Binding Modes and Functional Surface of Anti-mammalian Scorpion α-Toxins to Sodium Channels

Rong Chen* and Shin-Ho Chung

Research School of Biology, Australian National University, Canberra, ACT 0200, Australia

ABSTRACT: Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (NaV) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8−12) and the C-terminus (positions 56−64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8−18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat NaV1.2, a subtype of NaV channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of NaV1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and NaV1.2 and stabilize the toxin−channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for NaV1.2. The dissociation constants for the two toxin−channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

Voltage-gated sodium (NaV) channels, responsible for the rising phase of action potential, are widely distributed in nerve and muscle cells. Upon membrane depolarization, NaV channels open and then inactivate rapidly. The structure of NaV channels is rather complex. Eukaryotic NaV channels are integral proteins containing four homologous subunits (I−IV); each subunit consists of a voltage-sensing (VS) domain formed by four helices S1−S4 and a pore domain formed by S5 and S6 helices. Several classes of polypeptide toxins that affect the VS movement and interfere with the gating mechanism of NaV channels have been isolated from venoms of scorpions and cone snails. For example, scorpion β-toxins trap the VS-domain in the open state such that the channel opens at less depolarized voltages, whereas δ-conotoxins and scorpion α-toxins can induce slow and incomplete inactivation of NaV channels, resulting in prolonged action potentials.1−6 These toxins have been fruitfully utilized for elucidating the gating mechanisms of NaV channels. Understanding their mechanisms of action may potentially lead to the discovery of novel insecticides or pharmaceutical agents.7,8

Scorpion α-toxins are polypeptides consisting of 60−70 amino acids.9 The structure of α-toxins is highly conserved, with four disulfide bridges cross-linking one α-helix and three antiparallel β-sheet strands.9−11 Various α-toxins selectively targeting mammalian or insect NaV channels have been isolated.8,12 For example, AahII13,14 from Androctonus australis hector and LqhII15,16 from Leirurus quinquestriatus hebraeus are two of the most potent α-toxins for NaV channels in mammals, whereas LqhαIT17 from Leirurus quinquestriatus hebraeus is selective for NaV channels in insects. LqhII has been shown to be about 3 orders of magnitude more effective than LqhαIT for the rat NaV1.2 channel.15 The α-like toxins such as LqhIII,18 on the other hand, are active for both mammalian and insect NaV channels. AahII is different than LqhII in only two of the 64 residues it carries located at the N- and C-termini. The two terminal residues of AahII are valine and histidine, corresponding to isoleucine and arginine at the same positions of LqhII, respectively. Despite a high sequence identity of 97%, the affinities of AahII and LqhII for mammalian or insect NaV channels can differ by up to 10-fold,16 suggesting that the C-
terminal residue may be involved in binding. LqhIT shares about 50% sequence identity with AahII and LqhII (Figure 1A).

Figure 1. (A) Sequence alignment of two α-toxins, AahII and LqhIT. The key different residues between AahII and LqhIT are shaded. The residues of AahII likely involved in binding according to Kahn et al.15 are highlighted with underscore. (B) The secondary structure of AahII and LqhIT.15 Helices are shown in purple, β-sheet strands in yellow, and others in gray. The side chains of residues at positions 8 and 64 of the NC-domain, 18 of the core-domain, and 15 of the linker-domain are highlighted. Basic residues are colored in blue, acidic in red, and others in green. (C) The secondary structure of two anti-mammalian β-toxins, Css4 and Cn2.52 The Css4 structure is modeled on Cn2. (D) A sequence alignment of NaVAb and the IV VS domain of rat NaV1.2. Numbering is that of NaV1.2. Horizontal bars represent the four transmembrane helices S1–S4. Identical residues are highlighted in green and similar residues in purple.

The key different residues are from the NC-domain and the linker-domain, which have been found to largely determine the selectivity of these toxins.15 The NC-domain consists of a five-residue turn (residues 8–12) and the C-terminal segment (residues 56–64), whereas the core-domain is formed by several residues spatially in close proximity to the residue at position 18.

The receptor site of scorpion α-toxins on NaV channels has been determined experimentally. Tejedor and Catterall19 found that a photoaffinity-labeled α-toxin showed competitive binding to NaV channels with the antibodies specific for the amino acid sequences of the loop linking IS5 and IS6 helices, suggesting that the receptor site contains the subunit I.19 Subsequently, using site-directed mutagenesis, Rogers et al.20 demonstrated that the extracellular loop linking the S3 and S4 helices of the subunit IV also forms part of the receptor site for α-toxins. One glutamate residue at the extracellular end of the IVS3 helix (position 1613) was found to be particularly important.20 The importance of this glutamate residue has been confirmed by Benzinger et al.,21 Leipold et al.,22 and Gur et al.23 For example, Gur et al.23 showed that replacing this glutamate residue with an aspartate transformed the sensitivity of rat NaV,1.2 to LqhIT. More recently, it has been proposed that the extracellular segments of the VS domain of the subunit IV forms the primary receptor site for α-toxins, with the ISS-S6 linker forming the secondary receptor site.24 The crystal structure of a bacterial NaV channel15 shows that the IVS1-S4 domain is in close proximity to the ISS-S6 domain in the presumably preopen state of the channel. Thus, on binding to the IVS1-S4 domain, a segment of the toxin could interact with the ISS-S6 domain.

The functional surface of α-toxins has also been examined experimentally using site-directed mutagenesis techniques. For example, Zilberberg et al.26 found that several residues of the NC-domain and the core-domain of LqhIT are critical in binding NaV channels. Similar functional surface has been suggested by the results of Karbat et al.27 and Kahn et al.15 The core-domain and the NC-domain are interconnected by a loop between positions 8 and 18, which we refer to as the linker-domain. The pivotal role of the residue at position 15 in the linker-domain has been demonstrated,15 suggesting that the linker-domain may also be important for toxin binding.

The secondary and tertiary structure of β-toxins is very similar to that of α-toxins, except that the two antiparallel β-sheet strands behind the α-helical segment of α-toxins are longer (Figure 1B,C). However, the primary sequences of α- and β-toxins are rather different, resulting in their different receptor sites and functional effects on NaV channels. Scorpion β-toxins bind to the subunit II, rather than the subunit IV for α-toxins.1 In our previous work,28 we demonstrated that the functional surface of two anti-mammalian β-toxins contains the NC- and core-domain, and both the β-toxins wedge into the receptor site with the linker-domain. The functional surface of β-toxins we uncovered28 overlaps well with that of α-toxins suggested by mutagenesis experiments.15,26,27 Thus, the binding orientation may be conserved between scorpion α- and β-toxins, which we aim to demonstrate in this work.

Here with molecular dynamics (MD) simulations, we generate structural models of LqhIT and AahII bound to the IVS1-S4 domain of rat NaV,1.2, respectively. AahII inhibits the inactivation of NaV,1.2 with nanomolar affinities, whereas LqhIT is about 1000-fold less effective.15 The structural models are compared to mutagenesis experiments, and further validated by free energy calculations, which show that the dissociation constants Kd derived agree with experiment. The models predicted are in support of the hypothesis that binding orientation is conserved between scorpion α- and β-toxins.

MATERIALS AND METHODS

Molecular Structures. We construct with SWISS-MODEL29–31 a homology model of the isolated IVS1-S4 domain of rat NaV,1.2 (NCBI entry NP_036779.1), using the crystal structure of the bacterial NaV channel NaVab (PDB ID 3RYY)35 as a template. The sequence of the VS domain of the subunit IV of NaV,1.2 is ~30% identical and ~50% similar to that of NaVab (Figure 1D). A homology model is considered to be reliable if the sequence of the model is at least 30% identical to that of the template.52 It has been demonstrated experimentally that the overall architecture of VS domains is highly conserved across cationic channels.33 Moreover, the
structure is observed to be stable over a simulation period of 30 ns when embedded in a lipid bilayer and a box of explicit water.

In the crystal structure of NaV_{1.2}, the VS domain is believed to be in the activated state. Therefore, we have generated a model that is representative of an activated VS domain of NaV_{1.2}. Experimentally, the binding affinities of α-toxins for NaV channels have been shown to be voltage dependent and decrease with depolarization. As the maximum effect of depolarization on the binding affinity of α-toxins is 1 order of magnitude, it can be assumed that scorpion α-toxins bind strongly to the VS domains of sodium channels, regardless of the state of the VS domain.

The interactions between the toxins and the pore domain of the subunit I, which may be the secondary binding site of α-toxins, are not considered in the present work, due to the poor sequence similarity between the pore domains of NaV_{1.2} and NaV_{α}. The structures of the VS domains are shown in Figure 2. The VS residues pairs, labeled S1 and S4 helices. Experimental data on the VS residue pairs, labeled S1 and S4 helices and the NC-domain lies in the closest proximity into the receptor site, while the core-domain interacts with S2 and S3 helices and the NC-domain lies in the closest proximity to S1 and S4 helices.

The center of mass (COM) of the toxin backbone is restrained to the center of each umbrella window using a harmonic force constant of 30 kcal/(mol Å^2). The COM of the VS domain is at z = 0 Å. The toxin backbone is maintained rigid using harmonic restraints during the pulling, whereas the backbone atoms of the channel are fixed. In subsequent umbrella sampling simulations, the backbones of toxin and VS domain are free to move.

The center of mass (COM) of the toxin backbone is restrained to the center of each umbrella window using a harmonic force constant of 30 kcal/(mol Å^2). The COM of the VS domain is at z = 0 Å. The COM of the toxin backbone is restrained in a cylinder of 8 Å in radius centered on the channel axis, using a flat-bottom harmonic restraint. This cylindrical restraint potential is always zero when the toxin is bound to the channel. Each umbrella window is simulated for 5.5 ns until the COM of the residue pair is less than the upper boundary (Table 1). The two residue pairs are chosen according to the available experimental data on the functional surface of α-toxins and the binding orientation of β-toxins previously uncovered. On binding to the VS domain of NaV_{α} channels, the linker-domain of α-toxins wedges into the receptor site, while the core-domain interacts with S2 and S3 helices and the NC-domain lies in the closest proximity to S1 and S4 helices.

With the distance restraints applied, AahII is drawn to the receptor site rapidly within 2 ns (Figure 3). To prevent structural deformation in the toxin due to the restraining potential, the backbone of the toxin is maintained rigid with coordinates. Therefore, the toxin backbone is maintained rigid with harmonic restraints.

\[K_d^{-1} = 1000 R N_A \int_{z_{\min}}^{z_{\max}} \exp[-W(z)/kT] \, dz \]

where R is the radius of the cylinder (8 Å), N_A is Avogadro's number, z_{min} and z_{max} are the boundaries of the binding site along the reaction coordinate (z), W(z) is the PMF, and kT assumes the usual significance.

RESULTS AND DISCUSSION

Docking of AahII to NaV_{1.2}

AahII inhibits the inactivation of NaV_{1.2} with nanomolar affinities. Here we show that AahII, when docked to the IVS1-S4 VS domain of NaV_{1.2}, forms several favorable electrostatic contacts with the VS domain.

We use MD simulation with biasing potential as a docking method. This docking method has been applied by Eriksson and Roux to study the binding modes of agitoxin to the Shaker potassium channel. The docking procedure is detailed in Table 1. At the start of the simulation totaling 15 ns, the toxin backbone is maintained rigid with harmonic restraints.

<table>
<thead>
<tr>
<th>simulation period (ns)</th>
<th>residue pairs</th>
<th>upper boundary (Å)</th>
<th>force constant (kcal/(mol Å^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–24</td>
<td>W38-L1568</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3–10</td>
<td>V10-A1631</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10–20</td>
<td>D9-R1626</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R18-E1613</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K58-D1554</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R62-E1551</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aToxin backbone maintained rigid with harmonic restraints. ^bNo distance restraints are applied during the simulation period of between 2 and 3 ns and between 10 and 15 ns.

AahII is released in water, about 20 Å above the extracellular side of the VS domain. The three-dimensional structures of the toxins and the VS domain are shown in Figure 2. The VS domain is embedded in a 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine bilayer, solvated with water and 0.2 M NaCl. The size of the simulation box is approximately 90 × 90 × 110 Å^3 at the start of the simulation.

Ideally, no biasing potential should be applied such that the toxin is allowed to bind to the VS spontaneously. However, such unbiased simulation requires a long time scale for the toxin to find the correct binding mode. To achieve the required degree of computational efficiency, flat-bottom distance restraints are applied to two toxin–VS residue pairs, labeled in Figure 3, during the first 2 ns. The restraining potential is zero when the distance between the COM of the residue pair is less than the upper boundary (Table 1). The two residue pairs are chosen according to the available experimental data on the functional surface of α-toxins and the binding orientation of β-toxins previously uncovered. On binding to the VS domain of NaV_{α} channels, the linker-domain of α-toxins wedges into the receptor site, while the core-domain interacts with S2 and S3 helices and the NC-domain lies in the closest proximity to S1 and S4 helices.

With the distance restraints applied, AahII is drawn to the receptor site rapidly within 2 ns (Figure 3). To prevent structural deformation in the toxin due to the restraining potential, the backbone of the toxin is maintained rigid with coordinates. Therefore, the toxin backbone is maintained rigid with harmonic restraints.

\[K_d^{-1} = 1000 R N_A \int_{z_{\min}}^{z_{\max}} \exp[-W(z)/kT] \, dz \]

where R is the radius of the cylinder (8 Å), N_A is Avogadro's number, z_{min} and z_{max} are the boundaries of the binding site along the reaction coordinate (z), W(z) is the PMF, and kT assumes the usual significance.

RESULTS AND DISCUSSION

Docking of AahII to NaV_{1.2}

AahII inhibits the inactivation of NaV_{1.2} with nanomolar affinities. Here we show that AahII, when docked to the IVS1-S4 VS domain of NaV_{1.2}, forms several favorable electrostatic contacts with the VS domain.

We use MD simulation with biasing potential as a docking method. This docking method has been applied by Eriksson and Roux to study the binding modes of agitoxin to the Shaker potassium channel. The docking procedure is detailed in Table 1. At the start of the simulation totaling 15 ns, the toxin backbone is maintained rigid with harmonic restraints.

<table>
<thead>
<tr>
<th>simulation period (ns)</th>
<th>residue pairs</th>
<th>upper boundary (Å)</th>
<th>force constant (kcal/(mol Å^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–24</td>
<td>W38-L1568</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3–10</td>
<td>V10-A1631</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10–20</td>
<td>D9-R1626</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R18-E1613</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K58-D1554</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R62-E1551</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aToxin backbone maintained rigid with harmonic restraints. ^bNo distance restraints are applied during the simulation period of between 2 and 3 ns and between 10 and 15 ns.

AahII is released in water, about 20 Å above the extracellular side of the VS domain. The three-dimensional structures of the toxins and the VS domain are shown in Figure 2. The VS domain is embedded in a 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine bilayer, solvated with water and 0.2 M NaCl. The size of the simulation box is approximately 90 × 90 × 110 Å^3 at the start of the simulation.

Ideally, no biasing potential should be applied such that the toxin is allowed to bind to the VS spontaneously. However, such unbiased simulation requires a long time scale for the toxin to find the correct binding mode. To achieve the required degree of computational efficiency, flat-bottom distance restraints are applied to two toxin–VS residue pairs, labeled in Figure 3, during the first 2 ns. The restraining potential is zero when the distance between the COM of the residue pair is less than the upper boundary (Table 1). The two residue pairs are chosen according to the available experimental data on the functional surface of α-toxins and the binding orientation of β-toxins previously uncovered. On binding to the VS domain of NaV_{α} channels, the linker-domain of α-toxins wedges into the receptor site, while the core-domain interacts with S2 and S3 helices and the NC-domain lies in the closest proximity to S1 and S4 helices.

With the distance restraints applied, AahII is drawn to the receptor site rapidly within 2 ns (Figure 3). To prevent structural deformation in the toxin due to the restraining potential, the backbone of the toxin is maintained rigid with coordinates. Therefore, the toxin backbone is maintained rigid with harmonic restraints.

\[K_d^{-1} = 1000 R N_A \int_{z_{\min}}^{z_{\max}} \exp[-W(z)/kT] \, dz \]

where R is the radius of the cylinder (8 Å), N_A is Avogadro's number, z_{min} and z_{max} are the boundaries of the binding site along the reaction coordinate (z), W(z) is the PMF, and kT assumes the usual significance.
harmonic restraints in the first 2 ns. The cytoplasmic halves of the S1 and S4 helices are harmonically restraint throughout the simulation. No restraint is applied to other regions of the VS domain. Subsequently, the system is allowed to evolve for 1 ns with flexible toxin backbone and the two distance restraints released.

After the 1 ns equilibration, four toxin–VS residue pairs are identified. To speed up the formation of salt bridges and hydrogen bonds between these residue pairs, the distance restraint is applied to each residue pair. The four residue pairs and corresponding distance restraints applied are displayed in Table 1. The simulation is run for 7 ns with the restraints applied and then equilibrated for 5 ns with the distance restraints removed. Two of the residue pairs, Arg62-Glu1551 and Arg18-Glu1613, remain intact after the 5 ns unbiased simulation. However, the other two residue pairs, Lys58-Asp1554 and Asp9-Arg1626, are unstable and subsequently break. For example, Arg1626 is observed to form a salt bridge with the C-terminal carboxylate group rather than Asp9 of the toxin. The toxin does not appear to penetrate into the hydrophobic core of lipids. The final equilibrated structure is used for generating the starting configurations of the umbrella sampling windows.

To verify the stability of the final structure predicted by the docking simulation totaling 15 ns described above, three simulations each on a time scale of 30 ns starting from the docked complex are performed. The distance restraint is not applied in these simulations. The Arg62-Glu1551 salt bridge is unstable, as Arg62 is observed to switch between Glu1551 and Asp1554. However, the position of Arg62 relative to the VS does not change significantly. The other two salt bridges, Arg18-Glu1613 and His64(COO−)-Arg1626, remain intact throughout the simulation period of 30 ns in all cases.

Docking of LqhαIT to NaV1.2. The anti-insect α-toxin LqhαIT is about 1000-fold less effective to rat NaV1.2 than AahII. In line with this experimental measurement, we find that LqhαIT forms less favorable contacts with the VS domain than AahII, when docked to the receptor site on NaV1.2.

To generate a model for the LqhαIT–NaV1.2 VS complex, we replace AahII in the simulation box containing the final structural model of the AahII–NaV1.2 VS complex with LqhαIT. The numbers of Na+ and Cl− ions are adjusted to maintain overall charge neutrality in the system. The LqhαIT–NaV1.2 VS complex is then simulated for 30 ns without restraints.

After the 30 ns simulation, two salt bridges, Lys8-Glu1613 and Arg64-Arg1629, are formed in the LqhαIT–NaV1.2 VS complex. Compared to that observed in the AahII–NaV1.2 VS complex, the electrostatic interactions in the LqhαIT–NaV1.2 VS complex appear to be less favorable. For example, the C-terminal carboxylate group of Arg64 forms less strong a salt bridge with the Arg1629 residue of the VS domain because the side chain of Arg64 carrying a positive charge is repelled by Arg1629, whereas the residue at position 64 of AahII is a neutral histidine. In addition, the five-residue turn in AahII (positions 8–12) carries two acidic residues, which are attracted by the arginine residues in the S4 helix. The weaker interactions between LqhαIT and the VS domain are reflected in its shallower PMF profile (see Figure 4).
The PMF profiles displayed in Figure 4 show that the free energy of binding is about −20 kT for AahII, ~5 kT deeper than that of LqhIT. The corresponding K_d values are 17 nM and 2 μM for AahII and LqhIT, respectively, compared to the experimental values of 0.2–13 nM for AahII and ~1 μM for LqhIT. The random errors of all PMF profiles are less than 0.4 kT, which would give an uncertainty of ~2.5-fold in the K_d values derived. For detailed methods of deriving the random error of PMF profiles, see ref 28. The experimental values have an uncertainty of about 10-fold depending on voltage. If the experimental K_d values are scaled by 10-fold, our predictions would still be within an order of magnitude of experimental values. We note that direct comparison between our predictions and experimental K_d values may be difficult because the isolated VS-domain rather than the whole channel protein is considered in our calculations. However, the contribution of the secondary receptor site which is ignored in our model to the PMF is expected to be insignificant. Thus, the K_d values derived from our models are in broad agreement with experiment, suggesting that the models predicted are good representations of the toxins at the bound state.

AahII–Na$_{v}$1.2 VS Interactions. Having shown that the complexes predicted are good representations of the toxins at the bound state, we identify the interacting residue pairs from the umbrella sampling simulations. The interacting residue pairs of the AahII–Na$_{v}$1.2 VS complex are of particular interest because AahII is one of the most potent a-toxins for Na$_{v}$1.2. The PMF profile displayed in Figure 4 for the dissociation of the AahII–Na$_{v}$1.2 VS complex shows that the window $z = 29.0$ Å represents the lowest energy. Therefore, the umbrella sampling simulation of this window is used to identify the interacting residue pairs, which are tabulated in Table 2. The average minimum distances between these residue pairs are also shown in the table. A representative conformation is shown in Figure 5.

As assumed in the docking simulation, the functional surface of AahII centers on the linker-domain. The Phe15 residue of the linker-domain forms a hydrophobic cluster with the Leu1611 of the S3 helix. The NC-domain of AahII is observed to interact with the S1 and S4 helices of the VS-domain. Two residues of the NC-domain, Asp8 and the carboxylate group of His64, form favorable electrostatic interactions with the Arg1626 residue of the S4 helix. Another residue of the NC-domain, Arg62, is in close proximity to the Asp1554 of the S1 helix. Note that Arg62 is in closer contact with the Glu1551 rather than Asp1554 of the S1 helix at the end of the 15 ns docking simulation. This suggests that the Arg62 is able to form salt bridges with other acidic residues that are clustered on the receptor site.

The core-domain of AahII, on the other hand, is found to interact primarily with the S2–S3 helices and the linker loop between the S3 and S4 helices. Specifically, Arg18 of AahII forms a salt bridge with the Glu1613 residue of the VS domain, with an average minimum distance of only 1.7 Å. The residue Trp38 of AahII interacts with a cluster of hydrophobic residues on the receptor site, including Tyr1564 and Trp1565 of the S2 helix. The residues Tyr21 and Asn44 are also observed to form close contacts with the channel (Table 2).

Table 2. Interacting Residue Pairs between AahII and Na$_{v}$1.2*

<table>
<thead>
<tr>
<th>AahII domain</th>
<th>residue</th>
<th>Na$_{v}$1.2 domain</th>
<th>residue</th>
<th>av distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-domain</td>
<td>D8</td>
<td>S4</td>
<td>R1626d</td>
<td>4.7 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>H64</td>
<td></td>
<td>R1626d</td>
<td>1.8 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>R62b</td>
<td>S1</td>
<td>D1554d</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>core-domain</td>
<td>Y21b</td>
<td>S3–S4 linker</td>
<td>E1616d</td>
<td>4.2 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>R18b</td>
<td>S3–S4 linker</td>
<td>E1613c</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>W38b</td>
<td>S2</td>
<td>E1616d</td>
<td>5.2 ± 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W1565</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>linker-domain</td>
<td>N44b</td>
<td>S2</td>
<td>Y1564d</td>
<td>2.6 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>F15b</td>
<td>S3–S4 linker</td>
<td>E1613c</td>
<td>5.9 ± 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L1611c</td>
<td>2.4 ± 0.2</td>
</tr>
</tbody>
</table>

*The minimum distances (Å) of each residue pair averaged over the last 4 ns are given. Standard deviations are shown. a Mutation of this residue reduces the toxin binding affinity by >5-fold according to the experiments of Kahn et al. b Mutation of this residue reduces the toxin binding affinity by >5-fold according to the experiments of Rogers et al.,20 Gur et al.,25 and Wang et al.24 Mutation of this residue has no detectable effect on the toxin binding affinity in the experiments of Rogers et al.20 and Wang et al.25

The interacting residue pairs identified from the AahII–Na$_{v}$1.2 VS complex are consistent with mutagenesis experiment. Both the NC-domain and core-domain, experimentally found to be important for binding,26 are observed to form stable contacts with the VS-domain. However, two residues of the NC-domain, Lys2 and Lys58, the mutation of which to alanine causes >10-fold reduction in affinity, are located just above the S1 and S4 helices but do not form salt bridges with the VS-domain in our model. In addition, the residue Thr57, the mutation of which to a serine causes about 2 orders of magnitude reduction in the binding affinity of Lqh2 to Na$_{v}$1.2,15 is not in contact with the channel in our model. One possible explanation is that the mutation of these residues each causes significant conformational changes to the toxin. For example, it has been shown experimentally that the mutation of Lys58 to glutamate, valine, or isoleucine resulted in the toxin to adopt significantly different structure. Another possible explanation would be that the two basic residues (Lys2 and...
NaV1.2 are similar to that observed in the AahII terminated at 50 ns. The salt bridges formed between EVIA that EVIA forms two salt bridges with NaV1.2 after 30 ns of toxin bind to the VS domain spontaneously. Figure 6 shows α

Similar to scorpion shown to inhibit the fast activation of NaV channels.5,6 The methods used. In the model of Wang et al.,24 the fold-tree-work may be partially explained by the di
diff

Nevertheless, remarkably similar models are obtained with the simulation is used as a docking method, where the α

extracellular side of the VS domain of NaV1.2 and allow the receptor site of our model displayed in Figure 5. However, a difference in the toxin functional surface is evident. In our model, both the core-domain and the NC-domain are bound to the receptor site. In contrast, in the model of Wang et al.,24 the core-domain wedges into the receptor site but the NC-domain is in the water phase. It was hypothesized that the NC-domain may be in contact with the secondary receptor site (the pore domain of the subunit I), which was not included in the model.24

The discrepant models obtained by Wang et al.24 and in this work may be partially explained by the different docking methods used. In the model of Wang et al.,24 the fold-tree-based Rosetta docking method49 was used. In this work, MD simulation is used as a docking method, where the flexibility of protein backbone is likely accounted for more realistically. Nevertheless, remarkably similar models are obtained with the two different docking methods.

Computational Mutagenesis. The docking simulation of the AahII–NaV1.2 complex suggests that two charged residues, Glu1551 and Arg1626, are involved in binding. However, mutagenesis experiments have shown that the mutation of Glu1551 to an arginine or Arg1626 to a glutamate has minimal effect on toxin binding affinities.24 Here with computational mutagenesis, we show that the E1551R and R1626E mutations do not impair toxin–channel interactions because the toxin can form salt bridges with alternative residues from the VS domain.

Starting from the bound complex of AahII–NaV1.2, we perform two separate single mutations, E1551R and R1626E, and equilibrate each system without any restraints for 20 ns. At the end of the 20 ns simulation, the Arg62-Glu1551 salt bridge is observed to be replaced by a Arg62-Asp1554 salt bridge in the AahII–E1551R NaV1.2 complex, whereas His64(COO−)-Arg1626 is replaced by His64(COO−)-Arg1629. Thus, each of the single mutations does not affect the toxin binding significantly. The PMF profile for the unbinding of AahII from the E1551R VS domain is constructed with umbrella sampling (Figure 4). The Kd value derived is 18 nM, comparable to the value of 17 nM for the unbinding of AahII from the wild-type VS domain. Thus, the toxin binds to the wild-type and mutant VS domains with similar affinities, in agreement with experiment.

Spontaneous Binding of δ-Conotoxin to NaV1.2. Similar to scorpion α-toxins, δ-conotoxins have also been shown to inhibit the fast activation of NaV channels.5,6 The receptor site of δ-conotoxins on NaV channels may overlap with that of α-toxins.30 However, δ-conotoxins are frequently much shorter than α-toxins in sequence. For example, the δ-conotoxin EVIA (DDCIK PYGFC SLPIL KNGLC CSGAC VGVCA DL) consists of 32 amino acids31 compared to the 64 amino acids of AahII. Considering the relatively small size of EVIA, it may be plausible to simulate the binding of EVIA to NaV1.2 without bias.

We place EVIA (PDB ID 1G1P31) 20 Å above the extracellular side of the VS domain of NaV1.2 and allow the toxin bind to the VS domain spontaneously. Figure 6 shows that EVIA forms two salt bridges with NaV1.2 after 30 ns of simulation, which remain intact until the simulation was terminated at 50 ns. The salt bridges formed between EVIA–NaV1.2 are similar to that observed in the AahII–NaV1.2 complex, although the latter forms one more salt bridge (R18-E1613). This result is consistent with experiments,30 which suggest that α-toxins and δ-conotoxins share the same receptor site. The similar salt bridges observed in the EVIA–NaV1.2 and AahII–NaV1.2 complexes indicate that the distance restraints applied in the docking simulation of AahII–NaV1.2 may be appropriate.

CONCLUSIONS

Structural models of two α-toxins, AahII and LqhIT, in complex with the IVS1-S4 VS-domain of NaV1.2 are predicted, with MD simulation as a docking method. The models are built following the hypothesis that anti-mammalian scorpion α- and β-toxins bind to their receptor sites in a similar orientation. The two α-toxins are docked to the receptor site with a functional surface consisting of the NCγ, linker- and core-domains. The docked complexes show several electrostatic and hydrophobic interacting residue pairs (Table 2) between each toxin and the VS-domain that are consistent with mutagenesis experiments and can explain why AahII is more effective to NaV1.2 than LqhIT. Free energy calculations based on the models successfully reproduce the dissociation constants measured experimentally. In addition, δ-conotoxin EVIA binds to NaV1.2 spontaneously over a simulation period of 50 ns, forming two salt bridges similar to that observed in AahII–NaV1.2. The simulations support the hypothesis that scorpion α- and β-toxins share a common binding orientation.

Our model of the AahII–NaV1.2 VS complex can readily predict that several anti-mammalian β-toxins are not suitable to bind the IVS1-S4-domain of NaV1.2. For example, the five-
residue turns (positions 8–12) of the two β-toxins Css4 and Cn2 displayed in Figure 1C do not carry acidic residues and thus are unable to form favorable interactions with the IVS4 helix. In addition, the position 15 in the β-toxins is occupied by a glutamate, similar to that found in anti-insect toxins such as Lqh2rIT, rendering the insensitivity of the IVS1-S4-domain of NaV1.2 to the β-toxins. Likewise, the models also predict that anti-mammalian α-toxins such as AahII are not suitable to bind the IIS1-S4-domain of NaV1.2, which is the receptor site of β-toxins.

In conclusion, structural models of two scorpion α-toxins in complex with the VS-domain of NaV1.2 are proposed. The models suggest that anti-mammalian α-toxins bind to their receptor sites in an orientation similar to that of β-toxins.

AUTHOR INFORMATION

Corresponding Author
*Tel +61-2-6125-2024; Fax +61-2-6125-0739; e-mail rong.chen@anu.edu.au.

Funding
This work was supported by grants from the National Health and Medical Research Council of Australia. This research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Notes
The authors declare no competing financial interest.

ABBREVIATIONS

COM, center of mass; MD, molecular dynamics; NaV, voltage-gated sodium; PMF, potential of mean force; VS, voltage sensing.

REFERENCES

