BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING
BIOLOGICAL AND MEDICAL PHYSICS
BIOMEDICAL ENGINEERING

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological & Medical Physics/Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information.

Editor-in-Chief:
Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board:
Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
Olaf S. Andersen, Department of Physiology, Biophysics and Molecular Medicine, Cornell University, New York, USA
Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA
James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
Britton Chance, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, USA
Steven Chu, Department of Physics, Stanford University, Stanford, California, USA
Louis I. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA
S.H. Chung, O.S. Anderson, and V. Krishnamurthy (Eds.)

Biological Membrane Ion Channels: Dynamics, Structure and Applications

Springer
Editors:
Shin-Ho Chung
Res. School of Biological Sciences
Australian National University,
Canberra, Australia
Canberra ACT 0200
E-mail: shin-ho.chung@anu.edu.au

Olaf S. Anderson
Weill Medical College Dept. Physiology
Cornell University, New York, NY, USA
1300 York Avenue
New York 10021
E-mail: sparre@med.cornell.edu

Vikram Krishnamurthy
Dept. of Elect. & Comp. Engi.
MacLeod Bulding
University of British Columbia, Vancouver,
BC, Canada
E-mail: vikramk@ece.ubc.ca
Contents

Preface ... vii

List of Contributors ... xi

Part I. Introduction

1 Ion Channels, from Fantasy to Fact in Fifty Years 3
 Peter C. Jordan

Part II. Specific Channel Types

2 Gramicidin Channels: Versatile Tools ... 33
 Olaf S. Andersen, Roger E. Koeppe II, and Benoit Roux

3 Voltage-Gated Ion Channels ... 81
 Francisco Bezanilla

4 Voltage-Gated Potassium Channels ... 119
 Stephen J. Korn and Josef G. Trapani

5 BKCa-Channel Structure and Function 171
 Daniel H. Cox

6 Voltage-Gated Sodium Channels ... 219
 Dorothy A. Hanck and Harry A. Fozzard

7 Calcium Channels ... 241
 Ben Corry and Livia Hool

8 Chloride Transporting CLC Proteins ... 301
 Michael Pusch

9 Ligand-Gated Ion Channels: Permeation and Activation 335
 Joseph W. Lynch and Peter H. Barry

10 Mechanosensitive Channels ... 369
 Boris Martinac
Contents

11 TRP Channels .. 399
 Thomas Voets, Grzegorz Owsianik, and Bernd Nilius

12 Ion Channels in Epithelial Cells ... 425
 Lawrence G. Palmer

Part III. Theoretical Approaches

13 Poisson–Nernst–Planck Theory of Ion Permeation Through Biological Channels .. 449
 Rob D. Coalson and Maria G. Kurnikova

14 A Mesoscopic–Microscopic Perspective on Ion Channel Permeation Energetics: The Semi-Microscopic Approach 485
 Peter C. Jordan

15 Brownian Dynamics Simulation for Ion Channel Permeation 507
 Shin-Ho Chung and Vikram Krishnamurthy

16 Molecular Dynamics Simulation Approaches to K Channels 545
 Alessandro Grottesi, Shozeb Haider, and Mark S. P. Sansom

Part IV. Emerging Technologies

17 Patch-Clamp Technologies for Ion Channel Research 571
 Fred J. Sigworth and Kathryn G. Klemic

18 Gated Ion Channel-Based Biosensor Device ... 595
 Frances Separovic and Bruce A. Cornell

19 Signal Processing Based on Hidden Markov Models for Extracting Small Channel Currents .. 623
 Vikram Krishnamurthy and Shin-Ho Chung

Index ... 651
Preface

Ion channels are water-filled, biological “sub-nanotubes” formed by large protein molecules. They constitute a class of membrane proteins that serve as conduits for rapid, regulated ion movement across cellular membranes. Ion channels thereby provide the molecular substrate for rapid, electrical signaling in excitable tissues. In addition to playing this important role, ion channels regulate the release of hormones and neurotransmitters and control cell and body electrolytes and volume homeostasis. They are also involved in the transduction of external stimuli to sensory signals. Proper ion channel function is a prerequisite for normal cell, organ and body function—and disorders in ion channel function, channelopathies, underlie many human diseases, such as, cardiac arrhythmias, cystic fibrosis, some cases of diabetes mellitus and epilepsy, myotonias and myasthenias. The list is growing. Not surprisingly, ion channels, which long were considered to be rather specialized entities studied by electrophysiologists, are attracting increasing interest.

In most, maybe all, ion channels, ion movement occurs as an electrodiffusive barrier crossing by which selected ions move through a water-filled pore. As the free energy profile the permeating ions have to traverse is relative flat, the throughput is high, of the order of 10^7 ions per second. It thus becomes possible to observe the function of single ion channels in real time using electrophysiological recording methods. Indeed, the first single-molecule measurements were single-channel measurements made almost 40 years ago on ion channels incorporated into planar lipid bilayers (Bean, R.C., W.C. Shepherd, M. Chan, and J. Eichner. Discrete conductance fluctuations in lipid bilayer protein membranes. *J. Gen. Physiol.* 53:741–757, 1969)—and the first single-channel recordings in biological membranes were made 30 years ago (Neher, E., and B. Sakmann. Single-channel currents recorded from membrane of denervated frog muscle fibers. *Nature* 260:779–802, 1976).

Electrophysiological methods improved, the power of molecular and structural biology was unleashed, and ion channels are no longer “black boxes” but molecular entities. Mutations in the DNA sequences encoding channel subunits cause well-defined changes in channel function, which range from mutations that compromise the delivery of the channels to their proper destination, over mutations that cause dysregulation of channel function, to mutations that alter the rate of ion movement. The mechanistic interpretation of these studies is guided by the availability of atomic-resolution structures of a growing number of channels, as well as by increasingly sophisticated computational studies ranging from ab initio calculations, over molecular and Brownian dynamics simulations, to continuum descriptions. Taken together these different approaches provide for unprecedented insights into molecular function.
Preface

The current interest in ion channels, however, arises not only from their biological importance; their high turnover numbers make ion channels well suited to serve as switches in sensors. Ion channels also are targets for a growing number of drugs. In many cases ion channels are the desired target(s), but serious side effects may arise from unintended (and unexpected) drug-induced changes in channel function. It is important to develop methods that allow for efficient screening for unintended side effects.

Though the basic functions ion channels are well understood, at least in comparison with other classes of membrane proteins, ion channels continue to pose a wide range of problems for which the principles and practices of biophysics, nanotechnology design, statistical signal processing and can provide elegant and efficient solutions. Indeed, the cross fertilization of ideas in these disparate disciplines will eventually enable us to relate the atomic structure of an ion channel to its experimentally measurable properties through the fundamental processes operating in electrolyte solutions or the basic laws of physics.

The aim of the present book is to provide an introduction to ion channels as molecular entities. It is aimed at researchers and graduate students in the life sciences, biophysics, engineering and computational physics who are interested in acquiring an understanding of the key research results in ion channels. Given the breadth of the field, we do not aim for a comprehensive coverage but focus on the physical description of channel function, the power of computational approaches toward obtaining mechanistic insight into this important class of molecules, and the possibility of the future developments in ion channel research. Thus, this volume is intended extract from the vast literature in ion channels, the central ideas and essential methods regarding the dynamics, structure and application of ion channels.

The chapters in this book are organized as follows. P. Jordan in the first chapter gives a lucid account of the major advances made in the ion channel research over the past 50 years. In the following 11 chapters, some of the current issues in the main classes of ion channels are reviewed. These are: the gramicidin channel (O. Andersen, R. Koepe II, and B. Roux), voltage-gated ion channels (F. Bezanilla), voltage-gated potassium channel (S. Korn and J. Trapani), BKCa channels (D. Cox), voltage-gated sodium channels (D. Hanck and H. Fozzard), calcium channels (B. Corry and L. Hool), ClC channels (M. Pusch), ligand-gated channels (J. Lynch and P. Barry), mechanosensitive channels (B. Martinac), TRP channels (T. Voets, Owssianik, and Nilius) and ion channels in epithelian cells (L. Palmer). These are followed by four chapters dealing with theoretical and computational approaches to studying the permeation of ions across biological ion channels. These chapters highlight the strengths and weaknesses of the main tools of physics that are employed in this endeavor, together with examples of how they are applied. The theoretical approaches that are covered here are the Poisson-Nernst-Planck theory (R. Coalson and M. Kurnikova), semi-microscopic Monte Carlo method (P. Jordan), stochastic dynamics (S. Chung and V. Krishnamurthy) and molecular dynamics (A. Grottesi, S. Haider, and M. Sansom). The final three chapters deal with new emerging technology in microfabricated patch-clamp electrodes (F. Sigworth and K. Klemics), an ion channel
Preface

based biosensor device (F. Separovic and B. Cornell) and hidden Markov model signal processing techniques for extracting small signals from channel currents (V. Krishnamurthy and S. Chung).

The chapters appearing in this book thus comprehensively summarize our current understanding of biological ion channels and the state-of-the-art experimental and computational methodologies used in this field. We hope that the chapters contained in this volume will assist in advancing the boundaries of our understanding of the workings of ion channels and enhance multi-disciplinary research in ion channels.

Shin-Ho Chung
Olaf Andersen
Vikram Krishnamurthy
List of Contributors

Alessandro Grottesi
CASPUR-Consorzio Interuniversitario per le Applicazioni del Supercalcolo per Universita' Ricerca
Via dei Tizii, 6b.
00185 Roma - Italy
E-mail: alegrot@caspur.it

Ben Corry
School of Biomedical, Biomolecular and Chemical Sciences
The University of Western Australia
Crawley WA 6009
Australia
E-mail: ben@theochem.uwa.edu.au

Benoit Roux
Institute for Molecular Pediatric Science
CIS Building
929 E 57th Street
University of Chicago
Chicago, IL 60637
E-mail: roux@uchicago.edu

Bernd Nilius
Laboratorium voor Fysiologie
Campus Gasthuisberg, O&N 1

Boris Martinac
School of Biomedical Sciences
University of Queensland
Brisbane, Queensland 4072
Australia
E-mail: b.martinac@uq.edu.au

Bruce A. Cornell
Ambri Ltd.
126 Greville Street
Chatswood, NSW 2067
Australia
E-mail: BruceC@ambri.com.au

Daniel H. Cox
Department of Neuroscience
New England Medical Center, MCRI
Tufts University School of Medicine
750 Washington Street
Box 7868
Boston, MA 02111
E-mail: dan.cox@tufts.edu
List of Contributors

Dorothy Hanck
Department of Medicine
University of Chicago
5841 S. Maryland M/C 6094
Chicago, IL 60637
E-mail: dhanck@uchicago.edu

Frances Separovic
School of Chemistry
University of Melbourne
Melbourne, Victoria 3010
Australia
E-mail: fs@unimelb.edu.au

Francisco Bezanilla
Institute for Molecular Pediatric Science
CIS Building
929 E 57th Street
University of Chicago
Chicago, IL 60637
E-mail: fbezanilla@uchicago.edu

Fred J. Sigworth
Department of Cellular and Molecular Physiology
Yale University
New Haven, CT 06520
E-mail: fred.sigworth@yale.edu

Grzegorz Owsianik
Laboratorium voor Fysiologie
Campus Gasthuisberg, O&N 1
xii

Harry A. Fozzard
Department of Medicine
University of Chicago
5841 S Maryland Avenue
Chicago, IL 60637
E-mail: foz@hearts.bsd.uchicago.edu

Joe Lynch
School of Biomedical Sciences
University of Queensland
Brisbane, Queensland 4072
Australia
E-mail: j.lynch@uq.edu.ac

Josef G. Trapani
The Vollum Institute and Oregon Hearing Research Center
Oregon Health & Science University
Portland, OR 97239
E-mail: trapanij@ohsu.edu

Kathryn G. Klemic
Department of Cellular and Molecular Physiology
Yale University
New Haven, CT 06520
E-mail: kathryn.klemic@yale.edu
List of Contributors

Lawrence G. Palmer
Dept. of Physiology and Biophysics
Weill Medical College of Cornell U.
1300 York Ave.
New York, NY 10021
E-mail: lgpalm@med.cornell.edu

Livia C. Hool
School of Biomedical Biomolecules and Chemical Sciences
The University of Western Australia
Crawley, WA 6009
Australia
E-mail: lhool@cyllene.uwa.edu.au

Maria Kurnikova
Department of Chemistry
Carnegie Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213
E-mail: kurnikova@cmu.edu

Mark S.P. Sansom
Department of Biochemistry
University of Oxford
South Parks Road
Oxford OX1 3QU
England
E-mail: mark.sansom@biop.ox.ac.uk

Michael Pusch
Istituto di Biofisica
CNR
Via de Marini 6
I-16149 Genova
Italy
E-mail: pusch@ge.ibf.cnr.it

Olaf Sparre Andersen
Department of Physiology and Biophysics
Weill Medical College of Cornell University
1300 York Avenue, Rm C-501B
New York, NY 10021-4896
E-mail: sparre@med.cornell.edu

Peter C. Jordan
Department of Chemistry, MS-015
Brandeis University
POB 549110
Waltham, MA 02454-9110
E-mail: jordan@brandeis.edu

Peter H. Barry
Department of Physiology and Pharmacology
School of Medical Sciences
The University of New South Wales
Sydney, New South Wales 2052
Australia
E-mail: P.Barry@unsw.edu.au
List of Contributors

Rob D. Coalson
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15213
E-mail: rob@mercury.chem.pitt.edu

Roger E. Koepp II
G11 Phoenix House
University of Arkansas
Fayetteville, AR 72701
E-mail: rk2@uark.edu

Shin-Ho Chung
Department of Biological Sciences
Australian National University
Canberra, ACT
Australia
E-mail: shin-ho.chung@anu.edu.au

Shozeb Haider
BioMolecular Structure Group
The School of Pharmacy
University of London
Bloomsbury, London WC1N 1AX

Stephen Korn
Department of Physiology and Neurobiology
University of Connecticut
3107 Horsebarn Hill Road
Storrs, CT 06062
E-mail: stephen.korn@uconn.edu

Thomas Voets
Laboratorium voor Fysiologie
Onderwijs en Navorsing Gasthuisberg
KU Leuven, Herestraat 49 bus 802
B-300 Leuven, Belgium
E-mail: thomas.voets@med.kuleuven.be

Vikram Krishnamurthy
Department of Electrical and Computer Engineering
University of British Columbia
Vancouver V6T 1Z4
E-mail: vikramk@ece.ubc.ca