “rectification,” is observed in many experimental measurements of ion
channel I –V curves. Further, the current grows linearly with large applied voltage,
again consistent with many experiments. Finally, the current vanishes at a particular
applied voltage, known as the “reversal potential” �rev. In general �rev is not zero,
but is given, according to GHK theory, by:

e�rev = D+c0 + D−cL

D−c0 + D+cL
,
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Fig. 13.2 GHK current–voltage characteristics (solid line) is shown for cylindrical model ion
channel system, radius R = 2 Å, L = 30Å at room temperature (T = 298 K) characterized by:
(internal) diffusion constants D+ = 10−5 cm2/s, D− = 10−4 cm2/s, and reservoir concentrations
c0 = 20 mM, cL = 400 mM. Also shown are e0i+ (dotted line) and e0i− (dot–dashed line), given
by Eq. 13.8. The observed electrical current (solid line) I is given by the difference between these,
i.e., I = e0i+ − e0i−. (Note: �ap

∼= 25� for monovalent ions at room temperature; cf. Eq. 13.8.)

with �rev = e0�rev/kT . This equation can be rearranged to read:

D+
D−

= c0e�rev − cL

c0 − cLe�rev
,

which provides a way to calculate the ratio of intrinsic diffusivities of +/− ions
(known as the “permeability ratio”) by measuring the reversal potential experimen-
tally under asymmetric bathing solution conditions.

One other important characteristic of GHK theory (or any 1D NP theory of
the type under consideration here) is that the current scales are proportional to the
concentrations in the bulk reservoirs. That is, if both c0 and cL double, all other
factors being unchanged, then the electric current predicted by the GHK model
doubles (cf. Eq. 13.8). This behavior is found experimentally at low bathing solution
concentrations, but generally currents are observed to saturate as the concentration
of the bathing solutions is increased. The origin of this discrepancy will be discussed
in Section 13.6.

This brief survey of 1D NP theory and its application to ion channels in the
case of a constant effective driving force (electric field) exposes advantages and
disadvantages of GHK theory. The great advantage is the conceptual simplicity of
the model and its amenability to analytical solution over a wide range of physical
input parameters. But such simplicity comes at a price, namely some loss of realism:
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GHK theory neglects numerous aspects of the 3D nature of the overall channel system
(including the abutting bathing solutions), the atomic (chemical) details of the pore
lining, and the interaction forces between all pairs of mobile ions. It is thus interesting
to examine how well a fully 3D model of PNP theory, including modifications to
primitive PNP theory that attempt to incorporate the effect of protein fluctuations on
the permeation of ions through channel proteins, can correct some deficiencies of
classical GHK theory. Such an examination is undertaken in the following sections.

13.3 Numerical Algorithms for Solving the
3D PNP Equations

The PNP equations consist of a set of coupled partial differential equations (PDEs),
namely the NP equation (Eq. 13.1) (more precisely, one such NP equation for each
ionic species), and the PE of electrostatics equation (Eq. 13.3). The 3D NP and
the PE can only be solved analytically in a limited number of cases where the
system possesses a high degree of geometric symmetry (thus resulting in an effective
reduction in dimensionality). In the case of a general 3D system, these PDEs can be
solved individually using a variety of numerical methods, two of the most popular
being the method of Finite Differences (Kurnikova et al., 1999; Cardenas et al., 2000)
and the method of Finite Elements (Hollerbach et al., 2000). For concreteness, we
will focus here on the technically simpler Finite Difference approach. For example,
the following strategy can be used to solve the 3D PE.

First we discretize onto a 3D cubic lattice an initial guess for the electric
potential field (whose computation is the end result of the calculation). In the cases of
interest to us the electric potential is specified on the boundaries of the computational
box (lattice); it is unknown in the interior of the computational box (our goal is to
determine it!). Hence, we set the known boundary values of the electric potential
and make an arbitrary initial guess about the field values at the interior points of the
lattice. In a similar fashion, we discretize the charge distribution and the spatially
dependent dielectric constant profile, which are both assumed to be given. Then, we
cycle around the interior lattice: the electric potential �k at each interior lattice point
k is updated based on an appropriate average over its nearest neighbors (of which
there are six for a 3D cubic lattice). For example, in the case where there is no free
charge, i.e., the r.h.s. of Eq. 13.3 is identically zero [so that the PE reduces to Laplace
equation (Marion, 1965)], and if the dielectric constant ε is the same everywhere
in space, then the update value of the electric potential at lattice point k is simply
the arithmetic average of the potential at the six nearest neighbor sites. If any of
these neighbors is a boundary point, its value is known as a boundary condition.
Otherwise, the neighboring field points depend on the current field configuration (as
the relaxation procedure progresses). In the general case, when there is free charge
in the system (the r.h.s. of Eq. 13.3 does not vanish), and the dielectric profile is
spatially inhomogeneous, then the relevant average, which is still a linear function
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of the values of the “instantaneous” potential at the six nearest neighbor sites, is
slightly more complicated [see Ref. (Kurnikova et al., 1999)for full details].

If we denote the appropriate average as �̄k , then the updated value of �k becomes
�k → w�k + (1 − w)�̄k , where w is a parameter (typically 0 < w < 2) which is
adjusted so as to accelerate convergence without sacrificing stability. For w very
small, only a small “portion” of �̄k is mixed in with �k , thus preventing numerical
instabilities from setting in. This process is repeated for several cycles until no
further changes in the potential profile are obtained, i.e., the input potential field at
the beginning of the cycle is the same as the output field at the end of the cycle.
Strategies of this type are known as “relaxation techniques” (Coalson and Beck, 1998;
Press. et al., 1986). They are well developed in applied PDE theory. Furthermore,
for a linear PDE, such as the PE, relaxation techniques are guaranteed to converge
for an arbitrary initial electric potential guess when w is chosen appropriately.

The NP equation is also a linear PDE. Thus the same relaxation methods can
be used to solve it on a cubic grid. In the case of the concentration profile of an ionic
species, the values at the external boundaries of the computational box are speci-
fied, analogous to the case of fixed electric potential in the PE. In addition, there
may be interior walls (e.g., the pore of an ion channel) which do not allow ions to
pass through them. The appropriate boundary condition at these interfaces is “zero
flux”: this boundary condition can easily be implemented by changing the averag-
ing procedure slightly for interior grid points which abut such bounding surfaces.
Analogous to charge and dielectric profile fields in the PE, the spatially-dependent
diffusion constant profile as well as the potential energy function which enter into the
NP equation must also be discretized, and these become ingredients in the nearest
neighbor averaging prescription that is used to update the ion concentration field.

To illustrate the basic strategy, consider (for notational and pictorial simplicity)
the 2D, one component analog shown in Fig. 13.3 [reproduced from (Cardenas et al.,
2000)]. Each of the flux contributions can be approximated by an appropriately
symmetrized lattice discretization scheme. For example:

j x
i+1 = −[(Di+1, j + Di, j )/2a][ci+1, j − ci, j + �(Vi+1, j − Vi, j )(ci+1, j + ci, j )/2],

where a is the lattice spacing. Then the lattice version of the NP equation div( �j) = 0 is
simply j x

i+1 − j x
i−1 + j y

j+1 − j y
j−1 = 0. The procedure for the 3D case is completely

analogous: the lattice NP equation can then be rearranged to obtain the concentration
of the central lattice point as a linear combination of the concentrations of its six
nearest neighbors. Enforcement of zero-flux boundary conditions is done by setting
the appropriate lattice flux to zero, thus altering the update formula for the central
concentration point in a straightforward manner. For full details, see Refs. (Kurnikova
et al., 1999; Cardenas et al., 2000). The NP equation, like the PE, is a linear PDE,
so that convergence of the relaxation technique is virtually guaranteed.

The PNP equations consist of coupled NP equations and a PE. These can only
be solved analytically in special cases, namely, when the electric fields generated
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i–1,j i,j

jx
i–1

jx
i+1

j yj+
1

j yj–1

i+1,j

i,j+1

i,j–1

Fig. 13.3 Schematic description of current flow in/out of lattice point i, j in a 2D drift–diffusion
process.

by mobile ions are small [Debye–Hückel theory being the most familiar example
(McQuarrie, 1976)] and there is a degree of geometrical symmetry (as noted above
in the case of NP and PEs individually). For the vast majority of interesting physical
situations, the PNP equations must be solved numerically. This is done by solving the
Poisson and NP equations (one NP equation for each ionic species) numerically and
self-consistently. In practice, at each time step we use the current value of the electric
potential as a (fixed) input into each NP equation, and vice versa. The coupled PNP
equations are nonlinear, and therefore relaxation must be done delicately, using a
small value of the weight parameter w in both NP and PEs. It is found numerically
(Kurnikova et al., 1999; Cardenas et al., 2000) that convergence can be obtained in
this manner, although the process may be slow (depending on system conditions).
Thus, there is room for improvement in the efficiency of numerical procedure, e.g.,
the use of variable mesh grids and multigrid methodologies.

13.4 Application of Primitive PNP to Gramicidin A
in Charged/Dipolar Lipid Bilayers

13.4.1 The Model System

Gramicidin A (GA) is an antibiotic polypeptide widely used in single-channel exper-
iments on passive ion–current permeation through a lipid membrane. GA is a small
15 amino acid �-helical peptide with an aqueous pore. Due to its unusual primary se-
quence of alternating L and D amino acids it forms a �-helix with all the amino acid
side-groups extending away from the backbone helix, which forms the narrow (ca. 2Å

461

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil



SVNY290-Chung July 25, 2006 14:15

Rob D. Coalson and Maria G. Kurnikova

radius) channel. GA reconstructs into a lipid bilayer by forming head-to-head dimers.
Therefore, the channel is lined with backbone carbonyl and amino groups, generating
a hydrophilic environment inside the pore, and thus allows cations to flow through
it. Its structure has been well-characterized by solution phase NMR (Arsen’ev et al.,
1986), and it is readily available in large quantities. Consequently, it has been stud-
ied extensively, both experimentally and theoretically. In interesting experiments
by Rostovtseva et al. (1998), single channel conductance was measured for GA in
several types of lipid bilayers. The lipids used to form these bilayers were character-
ized by different molecular head groups, which have distinctly different electrostatic
characteristics. Phosphatidylcholine (PC) and phosphatidylserine (PS) have dipolar
head groups, while, in addition, PS can be charged (due to deprotonation of carboxyl
groups on its surface). Busath et al. (Busath et al., 1998) performed similar studies on
the uncharged dipolar diphytanoylphosphatidylcholine (DPhPC) membrane and on
the uncharged nondipolar glycerilmonoolein (GMO) membrane. The data obtained
from these experiments provide valuable information about the role of long-range
electrostatic effects on ion permeation through functional protein channels.

13.4.2 Calculations

In an attempt to better understand these issues, an extensive set of 3D ion permeation
calculations was performed on these systems (Cardenas et al., 2000). The geometric
details of the lipid (thickness of the bilayer, perturbations of its structure at the regions
of contact with the GA, etc.) were modeled based on known structural data (e.g., as
obtained from NMR spectroscopy). Following standard arguments (Kurnikova et al.,
1999), the dielectric constant of water (both in bulk solvent and in the aqueous pore)
was taken to be 2, while that corresponding to protein and membrane regions was
set to 80. Charges and dipoles were added as indicated in Fig. 13.4. The individual
dipole magnitude and the surface density of dipoles for PC/PS are known. The surface
density of titrating surfaces sites is also known. The degree to which these sites are
protonated (and thus electrically neutral) or deprotonated (and thus, characterized by
a charge of −e0, e0being the proton charge) is controlled by experimental conditions
(solution pH and electrolyte concentrations): this is a “knob” which can be turned,
experimentally, to control the degree of charging of the membrane surface from zero
to a maximum (negative) surface charge density equal to the surface density of the
titrating acidic (COOH) head groups.

Three-dimensional PNP results for I –V curves are presented in Figs. 13.5–
13.7. The basic physical effects of membrane charge that explain the trends in these
curves are as follows. For specified pH and bathing solution salt concentration, and
for the same head group dipolar surface density, increasing the “bare” charge on the
lipid (by deprotonation of COOH groups) increases the current through the channel.
This is because Gramicidin is cation selective and negative surface charge helps
attract positive ions in the bulk solution to the surface of the membrane, where they
can be “sucked into” the mouth of the ion channel. In contrast, if all other factors
are held constant, increasing the dipolar density decreases cation current because of
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Fig. 13.4 Molecular representation of the GA dimer with negative charges (black) and dipoles
(light gray) embedded in the membrane: (a) lateral view and (b) top view. The negative charges and
the positive charges of the dipoles are placed inside the membrane [+ sign in (a)]. The negative
charges of the dipoles are placed on the aqueous side of the membrane–liquid interface [−sign
in (a)].

the way the dipoles align with respect to the lipid surface: the positive part of the
dipole is on the inside, and this positive surface charge presents a (mild) barrier to
cation entry into the channel.

Figures 13.5–13.7 compare 3D PNP results to experiment for a variety of
systems and conditions. In finalizing the computational output, there is one other
critical parameter that needs to be set, namely the constant which governs diffusion
within the channel. While the external (bulk) diffusion constants of ions like Na+

and Cl− are well known experimentally, the internal diffusion constant has not been
measured. Because of the highly restricted motion of both ions and water in a narrow
channel like GA, it is plausible that the diffusion constant is significantly lower than
its bulk value. There is some support for this conclusion from MD simulations
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Fig. 13.5 Calculated current–voltage relationship for GA embedded in an uncharged PC mem-
brane (solid symbols) and a charged PS membrane (open symbols) at neutral pH. The electrolyte
concentrations are 0.1 M (diamonds) and 1.0 M (triangles). The inset shows experimental results
(Rostovtseva et al., 1998) using the same symbol convention as in the main panel [it also shows
experimental results at pH 1 (solid circles and squares)]. The value Dint = 1.79 × 10−6 cm2/s was
used in these PNP calculations.

in both artificial cavities (Lynden-Bell and Rasaiah, 1996) and in biological ion
channels (Mamonov et al., 2003). In any case, it was found empirically that a value
of Dint

∼= 1.5 × 10−6cm2/s for both anions and cations (about a factor of 10 less than
the bulk value for K+) leads to agreement between 3D PNP theory and experiment
which is overall very good. Only in Fig. 13.7, at the high salt concentration of 2M
(physiological concentrations of salt rarely exceed 1M), does PNP deviate from
experiment significantly. Namely, the experimental current saturates (increasing the
salt concentration does not increase the current), while the PNP current does not.
This saturation effect is discussed in more detail below.

13.5 Incorporating Ion (De)Hydration Energy Effects
into PNP: DSEPNP

It was recognized recently. that the change in solvation energy of a single ion when it
moves in an inhomogeneous dielectric medium can provide an important contribution
to the drift flux term of Eq. 13.1 (Graf et al., 2000; Schuss et al., 2001) but is missing
from the primitive PNP definition of �Gi

SIP(�r ). This change in the free energy of
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Fig. 13.6 Current–voltage relationship in GMO (nondipolar) membrane. The electrolyte con-
centrations are 0.1 (open triangle), 0.2 (closed circle), 0.5 (open square), 1.0 (open circle) and
2.0 M (closed square). The inset shows the experimental results (Busath et al., 1998) with the
same symbol convention, except that these authors used dot-filled squares for 0.1 M. The value
Dint = 1.12 × 10−6 cm2/s was used in these PNP calculations.

a single ion defined with respect to the free energy of that ion in a bulk solvent
was termed as the dielectric self-energy (or dielectric barrier) �Gi

DSE(�r ) (Graf et al.,
2000, 2004). It can be calculated by solving the 3D PE for an ion with its center placed
at one of the lattice points and, from the resultant electric potential field, evaluating
the electrostatic energy of this point charge in the appropriate dielectric medium; the
procedure is then repeated for all lattice points to map out the spatial dependence
of the DSE [see (Dieckmann et al., 1999; Graf et al., 2000) for computational
details]. When this contribution to the free energy is taken into account, �Gi

SIP(�r )
is modified to

�Gi
SIP(�r ) = qi �protein(�r ) + �Gi

DSE(�r ). (13.9)

Recent studies have shown that �Gi
DSE in a narrow channel strongly influences

the resulting current (Graf et al., 2000, 2004). Therefore, a careful assessment of
�Gi

SIP(�r ) is essential for modeling realistic channel behavior. PNP-like theory that
implements �Gi

SIP(�r ) as defined in Eq. 13.4 will be termed Dielectric Self Energy–
Poisson–Nernst–Planck (DSEPNP) theory (Graf et al., 2004). Comparison of 3D
PNP and DSEPNP calculations to BD simulations in model cylindrical ion channel
systems (cf. Fig. 13.8) shows that the simple procedure of adding the single-particle
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Fig. 13.7 Current–voltage relationship in DPhPC (dipolar) membrane. The symbol legend is the
same as in the previous figure. The experimental results (Busath et al., 1998) are shown in the
inset. The value Dint = 1.12 × 10−6 cm2/s was used in these PNP calculations.

DSE term to the effective potential in the drift flux term of the PNP equations
accounts, at least in these systems, for nearly the entire error inherent in the PNP. The
BD model considers the same protein/membrane system, except that all the mobile
ions are treated as spherical particles of finite size; water is again treated as a dielectric
continuum, and the protein/membrane as an impenetrable dielectric medium. Each
ion interacts with the electric field created by fixed ions in the protein/membrane slab,
induced charge on dielectric boundaries, and with other ions in a pair-wise additive
manner (this pair potential in general differs from a simple Coulomb potential—it
is also modulated by induced charge at dielectric interfaces), as well as with the
external electric field generated by electrodes. Full details of the calculation of the
instantaneous electrostatic force on each ion and the relevant kinetics algorithm used
to produce the BD results shown in the present example may be found in (Graf et al.,
2000).

Once the DSE potential is restored into PNP theory, the only “approximate”
element in it, relative to a full many-ion BD simulation, is the mean-field approxi-
mation to ion–ion interactions. From the results shown in Figs. 13.9–13.10 it appears
that this approximation is surprisingly accurate. Of course, further testing will be
required to determine its full range of validity (Corry et al., 2003).
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Fig. 13.8 2D cross section of the 3D BD simulation box depicting an assembly of free charges
in a dielectrically inhomogeneous medium (εm = protein/membrane dielectric constant, εw = wa-
ter dielectric constant). Note that some free charges (encircled) are mobile while others (in the
dielectric region with εm) are fixed in space.

Fig. 13.9 (a) Ratio of DSEPNP/BD currents as a function of voltage for three channel radii: 0.4
nm (triangles); 0.75 nm (squares); 1.2 nm (circles); (b) Ratio of PNP/BD currents for the same
channels, 0.4 nm (triangles); 0.75 nm (squares); 1.2 nm (circles).
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Fig. 13.10 Mobile ion concentrations calculated by BD, DSEPNP, and PNP plotted for the R =
4 Å channel at applied voltage of 0.3 V and 0.1 M reservoir concentration of salt. Filled symbols
are for cations; open symbols are for anions. Circles show BD results, squares DSEPNP results,
and triangles PNP results: (a) positive mobile ion concentration along the (channel) z-axis (x =
0, y = 0); (b) negative mobile ion concentration along z-axis. (Vertical dashed lines delineate
membrane/channel boundaries.)

13.6 Incorporating Effects of Channel Protein Fluctuation
in PNP: PMFPNP

13.6.1 Free Energy of Inserting an Ion into a Channel:
General Considerations

In general, calculating free energy differences in biomolecular processes is a chal-
lenging task. Several approaches have been adopted for various problems in molec-
ular modeling. These theoretical methodologies span a wide range of molecular
resolution—from estimating electrostatic free energies on a continuum level by
solving the PE (Dieckmann et al., 1999; Sharp and Honig, 1990; Luty et al., 1992)
to full atomistic MD simulations (Roux and Karplus, 1993; Chung et al., 1998;
Kollman et al., 2000). The electrostatic free energy of transferring an ion of species
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ifrom the bulk solution into the channel is defined by

�Gi
SIP(�r ) = Gcomplex(�r ) − Gprotein − G ion, (13.10)

where Gcomplex is the energy of an ion plus protein/membrane complex embedded
in the solvent (water) with the ion located at a point �r inside the channel, Gproteinis
the energy of the protein/membrane system (without the ion) embedded in the same
solvent and G ionis the energy of a single ion in the bulk solvent. The conventional
continuum electrostatic approach for calculating �Gi

SIP(�r ), based on Eq. 13.9, is
reviewed in the next Section 13.5.2. A combined MD/continuum approach, which
takes into account the channel flexibility, is presented in Section 13.5.3. Then, in
Section 13.5.4, we present results of applying both methodologies and then simulate
current through the GA channel.

13.6.2 A Continuum Approach to Calculate the
Electrostatic Free Energy

In the absence of external fields, the electrostatic energy G of a collection of point
charges can be found as G = 1

2

∑
i qi �i , where the summation is over all electrostatic

charges qi in the system and �i is the value of the electrostatic potential at the position
of charge i . The electrostatic potential �(�r ) needed to calculate G can be obtained
by solving the corresponding PE:

�∇ · (ε(�r ) �∇�(�r )) = −4� �
j

q j �(�r − �r j ), (13.11)

supplemented by Dirichlet boundary conditions with the boundary potential set to
zero. In Eq. 13.11, � is the 3D Dirac delta-function and �r j is the position of charge q j .
As noted in the previous section, for channels as narrow as 4 Å in radius, a contin-
uum description of ion permeation described by DSEPNP, i.e., Eqs. 13.1– 13.3, 13.9,
compares well with results of BD simulations in which ions are treated as charged
particles that diffuse in an inhomogeneous dielectric medium with a prescribed dif-
fusion coefficient (Graf et al., 2000, 2004). Such particle-based simulation models
of narrow rigid channels (Chung et al., 1999; Graf et al., 2000) typically exhibit very
small superlinear currents for voltages up to 200 mV. The insignificance of these
currents can be traced to the presence of a DSE barrier of several kT in such pores.
In contrast, real biological channels of similar size and shape exhibit substantial
ionic current at low voltages, with nearly linear or sublinear current–voltage char-
acteristics. A detailed analysis of DSEPNP and BD particle simulations suggests
that the effective polarizability of the channel environment (loosely defined as the
ability of the local protein environment to adjust in order to stabilize an extra electric
charge) must be higher than implied by the “standard” model utilized in both BD
and DSEPNP studies. A major limitation of both approaches for simulating ion mo-
tions across channels is that the protein structure is taken to be rigid (usually at its
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average NMR or X-ray configuration), while in reality the protein structure responds
dynamically to an ion’s presence. Below, we will investigate the consequences of the
rigid protein assumption.

13.6.3 A Combined Molecular Dynamics/Continuum
Electrostatics Approach to Calculate Free Energy

�Gi
SIP(�r ) can in principle be found from an atomistic simulation in which all atoms

on the protein, the lipid membrane and the solvent are treated explicitly. Several at-
tempts to calculate the free energy of an ion in a GA channel by MD simulation have
been reported (Roux et al., 1993; Woolf and Roux, 1997; Elber et al., 1995; AllenAuthor: Please

include Roux
et al., 1993 in
the reference
list.

et al., 2004). Such calculations rely on a parameterized all-atom potential function
(Elber et al., 1995; Roux and Berneche, 2002) and require complete sampling of
the system configuration space. Improvements in the available parameterizations of
potential functions have been slow in recent years (Roux et al., 2002). Fortunately,Author: Please

include Roux
et al., 2002 in
the reference
list.

an alternative method of dealing with this problem, namely limited sampling of the
environment configurational space, has recently been introduced (Kollman et al.,
2000). Since a large portion of the configuration space required for quantitative cal-
culation of the free energy of an ion in a solvent is due to the solvent itself, it was
recently proposed (Kollman et al., 2000) that the computationally expensive sam-
pling of solvent configurations may be replaced by considering solvent effects via an
appropriate approximate averaging procedure. In this approach a full-scale equilib-
rium MD trajectory of the protein in an atomistic solvent is generated to sample the
protein conformational space (with and without ion in the channel). The resulting se-
quence of N protein/water configurations is used to obtain a corresponding sequence
of dielectric continuum models of these systems, in which the fixed protein charges
are embedded in their corresponding atomic positions. These continuum dielectric
configurations, obtained with the permeating ion fixed in a given position, are then
used to compute the electrostatic free energy of inserting the ion at that position
(Sharp et al., 1990). Adapting the procedure introduced in (Kollman et al., 2000),Author: Please

include Sharp
et al., 1990 in
the reference
list.

the free energy of ion–protein complex formation for ion species i is calculated as
an average over all n = 1, . . . ,N configurations:

�Gi
SIP = 1

N

N∑
n=1

�Gi(n)
SIP , (13.12)

where �Gi(n)
SIP has the same meaning as in Eq. 13.10, calculated for the nth configura-

tion. The method thus combines an MD simulation to obtain atomistic configurations
of the membrane–protein–ion complex with a continuum dielectric representation
of each configuration in order to obtain a simple estimate of �Gi(n)

SIP for that config-
uration, followed by the average indicated in Eq. 13.12. This approach allows us to
account for solvent effects on average, i.e., at a mean field level and to reduce the noise
in the free energy calculations due to insufficient sampling of solvent configurations.
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The procedure described above, in which the PMF �GSIP is calculated via Eq. 13.12
and then used in the PNP formalism, will be termed PMF Poisson–Nernst–Planck
(PMFPNP). We should note that this calculation still disregards contributions to the
free energy due to changes in the protein internal energy and accounts only approxi-
mately (through the temperature dependence of the dielectric functions) for entropic
contributions. These missing contributions are expected to be small because defor-
mation of the protein is minimal during the ion permeation (see Section 13.5.4),
and because the changes in configurational entropy in these processes are typically
small. (A similar number of degrees of freedom are constrained independent of the
ion position in the channel).

13.6.4 MD/Continuum Simulation of an Ion in the GA Channel

The approach outlined above was implemented in a series of calculations performed
for a model GA channel. Figure 13.11 shows a 3D GA ion channel structure incor-
porated into a crude model of a lipid bilayer membrane, with the membrane/protein
channel system solvated in water. This snapshot is taken from an MD simulation
performed as described in the next subsection. As has been noted above, .the di-
electric self-energy is very large for channels less than 5 Å in radius, implying the
conundrum discussed above in modeling their permeability. Working with GA, the
narrowest known ion channel, emphasizes the goal of understanding the permeability
of such narrow channels (Dieckmann and DeGrado, 1997; Roux and MacKinnon,
1999; Graf et al., 2000; Mamonov et al., 2003).

A set of MD simulations of a single potassium ion and a single chloride ion
fixed at various positions in a GA channel was performed. GA was incorporated
into a slab of heavy (mass = 100 au) spheres with Lennard–Jones parameters ε =
0.05 kcal/mol and RM = 2.5 Å, and no partial charge. The slab of these dummy
spheres represents a lipid bilayer by providing a nonpolar environment for the chan-
nel molecule. This channel-membrane model system was then immersed in a box
of 738 SPC/E water molecules (Leach, 2001). Eight water molecules in random
configurations were placed inside the GA pore. This system was subjected to en-
ergy minimization followed by a 200 ps constant pressure MD equilibration run
at 300 K. Positions of the dummy atoms and GA atoms were constrained in space
with 200 kcal/mol/Å2 harmonic spring forces. After the GA-water equilibration was
completed, an ion (K+or Cl−) was introduced into the channel. A force constant
of 200 kcal/mol/ Å2 was again applied to the positions of the dummy atoms and a
10 kcal/mol/Å2 force constant was applied to the backbone atoms of the GA. The en-
ergy of each system thus prepared was minimized, followed by a 30 ps equilibration
period when the harmonic constraints on the GA backbone atoms were gradually
reduced from 10 kcal/mol/Å2 to 0.5 kcal/mol/Å2. Subsequently, 300 ps production
runs were performed with constant volume dynamics at 300 K. 0.5 kcal/mol/ Å2

harmonic constraints were maintained on each of the backbone C and N atoms of
GA. The coordinate of the ion along the channel axis (z-axis) was held fixed, while
its x ,y coordinates were allowed to fluctuate. The coordinates of the protein atoms
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Fig. 13.11 Snapshot of the GA channel with a K+ ion embedded in a model membrane and
solvated with water after a 300 ps MD simulation as described in text. The model lipid bilayer is
represented by an array of flat grey spheres (the radius of such sphere in a picture does not reflect
its Lennard–Jones parameters). The K+ ion is shown as the large grey sphere in the center of the
channel. Water atoms are also shown as spheres with oxygens and hydrogens colored in grey and
white respectively. Only backbone atoms of the peptide chains are shown in stick representation.
[For a color version of this figure, see Ref. (Mamonov et al., 2003).]

were collected every 2 ps. For every such time point along the MD trajectory the
coordinates of the protein molecule and the ion were used to calculate the appropriate
electrostatic free energy by solving the PE as described above.

An MD trajectory of GA without K+ was also generated as described above.
All MD simulations were performed using the AMBER 6 software package and
Cornell et al. force field (Cornell et al., 1995). The Lennard–Jones parameters for

472

Administrator
Inserted Text
or Cl-

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil



SVNY290-Chung July 25, 2006 14:15

13. Poisson–Nernst–Planck Theory of Ion Permeation

the potassium ion were taken from work of (Åquist, 1990). Bonds involving hydrogen
atoms were constrained via the SHAKE algorithm. A 12 Å cut-off distance was used
for all nonbonded interactions. The MD time step was set to 2 fs.

For the continuum electrostatics calculations, partial charges on the GA atoms
were also taken from the Cornell et al. force field (Cornell et al., 1995). The dielectric
response profile ε(�r ) and the positions of the partial charges represent the molecular
system in a continuum representation. In this study, the dielectric constant of the
membrane and the protein was set to 4, while the value characterizing both the bulk
solvent and the aqueous pore was taken as 80 [for an extensive discussion of how these
parameters were chosen, consult (Mamonov et al., 2003)]. In the numerical solution
of the PE (Eq. 13.3), these functions are discretized on a uniform 3D grid as described
in (Kurnikova et al., 1999). The radii of potassium and chlorine ions, estimated
by fitting experimental enthalpies of hydration, were chosen to be RK+ = 2.17 Å
(Dieckmann et al., 1999) and RK− = 1.81 Å (Dasent, 1982) For all results reported
below, the grid dimensions of the simulation box were 1513 with a linear scale of
3 grid points per Å. The width of the membrane was set to 33 Å to mimic a GMO
bilayer. The set of calculations described above was repeated with the potassium ion
fixed at 18 different positions along one GA monomer at spatial increments of 1 Å,
and the chloride ion fixed at seven different positions at spatial increments of 3 Å.

The results of the MD/free energy calculations outlined above (Mamonov et al.,
2003) show the following basic features. Since GA is a tightly-bound �-helical
structure, it is not surprising that the overall structure of peptide, embedded in
an artificial lipid bilayer, do not change significantly over the course of the MD
trajectory. Consequently, the DSE contribution to the overall single-particle free
energy of insertion (PMF, or in the present notation, SIP) does not vary much over
the course of the MD simulation. It remains close to the value associated with the
static average protein configuration and provides, as expected, a large energy barrier
(of about 20kT ) to the passage of ions of either sign. A more interesting finding is
that small local distortions of pore-lining parts of the peptide (especially carbonyl
groups) significantly stabilizes cations as they move through it; cf. Fig. 13.12. This
large energetic stabilization is possible because electrostatic forces are strong, and
the permeating ion is very close to partially charged groups of the protein that face
the aqueous pore—hence, changes in the positions of these protein groups by only
fractions of an Angstrom can change the direct Coulomb interaction with the ion by
many kT. The situation here is reminiscent of polaron formation in polar crystalline
solids (Kittel, 1996). In that phenomenon, an electron migrating through the crystal
distorts the lattice of ions that define the crystal locally and instantaneously (on the
slow time scale of the electron’s migration) in such a way as to lower the overall
energy of the system (ion + lattice) and thus stabilize it. The resultant species, an
electron surrounded by displaced positive ions (with the negative ions distorting away
from the ion), is termed a polaron. Its conduction and optical properties are altered
by the “phonon cloud” that surrounds it. The case of an ion moving through a narrow
protein channel is somewhat similar; again, cf. Fig. 13.12. In this system, polaronic
stabilization of cations approximately cancels out the DSE barrier and allows them
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Fig. 13.12 The average configuration of GA in MD simulation without the ion (mono color grey)
is superimposed with the average configuration of GA with the K+ ion present in the simulation
(mainly grey with backbone oxygens colored in black and nitrogens in white). K+ is shown as
a large sphere. Arrows indicate the carbonyl oxygens that bent toward the K+ due to favorable
electrostatic interactions. (a) During the MD simulation ion was in the center of the channel, (b)
K+ is at 9 Å from the center of the channel, the predicted position of the binding site. [For a color
version of this figure, see Ref. (Mamonov et al., 2003).]

to permeate with relative ease (as was found in primitive PNP calculations which
omitted both effects!).

13.6.5 Application of PMFPNP to Calculate Ion Currents
Through the GA Channel

Some computed PMFPNP I –V curves are shown in Fig. 13.13. The currents ob-
tained in these calculations are typically within a factor of two of currents measured
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Fig. 13.13 Current–voltage relations predicted by PMFPNP model are compared to experimental
results (Busath et al., 1998) (upper left inset). Bulk KCl concentrations of 0.1 M (shaded square) and
1.0 M (open circle) were used in the simulations. The experimental curves in the inset correspond
to the following concentrations of bulk KCl solutions: shaded square—0.1 M, filled circle—0.2 M,
open square—0.5 M, open circle—1.0 M, and filled square—2.0 M. The analogous experimental
and calculated curves are labeled with the same symbols.

experimentally (Busath et al., 1998). By adjusting the internal diffusion constant an
even better (nearly perfect) fit could have been obtained. However, in these calcu-
lations, the internal ion diffusion constants were actually calculated by processing
MD simulation data (based on all-atom simulations of the protein and water, plus
one ion fixed inside the channel) in a standard fashion. The calculated reduction
of the internal diffusion from its bulk value is comparable to that obtained by fit-
ting (“reverse-engineering”) the internal diffusion constant (Edwards et al., 2002)
to obtain agreement with experimental GA data, as discussed above.

A final important result of this study is the demonstration that PMFPNP theory
is able to account for effects that are beyond the reach of primitive PNP theory,
namely, saturation of ion current through the channel as the concentration of bathing
solutions increases to a sufficiently high value (see Fig. 13.14). Physically, once
the channel becomes filled up with ions, the dwell time of these ions before they
escape from the exit side of the pore becomes the rate determining factor, rather
than the rate of attempted entry into the channel (the latter being proportional to the
concentration of ions in the external reservoir on the entry side, while the former
is independent of this concentration). In PNP theory, a build-up of positive charge
density in the channel would be expected to generate an electric field that prevents
other positive ions (charge density) from entering the channel. However, in primitive
PNP this positive charge has the unphysical effect of attracting negative mobile
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Fig. 13.14 Current–concentration relations as predicted by PNP (diamonds) and PMFPNP (cir-
cles) models. The external potential difference was set to 100 mV.

charge into the channel. For example, as shown in Fig. 13.15a, in primitive PNP
the concentration of cations inside the channel is always higher than in the bulk.
This feature can be traced to the behavior of the anions shown in Fig. 13.15c: at low
electrolyte concentration anions do not enter the pore, while at high bulk electrolyte
concentration (10 M), the apparent concentration of Cl− in parts of the channel
exceeds 5 M. As positive and negative charge build up in the same region (again, an
unphysical process), the aqueous region of the pore is effectively rendered charge
neutral, thus allowing more positive charge to enter and flow through it—the higher
the bathing concentration of ions, the higher the rate of ion permeation (Fig. 13.14).
In particular, Fig. 13.16a,c shows that at high concentrations the potential drop across
the channel becomes roughly linear, implying that positive and negative mobile ions
pile into the channel in such a way as to cancel out all electrostatic driving forces
except for the applied voltage. Now we are back to the 1D NP model (essentially the
GHK model discussed in Section 13.2.3), which predicts ion current proportional
to bathing solution concentration. This is exactly what we see in Fig. 13.14.

In PMFPNP, by contrast, the DSE added to the unfavorable protein–anion in-
teraction potential forms a very high barrier to anion entry into the channel—even
the build-up of positive ion density cannot compensate for this (see Fig 13.16d).
Anions never enter into the channel (Fig. 13.15d), while cation charge continues to
build up as the bathing solution salt concentration is increased (notice in Fig. 13.15b
that unlike primitive PNP result [Fig. 13.15a] cation concentration build-up happens
only at particular locations in the channel, which can be loosely regarded as cation
binding sites), until the tendency toward greater cation flow rate into the channel
with increasing electrolyte concentration is counterbalanced by the electrostatic re-
pulsion generated by cations already in the channel—the density profile of cations
in the channel saturates, ultimately causing the saturation behavior in current flow
illustrated in Fig. 13.14. This saturation mechanism can be appreciated by examining
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Fig. 13.15 Ion concentration profile along the channel axis for K+ and Cl− is plotted for two
(high and low) bulk electrolyte concentrations: (a), (c) calculated using PNP; (b), (d) calculated
using PMFPNP. The curves with diamonds and circles are for 0.5 M, the curves with squares and
triangles are for 10 M electrolyte concentrations.

the concentration dependence of the effective driving potentials seen by anions vs.
cations, as illustrated in Fig. 13.16a,c for primitive PNP and in Fig. 13.16b,d for
PMFPNP.

13.7 Conclusions and Outlook

Three-dimensional PNP Theory has an intuitive appeal due to its conceptual sim-
plicity. It relies on a caricature of the microscopic world in which background media
are treated as dielelectric slabs and the primary particles of interest, mobile ions
like Na+ and Cl−, are “smeared out” into a continuous charge distribution. The po-
larization of this mobile charge distribution in response to concentration gradients
in boundary reservoirs and electrostatic forces arising from both internal (ion–ion,
ion–protein, etc.) and external (electrode-generated) sources is described in terms
of drift–diffusion equations. These are coupled naturally to the PE of electrostat-
ics which must be utilized to calculate the relevant electric fields (self-consistently
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Fig. 13.16 � i (�r ) profile along the channel axes for K+ and Cl− is plotted for several bulk
electrolyte concentrations and 100 mV applied voltage: (a), (c) calculated using PNP; (b), (d)
calculated using PMFPNP. The curve with circles is for 0 M, the curve with squares is for 0.5 M
and the curve with diamonds is for 10 M electrolyte concentrations. The dashed line is the result
of the calculation in which protein molecule had no partial charges on the atoms. It corresponds
to the linear ramp potential caused by the high resistivity of the membrane.

with the solution of the drift–diffusion equations). This “engineering flavor” is trans-
ferred to numerical solution techniques, e.g., PDE solvers relying on well-developed
finite difference or finite element methods. As advances in these techniques (such
as variable meshes and multigridding (Beck, 1997; Tsonchev et al., 2004)) become
available, 3D PNP solvers will surely become fast enough that they can be distributed
as software, analogous, say, to the FEMLAB program (FEMLAB, 2004) that solves
standard PDEs of many types. In the context of understanding structure–function
relations in biological ion channels, 3D PNP solvers may soon serve as a Com-
puter Assisted Design (CAD) tool, which allows the user to vary inputs and get
accurate output solutions (within the range of validity of PNP theory) quickly. One
can imagine high throughput scanning, for example, of the effects on current flow
through an ion channel due to changes in critical amino acids. Such calculations
could then guide experimentalists who wish to generate the mutated channels (using
site-directed mutagenesis techniques) to alter channel function.
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Before getting carried away with the potential uses of 3D PNP solvers, we
should bear in mind the inherent restrictions of the theory. The caricature outlined
in the preceding paragraph may simply be unrealistic for treating certain properties
of certain ion channels. Many ion channels have a narrow segment through which
ions can only flow in single file fashion (this is a common feature of ion channel
selectivity filters, for example). These regions are characterized by electrostatic traps
(binding sites), where ions reside, one ion per binding site, temporarily. A site-bound
ion is then knocked out of its binding site (and through the channel) by another ion
entering the channel. These kinds of mechanisms are not included in primitive PNP.
We have seen above that the consequences of many such effects (e.g., saturation of
ion current with increasing bathing solution concentration) can in fact be attained
from modified versions of PNP, but this may be due to judicious cancellation of
errors in a description which is fundamentally inadequate to accurately describe the
underlying dynamics.

Despite these concerns, we expect that in years to come PNP type theories will
continue to play a useful role in computing and understanding the kinetics of ion
permeation through biological channels, especially in wider channels (Im et al., 2002; Author: Please

include Im
et al., 2002 in
the reference
list.

Noskov et al., 2004), synthetic channels [e.g., based on carbon nanotubes (Hummer
et al., 2001)], etc. Consider the fate of other continuum electrostatic theories which
describe dynamical processes in solution, such as the Born theory of solvation (Dill
and Bromberg, 2003) and the Marcus theory of electron transfer (Marcus, 1956,
1965). Although they are much criticized for not possessing sufficient microscopic
detail, they have proven remarkably robust in estimating, semi-quantitatively, the
complicated phenomena that they were developed to model, with only back of the
envelope calculations. Thus they remain invaluable to the present day. We suspect
that the same will prove true of electrodiffusion theories, and PNP in particular, for
understanding ion permeation through nano-pores.
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