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Physiol Rev 93: 767–802, 2013; doi:10.1152/physrev.00035.2012.—The discov-
ery of new drugs that selectively block or modulate ion channels has great potential to
provide new treatments for a host of conditions. One promising avenue revolves around

modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy
appears to offer the prospect of designing drugs that are both potent and specific. The use of
computational modeling is crucial to this endeavor, as it has the potential to provide lower cost
alternatives for exploring the effects of new compounds on ion channels. In addition, computational
modeling can provide structural information and theoretical understanding that is not easily deriv-
able from experimental results. In this review, we look at the theory and computational methods
that are applicable to the study of ion channel modulators. The first section provides an introduction
to various theoretical concepts, including force-fields and the statistical mechanics of binding. We
then look at various computational techniques available to the researcher, including molecular
dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review
explores applications of these techniques, concentrating on pore blocker and gating modifier toxins
of potassium and sodium channels. After first discussing the structural features of these channels,
and their modes of block, we provide an in-depth review of past computational work that has been
carried out. Finally, we discuss prospects for future developments in the field.
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I. INTRODUCTION

Ion channels are ubiquitous in the human body. When a
particular channel is over- or underexpressed, or contains a
mutation which changes its conduction or gating character-
istics, disease may result (12). There are many such chan-
nelopathies, including type I diabetes, epilepsy, cystic fibro-
sis, multiple sclerosis, long-QT syndrome, and migraines.
Treatment of these diseases can be effected by introducing
ion channel modulator drugs that regulate the function of
the channels. For example, Ziconotide, the synthetic form
of the �-conotoxin MVIIA, which is a voltage-gated cal-
cium channel blocker, has been approved to treat severe
pain (216). These modulators may be agonists, which in-
crease the conductance of the channels, or inhibitors, which
reduce their conductance. Channel blockers are inhibitors

that operate directly, by binding in the ion conducting pore.
The block may be extracellular, as is the case for pore
blocker toxins, or intracellular, for example, internal block
of potassium channels by tetraethylammonium. Modula-
tion may also be accomplished indirectly, by affecting the
activation or inactivation gating of the channel. For exam-
ple, the gating modifier hanatoxin binds to the voltage sen-
sor of voltage-gated potassium channels and moves the ac-
tivation curve of the channel to the right, thus requiring a
greater depolarization to open the channel. Quinidine, on
the other hand, is proposed to bind to the intracellular face
of the Kv1.4 channel and allosterically promote the onset of
C-type inactivation (243). Batrachotoxin has been proposed
to bind in the pore of voltage-gated sodium channels (246) but
does not block the flow of ions; instead, it locks the channel in
a permanently open conformation. Thus there are a variety of
modes by which channel modulators may function.

Nature has devised a plethora of ion channel blockers and
modulators, in the form of toxins that occur in the venoms
of poisonous creatures such as scorpions, cone snails, sea
anemones, spiders, and snakes. We have already mentioned
two gating modifier toxins: hanatoxin and batrachotoxin.
Many other toxins act by directly blocking the pore, usually
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by inserting a basic lysine or arginine side chain into the
selectivity filter from the extracellular side. These toxins
tend to be extremely potent. Often, they are relatively un-
selective, affecting several members of a whole family of ion
channels. However, some are known to discriminate ex-
tremely well between similar members of an ion channel
family; for example, modified sea anemone ShK channels
bind to Kv1.3 voltage-gated potassium channels with at
least 100-fold selectivity over other Kv channels. This kind
of selectivity, along with the general structural complexity
of these toxins, gives hope that they may be used as a start-
ing point to develop potent and selective drugs. Such toxins
form a particular focus of this review, although much of the
theoretical discussion in the earlier parts of the review ap-
plies more generally.

A great deal of effort goes into the study and development
of ion channel modulator drugs, due to the range of condi-
tions which may be treated and the promising possibilities
for treatment. To be potent, such drugs should bind
strongly to their receptors. To avoid unwanted side effects,
they should not bind to antitargets. Finally, when bound to
receptors, they should bring about the desired effect, for
example, by actually blocking or inhibiting current through
the channel. Drug development is a costly and time-con-
suming process. Typically, thousands of compounds are
initially screened. The most promising leads are then mod-
ified, and various stages of further characterization and test-
ing are carried out. State-of-the-art experimental technol-
ogy automates many of the tasks involved in testing new
compounds (73), but despite the high cost and sophistica-
tion of the techniques, only crude clues about the mecha-
nisms of modulation or block may be gained.

These limitations have given rise to an intense interest in the
use of computational modeling as a complementary means
to investigate the binding modes, binding affinities, and
modulation mechanisms of channel modulators. Ideally,
one would like to study the effects of channel modulators
on channel function, using a model assembly composed of
an ion channel embedded in a lipid bilayer, ions, and water
molecules. Computational modeling can in principle repro-
duce many or all the experimental observables, such as the
binding affinity and specificity of a given modulator on
various subfamilies of ion channels. Additionally, and per-
haps more importantly, modeling has the potential to reveal
in exquisite detail the interactions, mechanisms, and struc-
tural contacts involved in modulator binding. This is im-
portant because such information is not easily deduced
from electrophysiological experiments. Currently, no single
available computational method is able to achieve all these
idealized aims. There are, however, a number of computa-
tional techniques that can perform some of these tasks with
varying degrees of efficiency. Each of these methodologies
has advantages and disadvantages. At various points in the
drug development cycle, it is necessary to make compro-

mises between computational speed and accuracy. For ex-
ample, lead discovery typically requires a very fast, less
accurate assessment of binding affinity, since thousands of
potential lead compounds may need to be screened. The
techniques discussed in this review can be ranked according
to whether they are crude but fast, or slow but accurate.
Different techniques will be appropriate at different points
in the drug development cycle. The aim of devising a tech-
nique that is both fast and accurate remains the holy grail of
the field.

In this review, we will discuss three commonly used tech-
niques: molecular dynamics, Brownian dynamics, and
docking. Molecular dynamics simulates all or many of the
atoms in the system using a classical force field. Brownian
dynamics is similar, but always uses implicit water, and
makes extensive use of rigid and fixed molecules to achieve
greater speed. Docking employs various algorithmic search
strategies, and scoring functions to attempt to predict the
binding modes between a ligand and a receptor and to es-
timate the binding affinity. A fourth approach, QSAR,
makes use of multidimensional regression on various prop-
erties of drugs and targets. Although we consider QSAR to
be somewhat outside the scope of this review, we mention it
due to its importance and potential usefulness as a tool for
drug discovery.

We will begin the review by detailing the computational
techniques listed above: molecular dynamics, Brownian dy-
namics, and docking. We will then go into more theoretical
detail about the tasks that computational modeling and
simulation can help to solve. Binding affinity is a key deter-
minant of modulator effectiveness. For example, if a chan-
nel blocker always fully blocks the channel upon binding,
then binding affinity will be directly related to the degree of
block. We shall consider the theoretical basis of binding
affinity and relate it to the free energy of binding for the
blocker. Although calculating the free energy of binding is
far easier than directly calculating binding affinity from
simulations, it is nonetheless a formidable computational
task. Therefore, having laid the theoretical groundwork, we
will consider some of the techniques that have been devised
to calculate free energies of binding. We will next look at
specific computational studies of interactions between ion
channels and their modulators. Starting with an overview of
ion channel diseases and pharmacology, and aspects of ion
channel structure, we will go on to review examples of
computational studies involving different mechanisms of
block, namely, pore block in potassium and sodium chan-
nels and gating modifiers in these channels. Finally, we will
conclude the review with a discussion of future prospects
for computational modeling. Due to the difficulty of the
problems faced, it is clear that much important theoretical
and computational work still lies ahead, and hence, we
predict important and revolutionary developments in the
future.
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A. Scope of This Review

The subject of ion channel modulators is broad, and the
literature is large. Computational studies of ion channel
block may employ a raft of techniques from physics, chem-
istry, biology, bioinformatics, and computer science. Due to
the size and complexity of the subject, we have chosen to
concentrate on certain topics at the expense of others. The
reader should, however, be aware that there are other inter-
esting computational techniques that may be applicable,
from the realms of statistics, bioinformatics, and machine-
learning. We touch on some of these techniques in passing:
for example, QSAR and knowledge-based potentials rely
on bioinformatics, and certain docking force fields, for ex-
ample, AUTODOCK VINA, have only a loose connection
to physical principles, relying instead on machine learning
approaches to parametrization.

In the latter sections of the review, where we look at specific
computational studies of ion channel block, we have not
attempted to cover the full range of channels and modula-
tors. Instead, we concentrate mainly on toxin-derived pore
blockers and gating modifiers of potassium and sodium
channels. Potassium and sodium channels were chosen due
to their importance and widespread occurrence in all man-
ner of tissues, for example, they are primarily responsible
for all nerve and muscle impulses, and because they are
implicated in a large number of channelopathies. Our focus
on toxins is due to their prominence in current research
effort and the hope they appear to offer for developing new
drugs that will selectively target individual types of chan-
nels.

II. COMPUTATIONAL MODELS AND
METHODS

A. Ion-Channel Specific Issues

Much of the theory of ion-channel modulators deals with
the generalities of protein-protein or protein-ligand bind-
ing. However, ion channels do exhibit several peculiarities
that may need special consideration, and which the reader
should keep in mind.

The pores of ion channels focus electric fields, due to the
geometry of the dielectric boundary (135). One effect of this
is to increase the interaction between resident ions in the
channel, and blockers that enter the pore. For example,
Park and Miller (185) found that a modest but significant
interaction of around 3 kT1exists between the Lys27 resi-
due in charybdotoxin and resident ions in the pore; this

would correspond to a factor of 20 in the binding affinity.
Tetraethylammonium block in potassium channels is also
known to depend on ionic concentration (134). Another
related effect of the dielectric boundary of ion channels is
that they exhibit a sharp voltage drop through the pore due
to the membrane potential, particularly across the selectiv-
ity filter. The membrane potential can thus affect the bind-
ing of blockers. The most notable examples of this are for
small ionic molecules such as tetraethylammonium that
bind in the internal vestibules of ion channels. Positively
charged tetraethylammonium was found to have a binding
affinity to KcsA that increased with membrane depolariza-
tion (108, 134), which is simply explained by the fact that a
negative membrane potential creates a potential hill for the
molecule as it moves upward into the pore, towards its
binding site. Polypeptide toxins are also known to have
voltage-dependent affinities (72, 83). Because the electric
fields found in ion channel pores are large, a careful com-
putational treatment is needed if errors are to be avoided.

Another complication arises from the fact that ion channels
are membrane proteins. The presence of the lipid bilayer
modifies the electrostatic environment. More importantly,
certain toxins, such as the gating modifier hanatoxin, act
from within the bilayer (221) in a complex manner, com-
plicating computational modeling (17, 109, 153, 154, 179,
251).

The pores of ion channels also provide a more fully enclosed
receptor environment than is usual in docking studies; thus
care needs to be taken in making sure that the conformation
of the pore allows the blocker to correctly bind. In practice,
this means that either a fully flexible treatment of the chan-
nel may need to be employed, that a careful choice needs to
be made for the conformation of the channel model, or that
an ensemble of channel models might need to be employed
(144, 161, 198, 199).

Ion channels undergo significant conformational changes
that are associated with (in)activation and gating. The bind-
ing of many blocker molecules depends on the state or con-
formation of the channel. For example, many small-mole-
cule local anaesthetic blockers of sodium channels exhibit
state-dependent block (67). This may also manifest as a
use-dependent block, where blocking efficiency is enhanced
when channels cycle more frequently between closed, open,
and inactivated states. Another example concerns the ap-
parent state-dependent binding of small-molecule blockers
in the inner cavity of Kv11.1/hERG channel (189). State
dependence of channel block presents an additional com-
plication that may need to be taken into account when
carrying out computational work.

In the following section, we shall discuss the main compu-
tational methods used in the study of ion channel modula-
tors: molecular dynamics, Brownian dynamics, and dock-

1We use energy units of kT, where k is the Boltzmann constant
and T is taken to be the temperature, 300 K unless otherwise
stated: 1 kT � 0.60 kcal/mol.
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ing. Each of these computational methods employs one or
more force fields in combination with a simulation or dock-
ing protocol. Because the force fields are to some degree
interchangeable between the computational methods, for
example, molecular mechanics force fields are deployed in
both molecular dynamics simulations as well as certain
docking systems, we shall begin the section with a look at
force fields, and then move on to consider the four compu-
tational methods themselves.

B. Forces and Force Fields

In the study of biomolecules, force fields can be roughly
ranked according to the degree of approximation and
coarse graining that is applied. Thus, at the lowest level, we
have quantum mechanical force field protocols, as used in
ab initio molecular dynamics. At increasing levels of ab-
straction are the fully atomistic classical molecular mechan-
ics force fields, united atom molecular mechanics force
fields, implicit solvent force fields, and various types of
coarse grained force fields, such as the so-called “knowl-
edge-based” PMFs. Since quantum calculations are too
slow to be practical for most questions directly relevant to
modulators and ion channels, we shall begin by looking at
classical molecular mechanics.

1. Atomistic molecular mechanics

In fully atomistic molecular mechanics, there are three types
of potentials to consider: the electrostatic potential describ-
ing the Coulomb forces in the system, van der Waals terms
describing the nonpolar interactions between pairs of at-
oms, and covalent, or strain, potentials describing the ef-
fects of covalent bonds between the atoms in the simulation.

Electrostatic Coulomb potentials act between pairs of at-
oms and contribute to the internal and interaction energies
of the channel and the channel modulator. The potential
between two charges q1 and q2 separated by a distance r in
a vacuum is

U�r� �
1

4��0

q 1q2

r
(1)

where �0 is the permittivity of free space. Coulomb poten-
tials act at both long and short ranges and play a direct role
in binding. The long range part of the Coulomb potential
can attract charged blockers into oppositely charged vesti-
bules of ion channels, and the short range part causes
charged groups to form salt bridges or hydrogen bonds,
locking the blocker into place in the binding pocket.

van der Waals potentials are short range potentials that
describe both short range repulsive steric forces between
atoms as well as longer range attractive dispersive interac-
tions. They are usually modeled using the Lennard-Jones
(6–12) potential

U�r� � ��� rmin

r �12

� 2� rmin

r �6� (2)

where r is the distance between two atoms, � is the depth of
the attractive well, and rmin is the separation between two
atoms for minimum potential energy. van der Waals poten-
tials play a role in binding by balancing attractive Coulomb
interactions (thereby regulating hydrogen bonding) and in
the forces that arise when the surface of the modulator
contacts the channel, such as the hydrophobic force.

Covalent, or strain, potentials describe the resistance of a
molecule to deformations of the relative positions of the
atoms relative to one another. The actual many-body force
field is complicated and depends on the quantum chemistry
of the molecule. Classical molecular mechanics force fields
employ a simplified treatment that considers forces between
bonded pairs, triplets, and quadruplets of atoms, along with
cross-term corrections. The precise implementation of these
terms will vary depending on which molecular dynamics
force field is chosen. Here, as a typical example, we give
details of the covalent potentials in the CHARMM force
field (156). Covalent bonds are first defined for the mole-
cule, as per the “ball and stick” models used in chemistry.
Five kinds of covalent potentials are then assigned to the
bond network.

1) Bond stretching potentials act between pairs of neighbor-
ing atoms and take the form

Vbond � kb�b � b0�2 (3)

where kb is twice the harmonic spring constant, b is the
distance between the atoms, and b0 is the equilibrium bond
distance.

2) Angle bending potentials act between adjacent triplets of
atoms and take the form

Vangle � k��� � �0�2 (4)

where k� is again twice the spring constant, � is the angle
subtended by the adjacent bonds, and �0 is the equilibrium
angle.

3) Dihedral potentials act between groups of four linearly
connected atoms, and take the form

Vdihed � kn,��1 	 cos�n� � 
�� (5)

The dihedral angle � represents a torsion around the B-C
bond in the group A-B-C-D as the angle formed between the
planes defined by triangles A-B-C and B-C-D. kn,� gives the
strength of the potential, n gives its periodicity, and 
 con-
trols the angle at which the minimum potential occurs.

4) Improper dihedral potentials are defined for groups of
four atoms consisting of a central atom C to which is con-
nected three other atoms A, B, and D. They are used pri-
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marily to maintain planarity for the group, and take the
form

Vimprop � k��� � �0�2 (6)

where k� is twice the spring constant; � is the angle between
the plane containing atoms A, B, and C and that containing
B, C, and D; and �0 is the equilibrium angle.

5) Urey-Bradley potentials represent an additional way of
maintaining angles: they are simply a bond potential that
is defined between atoms A and C in a connected group
A-B-C.

Cross terms, such as the CHARMM CMAP backbone cor-
rection (157), may also be defined to represent, for example,
the interaction between adjacent dihedrals in the protein
backbone.

2. Implicit solvent force fields

Water molecules account for a large proportion of atoms
in biomolecular systems. By treating water molecules as a
continuum, we are able to gain computational speed at
the cost of accuracy. Implicit solvent force fields are used
in both implicit solvent molecular mechanics and other
techniques such as Brownian dynamics and various dock-
ing protocols. Below, we will give some background to
the physical role played by water, and outline the tech-
niques used for treating it implicitly as a mean field.
Water has two important physical effects on biomolecu-
lar systems. First, it strongly modifies the electrostatic
forces experienced by the ions and biomolecules, and
second, it gives rise to short-range nonpolar forces due to
van der Waals interactions and entropic effects. We shall
consider these two effects in turn.

The most important effect of water, when considered as a
mean-field, is that it approximates a linear dielectric me-
dium with a high dielectric constant. This means that when
two charges are surrounded by water, the Coulomb poten-
tial, given in Equation 1, will be modified so that �0 ¡ �r�0,
where �r is the relative dielectric constant of water, approx-
imately equal to 80. Coulomb forces are therefore reduced
by a factor of 80. Furthermore, when water surrounds a low
dielectric protein or lipid environment, a dielectric barrier is
created between the water and the low dielectric region.
Charges in the water are repelled from this barrier due to
image forces. Other more complicated interactions involv-
ing two or more charges can also occur, especially in the
pores of ion channels, where the narrow aqueous pore is
completely surrounded by the protein. The physics of these
effects is described by the Poisson-Boltzmann equation

� · ���r� � ��r�� � ��f�r� � �r�	
i

�i
0exp��

�i
0��r�
kT � (7)

In this equation, �f is the solute charge distribution (i.e., the
fixed charges in the ion channel and channel modulator), i

represents the different ion species in the solution (e.g., Na�

and Cl�), and �i
0 are their number densities in uniform

solution that is far from the channel. The term in the expo-
nential scales these densities by their Boltzmann factor.
Note that the presence of � in this term makes the equation
nonlinear.  is a position-dependent scaling factor that rep-
resents the accessibility of different regions to ions, for ex-
ample, ions will not physically be able to penetrate the
interior of the channel protein, and thus  would be zero in
this region. The equation may be linearized to more easily
solve it.

In the Poisson-Boltzmann equation, the mobile ions in the
system are treated as a mean field. This approach has been
shown to have limitations when dealing with the narrow
pores that are often present in ion channels (173). There-
fore, it is often preferable to model the ions explicitly, by
treating them as part of pf in the above equation, and setting
the mean-field ion densities to zero. We then have Poisson’s
equation

� · ���r� � ��r�� � ��f�r� (8)

which is a linear partial differential equation.

Since direct solutions of both the Poisson-Boltzmann and
Poisson’s equation are time consuming, approximations are
often used. The simplest approximations use Coulomb po-
tentials between charges, with a distance-dependent dielec-
tric such as �(r) � 4r (111). The dielectric constant increases
linearly with increasing r, which represents the fact that, for
greater r, there is likely to be more solvent between and
around the charges. However, details of the geometry are
not taken into account.

A more sophisticated method is the generalized Born ap-
proach (15). Generalized Born electrostatics represents the
free energy of the polarization of the solvent as

F �
1

8�� 1

�0
�

1

� � 	
i, j�1

N qiqj


rij
2 	 aij

2exp��rij
2 ⁄ 4aiaj�

(9)

where qi is the atomic partial charges of the ith atom, rij is
the distance between atoms i and j, and ai is a parameter
known as the generalized Born radius of atom i. There are
various methods of computing the generalized Born radii,
and their optimal determination lies at the heart of the
method. The precise form of Equation 9 is to some extent
arbitrary, but is required to give the correct result for cer-
tain limits. For large rij, the method gives the Coulomb force
for two point charges in a dielectric medium. As the inter-
atomic distance decreases, additional solvent screening and
image charge effects become manifest. For a single atom,
with aij set to the atomic radius, the method gives the ana-
lytical Born solvation energy. The correct expression is also
obtained for the limit of a point dipole.
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The electrostatics inside the pore of ion channels present
extra challenges, due to the presence of highly focused elec-
tric fields, and other problems with the mean-field approx-
imation due to the quantization of water and ions in narrow
pores. This may be important to the study of channel-
blocker interactions, including those where binding in-
volves the insertion of a blocker lysine or arginine into the
channel pore. For example, tetrodotoxin is known to block
voltage-gated sodium channels in a voltage-dependent
manner (72, 83), suggesting that the pore electrostatics play
a large role in the block. Because of the electrostatic focus-
ing effect, the pores of ion channels increase the strength
and range of charge-charge interactions in a position-de-
pendent manner. Another way of looking at this is that
there is less surrounding water to shield charges from one
another. Furthermore, the membrane voltage drop occurs
almost entirely over the length of the channel pore and is
greatest where the pore is narrow. It is possible that general
purpose docking programs and the like, which may be op-
timized for the docking of a ligand or protein onto a recep-
tor located on the surface of another protein, may not per-
form well under the highly enclosed conditions of ion chan-
nel pores. However, very little work has been done to
quantify these issues.

Water also plays an important role in effectively mediating
nonpolar interactions between the atoms in ion channels,
channel modulators, and ions. In the absence of water, such
nonpolar interactions are described by van der Waals
forces, and can be adequately modeled using Lennard-Jones
potentials as described in the previous section. When water
is present, it interacts in a complex manner with the solute
molecules and strongly mediates the effect of the nonpolar
forces. This is largely due to two factors. First, water exhib-
its strongly attractive van der Waals interactions with itself
and other molecules. Therefore, when two solute atoms
approach each other closely, some water is displaced, and
there is an energetic cost to this displacement that needs to
be taken into account when determining the nonpolar in-
teractions between the two molecules. Second, water is not
a perfect linear dielectric: its molecules have a finite size and
exhibit a strong hydrogen bonding structure. When water is
displaced by the presence of solute atoms, the hydrogen
bonding network is modified. Water tends not to form hy-
drogen bonds with hydrophobic atoms. Adjacent to a hy-
drophobic surface, the water will compensate for lost wa-
ter-solute hydrogen bonds by forming extra water-water
hydrogen bonds, thereby creating a semi-rigid “cage” of
surface tension around the atoms. The entropy of the water
is lowered, which translates to a raising of the free energy.
To minimize this free energy penalty, groups of hydropho-
bic atoms will therefore clump together so as to minimize
their solvent exposed surface area. This is known as the
hydrophobic effect and can be as important as hydrogen
bonding in understanding the binding forces between chan-

nel modulators and ion channels. An example of water-
mediated nonpolar interactions is shown in FIGURE 1.

It is difficult to accurately take into account the effects de-
scribed above when implementing implicit solvent force
fields. The most common approach relies on linearly corre-
lating the nonpolar hydration free energies of the solute
with its solvent-exposed surface area. In some treatments,
the hydrophobicity is taken into account by defining differ-
ent scaling constants for different atom types; typically only
a very small number of atom types are used. In more sophis-
ticated treatments, a volume-dependent cavity term may
also be included (81, 87, 86, 143). A surface area nonpolar
hydration energy can be combined with the generalized
Born approach to solvation, to give the often used general-
ized Born/surface area (GBSA) model of solvation.

3. Coarse graining and knowledge-based potentials

Coarse graining, the practice of treating groups of atoms as
a single entity, represents a further level of abstraction in the
hierarchy of force fields. The least radical form of coarse
graining is to treat nonpolar hydrogens as being an implicit
part of their parent atom, the so-called “united atom” ap-
proach seen in the CHARMM19 (202) and GROMOS
force fields (209). More radical versions of coarse graining
are also possible. The MARTINI force field (159), which
was developed with the aim of modeling lipids and has been
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FIGURE 1. The potential of mean force between two neutral car-
bon atoms in the presence of water, calculated using 10 ns of
metadynamics simulation. The dotted line shows the bare Lennard-
Jones potential for comparison. The Lennard-Jones parameters are
those of a carbonyl or guanadinium carbon atom, type C in the
CHARMM27 force field. Since both atoms are neutral, the only
direct forces between them are van der Waals forces. The presence
of water is seen to greatly modify these van der Waals interactions,
due to the hydrophobic effect and the varying effect of van der Waals
forces between the atoms and water molecules as the atoms ap-
proach each other.
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extended to proteins (169), is one example that has been
used for ion-channel gating modifier studies (249). Each
interaction center in the MARTINI force field represents
approximately four actual atoms.

The parametrization in MARTINI was undertaken using
similar principles to other all atom force fields such as
GROMOS or CHARMM. In contrast, the so-called knowl-
edge-based potentials (212, 227) are coarse-grained poten-
tials that represent a very different, empirical approach to
the general problem of free energies in protein binding. The
basic idea is to use data obtained from sources such as the
protein data bank to derive coarse-grained potentials, based
for example on the distance between different types of res-
idues. In the approach taken by Sippl (212), the distribution
of various residue pairs as a function of distance is assumed
to follow a Boltzmann distribution, and hence, knowledge-
based potentials also tend to be called potentials of mean
force, although there has been a good deal of theoretical
debate about whether they do indeed represent rigorous
potentials of mean force (18, 129, 172, 175, 231), and
therefore whether they describe genuine free energies. Most
relevant to the study of ion channel modulators are the
various specializations of knowledge-based potentials to
protein-ligand docking problems (e.g., see Refs. 90, 91,
168, 174, 214), some of which take a consensus scoring
approach, with the knowledge-based potential score com-
prising only part of the docking score.

C. Computational Techniques

1. Molecular dynamics

Molecular dynamics has now become one of the most im-
portant computational tools for simulating biomolecular
systems. The availability of several user-friendly packages
such as AMBER (31), CHARMM (26), GROMACS (106),
and NAMD (190) has made the method accessible to any
researcher. With the increasing speed of modern computers,
it will become increasingly possible to study in real time the
interactions between polypeptide and ion channels at a mi-
croscopic level and relate the mechanisms of blockade to its
underlying molecular structure.

In molecular dynamics simulations, we follow the trajecto-
ries of N particles interacting via a many-body potential
using Newton’s equation of motion. The equation is numer-
ically solved using algorithms such as the Verlet (241) or
velocity Verlet (224) algorithms. Such algorithms display
the desirable properties of being time reversible and “sym-
plectic.” In other words, the motion is derivable from some
unknown Hamiltonian. This results in desirable stability
properties, for example, energy is approximately con-
served.

In addition to fully atomistic molecular dynamics, implicit
solvent and coarse graining are sometimes used, as ex-

plained in the preceding section. To maintain computa-
tional speed, implicit solvent simulations usually use the
generalized Born model of solvation rather than Poisson
calculations. Various models may be used for the nonpolar
hydration forces; surface area (SA)-based potentials are
common.

Periodic boundary conditions are frequently employed in
molecular dynamics; this can be convenient in biophysical
systems which contain a lipid bilayer (since an endless bi-
layer can then be approximated by the periodic boundary)
and water (since an infinite reservoir can be approximated).
Because the Coulomb potential is a long-range pair poten-
tial, the time needed to compute the forces would, without
special treatment, scale as the square of the number of par-
ticles. Fortunately, the electrostatics in periodic systems can
be very efficiently treated using a technique known as par-
ticle mesh Ewald (60), which approximates the periodic
potential using fast Fourier transforms. Furthermore, mod-
ifications to the propagation algorithm can be used to give
constant pressure and temperature dynamics (19, 235).

A typical molecular dynamics simulation of a channel-
blocker system would first contain the ion channel model.
Frequently, this will be truncated to include only the pore-
forming domain and might contain close to 10,000 atoms.
This would be embedded in a lipid bilayer containing a
couple of hundred lipid molecules, or around 20,000 at-
oms. There might be a further 20,000 water molecules sur-
rounding the system. The complete system might contain
close to 100,000 atoms and have a size of around (100 Å),2

of which only �10% would relate directly to the channel/
blocker system, the rest being made up of lipids and water.

Typical molecular dynamics simulations are too computa-
tionally intensive to directly observe events such as ion
channel conduction and block and the binding dynamics of
modulators. For the system described above, and using a
modern supercomputer, it might be possible to perform
several dozen nanoseconds of continuous simulation in a
reasonable timeframe, whereas the dynamics of a channel
modulator interacting with a channel would evolve on time-
scales of microseconds or perhaps much longer. Costly pur-
pose-built hardware can increase the simulation timescale
to microseconds (116). Thus simulations are usually em-
ployed to explore the stability and energetics of bound com-
plexes, sometimes with the help of the free energy tech-
niques described in section IIID, and to observe details of
docked complexes such as atom-atom and contacts, hydro-

2A microstate specifies the positions and velocities of all atoms in
the system. A macrostate is a set, or ensemble, of microstates for
which some experimentally observable property, for example, the
blocker being bound to the channel, holds. Thermodynamic quanti-
ties, such as entropy, are functions of macrostates, that is, they are
actually functions of sets of microstates, rather than of individual
microstates.
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gen bonding, and so on. Another use for molecular mechan-
ics is to refine docked poses that may have been produced by
docking programs or manually.

2. Brownian dynamics

Brownian dynamics simulations of ion channels use two
key assumptions to speed up the simulation: the ion channel
is assumed to be a rigid or mostly rigid structure, and the
solvent is assumed to be implicit. The cell membrane is
usually represented as an idealized dielectric slab. Implicit
solvent electrostatics is usually employed, and frictional
and random forces are introduced to model the Brownian
motion induced by the solvent and other atoms in the sys-
tem (50). In most ion permeation studies, therefore, the only
moveable objects are the ions, which are usually simulated
using the Langevin equation or first-order Brownian mo-
tion. In studies involving blocker molecules, additional mo-
bile blockers also need to be simulated.

The electrostatics of the channel may be handled efficiently
by presolving Poisson’s equation for various configurations
of mobile charges (50). Other forces, for example, steric
repulsion, are handled in a variety of ways depending on the
particular model. Alternative ways of deriving the forces
exist, often based on prior molecular dynamics PMF calcu-
lations, or other molecular dynamics sampling (21, 27, 74,
92). Compared with molecular dynamics and docking, the
use of Brownian dynamics for ion channel blocker studies is
in its infancy. A typical Brownian dynamics simulation cell
(such as that used by Gordon et al., Ref. 97) is shown in
FIGURE 2.

The simplest application of Brownian dynamics to the study
of ion-channel block relates to ionic block, since only mon-
atomic ions need be considered (55, 56, 57, 242). In studies
involving molecular ion channel blockers, which are more
relevant to the development of treatments for diseases, the
rotational motion of the blocker molecules needs to be
taken into account. It is possible to treat the blocker either
as a single rigid body, a set of coupled rigid bodies, or as a
fully flexible object using a molecular mechanics force field.
In the first two cases, a rigid-body motion algorithm will
need to be employed (16, 77, 95, 182). There exist very few
Brownian dynamics studies of channel-blocker interactions
(59, 58, 84, 97). To date, these have employed fully rigid
models for the channel and blocker and therefore suffer
from many of the same problems as rigid-body docking.
Recently, Brownian dynamics has been proposed as a dock-
ing protocol (163).

While it is relatively easy to implement rigid body rotational
motion algorithms (95), the treatment of force fields is
much more challenging. The same problems that exist in all
implicit solvent systems, the accurate and fast representa-
tion of the electrostatics and the treatment of nonpolar
hydration forces, also apply to rigid body Brownian dynam-

ics. Unlike implicit solvent molecular dynamics, the as-
sumption of relatively rigid channels and blocker molecules
introduces the possibility to use lookup tables for the elec-
tric field instead of resorting to approximations such as the
generalized Born approximation, although the treatment of
electrostatic self energies is difficult (98). As has been re-
marked previously, the strong electric fields that run
through the pores of ion channels may perhaps render the
usual (e.g., GBSA) approaches to solvation inaccurate. In
the future, it would be advantageous to extend Brownian
dynamics studies of blocker channel interactions by first
taking into account some degree of flexibility in the blocker
and perhaps the channel. A careful treatment of the electro-
statics, nonpolar and solvation forces will also be needed to
correctly model the energetics.

The use of rigid body blockers with fixed channels in
Brownian dynamics presents a serious obstacle to achieving
the correct docking poses of the blocker. This is particularly
so in the case of large polypeptide blockers, which usually
have a very rigid backbone but bind with the aid of flexible
basic side chains that form salt bridges to acidic residues on
the channel. The flexibility enables several sidechains to
locate closely at favorable sites on the channel, while also

Channel
proteinLipid slab

Ions

Water Cylindrical
simulation
cell

ε = 80

Z

Bound
blocker

ε = 2

FIGURE 2. A typical Brownian dynamics simulation cell. The chan-
nel, shown in gray, is embedded in an idealized lipid slab. Water
surrounds the channel and lipid, and also permeates the pore of the
channel. A low dielectric constant (2 here) is assigned to the channel
and lipid region and a high dielectric constant to the water-filled
region. A cylindrical simulation cell is defined as shown. Simulation
bodies are the rigid-body blocker, shown in red, and the ions, shown
in blue and orange.
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avoiding unfavorable electrostatic interactions or steric
clashes. It is also likely that channel flexibility will also play
some role in efficient binding. For example, the narrow
selectivity filters of voltage-gated potassium channels must
make subtle adjustments to accommodate the insertion of
blocker lysine residues. Another example is the possibility
that the outer vestibules of channels may also undergo
changes to accommodate the shape of the blocker molecule,
increasing hydrophobic binding and eliminating steric
clashes. Finally, a more problematic example concerns the
presence of highly mobile “turret” loops in the outer vesti-
bule of many channels. These turrets may contain interac-
tion sites for the blocker; their conformation can affect
binding. Note, however, that this latter example creates
problems not only for Brownian dynamics and docking, but
also for molecular dynamics, since the conformational
movement of the turret regions can be very slow.

In principle, a number of steps may be taken to alleviate the
problems mentioned above. The most radical solution
would be to introduce a large degree of flexibility with the
aid of implicit solvent molecular mechanics. This approach
would blur the division between Brownian dynamics and
molecular dynamics. The use of lookup tables would be
made problematic in such an approach, and might need to
be replaced by the use of generalized Born electrostatics, for
example. Simulation speed would become a serious consid-
eration in this approach.

The ability of selectivity filters to make subtle adjustments to
accommodate the insertion of side chains might be improved
by allowing single atoms, such as the carbonyl oxygens that
line the filter in Kv channels, to move in a harmonic potential.
This was in fact tried by Chung and Corry (51) for modeling
ion permeation in the KcsA potassium channel.

Finally, the blockers and channels might be modeled using
multiple coupled rigid bodies. For example, lysine and ar-
ginine side chains in blocker molecules could be coupled to
the core of the blocker via various types of “hinge” con-
straint. This latter approach is reminiscent of the treatment
of flexibility in many docking programs. The authors of this
review have in fact implemented this approach and are cur-
rently quantifying its effect.

3. Docking

Docking is a computational procedure that aims to produce
docked “poses” representing complexes between the recep-
tor and the docked ligand or protein. It is a rapidly growing
and complex field. Compared with the other theoretical
methods discussed in this review, there is a high degree of
arbitrariness and pragmatism in the various combinations
of theoretical and heuristic techniques that are employed to
rapidly dock candidates into receptors. In terms of ion-
channel research, the primary aim is to find and rank
docked complexes of a channel modulator molecule with

the channel protein, with an emphasis on speed. To achieve
this aim, docking programs need both a search algorithm
that explores the available configuration space of the chan-
nel-ligand system to identify favorable complex geometries,
and a scoring function that applies various considerations
to rank the complexes in line with their free energies of
binding.

Original docking systems such as DOCK (133) employed
only rigid docking, where both the ligand and receptor are
rigid bodies. In rigid docking, the search can operate in an
approximately exhaustive manner, by attempting to ex-
plore all possible docked positions and orientations of the
ligand. To speed up the search, it is common to use precal-
culated scoring grids. For each type of atom in the ligand,
chemical and physical data (e.g., electrostatic energy, hy-
drogen bonding, etc.) and geometric data (steric clashes,
etc.) relating to that type of atom is calculated on a grid of
atom positions relative to the receptor. These grids are then
consulted during the subsequent search, to rank the candi-
date poses. The search itself may be performed by a number
of methods, including fast Fourier transform techniques, as
employed in ZDOCK (36), GRAMM (238), and DOT
(158).

As was the case for rigid body Brownian dynamics, rigid
docking presents serious difficulties for the study of ion-
channel modulators, as the modulator, especially the large
peptide toxins, or the channel, as in the case of potassium
channels with their unordered loop turret regions, can ex-
hibit substantial flexibility. Careful alignment of the key
functional groups is frequently needed to achieve strong
binding. A flexible docking approach is usually required.
Most modern docking programs include some means of
treating flexible docking, and there are several ways in
which this might be done.

One simple approach, which is really just an extension of
rigid-body docking, is “soft docking,” where the force field
is modified to reduce the effects of steric clashes and slight
misalignments. This approach is very common in rigid
docking, and in the initial stages of many docking programs
in general. For example, the GRAMM docking software
(238) uses a smoothed energy function to consider docking
at a low spatial resolution; it has been used in protein-
protein docking studies involving ion channels (186, 219).

Another approach, ensemble docking (110), considers an
ensemble of ligand or receptor conformations. The ensem-
ble could be obtained from unbound simulations of the
ligand and/or receptor, or from multiple conformations
found in databases such as the protein data bank. The as-
sumption here, which has been shown to be reasonable, is
that unbound simulations of receptors and ligands will tend
to approximately sample bound conformations (24, 144,
198), and therefore using such ensembles can effectively
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take account of induced conformational fit of the ligand
and/or receptor. Ensemble docking can be performed in an
ad hoc manner, simply carrying out multiple rigid docking
runs using different conformations of the molecules (198,
199), or using more efficient structured algorithms (53, 82).

A more direct but computationally intensive approach to
flexibility directly explores the conformational space of the
ligand and possibly the receptor site. This is often done on a
restricted basis by defining bonds around which rotations
can be made, such as rotations of side chains around their
C� bond. To accommodate the increased dimensionality of
the problem, it will in most cases no longer be possible to
perform a systematic search over the configurational space.
Instead, techniques such as genetic algorithms [employed in
AUTODOCK (170) and GOLD (239)], simulated anneal-
ing [employed in HADDOCK (44, 70)], or Monte-Carlo
sampling [employed in GLIDE (204) and MCDOCK (150)]
are required.

Lastly, there is the “anchor and grow” approach to ligand
flexibility. Initially, a rigid “core” of the ligand is docked
into the receptor site. The flexible parts are then incremen-
tally added to the core in a manner that minimizes the free
energy function and avoids steric clashes. Anchor and grow
is implemented in the latest versions of the DOCK software
(136).

Protein-protein docking, which is relevant to polypeptide
channel modulator toxins, is considered to be far more
difficult than protein-ligand docking (8, 24, 99, 198), due to
the need for a large degree of flexibility, including backbone
flexibility in many cases. Docking programs specialized to
protein-protein docking, or used in protein-protein docking
studies, include BiGGER (184), DOT (158), HADDOCK
(70, 62), GRAMM (238), and ZDOCK (36).

The docking protocols used in most of the docking pro-
grams mentioned above can be complicated and may in-
volve multiple stages of increasing refinement. For example,
it is common to perform an initial crude docking stage, after
which candidates are ranked using more exact force fields.
The most promising candidates may then be refined further,
and so on.

Along with search and refinement algorithms, the scoring
functions used by docking programs form a key determi-
nant of their success or failure. There are myriad ap-
proaches to scoring, and it is common for docking pro-
grams to give the user a choice of scoring function, or to
employ several different scoring functions at different
stages of search and refinement. Scoring functions may be
classified according to whether they are force-field based,
using molecular mechanics type physics based force fields,
empirical, using scoring functions for complex forces such
as hydrogen bonding that are derived from regression anal-

ysis against known affinities, or knowledge based, where
the scoring function is based on large-scale coarse-grained
structural information gleaned from protein databases.

Entropy presents a particular complication to scoring. Us-
ing rigid or partially rigid molecules means that entropic
contributions to the free energy that result from the internal
degrees of freedom of the molecule are not present. Further-
more, most docking algorithms will also tend to ignore the
entropic penalty that arises when a ligand that is free to
move and rotate in solution is confined by a binding site.
Empirical or semiempirical scoring functions may in part
implicitly compensate for this fact through the optimization
of their parameters to a training set. Explicit entropic con-
tributions, such as penalties arising when rotatable bonds
are frozen by the formation of a contact, are also frequently
employed (75).

As an example of a typical approach to rapid scoring used
for rigid docking, the scoring algorithm used by the
ZDOCK algorithm can apply three scoring components:
shape complementarity, desolvation, and electrostatics.
Shape complementarity penalizes steric clashes and rewards
surface-surface contacts. It is implemented by defining func-
tions of the atomic coordinates on grids. Two variations for
the grid functions have been devised (36, 37). The scoring
function is then defined as a sum involving terms bilinear in
the receptor and ligand grid functions. Electrostatics is car-
ried out using scaled Coulomb potentials, and therefore, the
complexities of the dielectric structure of the system are
only taken into account in a very approximate manner.
Desolvation is treated in a similar simplified manner, using
empirically derived estimates of the free energy of forming
pairwise atom-atom contacts. More recent versions of
ZDOCK may employ a slower, but more accurate, statisti-
cal potential (167).

An example of an empirically derived scoring function is
ChemScore (75), used by GOLD (239). This scoring func-
tion defines only six atom types and considers simple pair-
wise contact and longer range free energy terms for hydro-
gen bonding, metal contacts with donors or acceptors, lipo-
philic interactions, and entropic penalties for frozen
rotatable bonds. The parameters are set based on regression
analysis using a training set. The rationale behind this kind
of force field is that precise functional forms are not impor-
tant, as the regression will tend to compensate for the par-
ticular features of the chosen functions, and will tend to
average out the effects of insufficiently precise data, for
example, in the use of very general atom types. Autodock
Vina (234) is another example of an empirical potential,
containing terms for steric repulsion, hydrophobic bonding
terms, and hydrogen bonding terms. The force field param-
eters are optimized to the training set using a stochastic
global optimization algorithm.
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Autodock4 (113) uses a semiempirical approach to scoring.
Pairwise atom-atom potentials are defined, using van der
Waals potentials based on the Amber force field, a hydrogen
bonding term, screened Coulomb electrostatics with a dis-
tance-dependent dielectric constant, and a desolvation
term. Each of these terms is further multiplied by an empir-
ical weighting factor optimized based on a training set,
which allows the scoring function to implicitly compensate
for factors, such as entropic penalties, not taken explicitly
into account.

DOCK6 (136) allows a variety of scoring functions to be
employed, including a full force-field based scoring func-
tion, Amber Score that more or less implements the full
AMBER molecular mechanics force field (30, 244) with
generalized Born solvent-accessible electrostatics and des-
olvation. This allows flexibility of the ligand and receptor to
be dealt with in a natural manner, and structure refinement
to be carried out.

Knowledge-based potentials have also been fruitfully ap-
plied to the problem of scoring. As discussed earlier in this
review, knowledge-based potentials are based on the as-
sumption that in a library of proteins or ligands, structural
determinants such as the observed distance between atoms
of various types are distributed according to Boltzmann
factors, allowing potentials of mean force to be defined that
accurately reflect the free energy of the system. For example,
the DrugScore scoring function (90) uses knowledge-based
distance-dependent pair-potentials along with single-atom
potentials describing the preference of atoms to be solvated
or buried.

A rather different approach, used in the HADDOCK pro-
gram (43, 70, 62), uses experimental data about the dis-
tance between functional groups (which might be taken
from analysis of NMR studies, or from mutant cycle anal-
ysis) to define distance restraints, which are then applied in
the force field.

There are dozens or more studies of ion-channel modula-
tors that employ docking software; the following references
provide a sample of these: 1, 4, 6, 7, 20, 28, 43, 49, 66, 80,
85, 89, 102, 131, 149, 155, 161, 181, 186, 192, 193, 196,
197, 199, 201, 219, 233, 257, 260, 266.

4. Quantitative structure-activity relationships

Although quantitative structure-activity relationships (QSAR)
are somewhat out of the scope of this review, we mention it
here due to its potential usefulness in drug discovery, espe-
cially at the early lead screening stages where thousands of
compounds may need to be considered. QSAR studies rep-
resent a very high level of modeling that is often applied in
the drug design world. A number of attributes of different
candidate drugs are defined. Attributes can be quantities
such as hydrophobicity, polarizability or refractivity, or

spatial structural information. The attributes are tabulated
along with their activity (for example, in ion channel studies
the activity could refer to the inhibitory constant, IC50).
Then, essentially, a regression analysis is performed. The
results can be used to predict the activities of as yet untested
compounds. Numerous QSAR studies have been performed
on ion channels (see, for example, Refs. 11, 176, 206, 226).

III. ENERGETICS AND BINDING THEORY
OF MOLECULAR COMPLEXES

In the preceding sections, we introduced several types of
force fields and computational techniques that are used in
computational studies of ion channel modulators. In the
following section, we will take a more detailed look at some
of the theory and applications used in the computational
studies that employ these techniques. In particular, we will
discuss the theory of binding affinity, a key metric by which
blockers and other modulators may be assessed, and com-
putational methods by which it may be calculated.

Binding affinity measures the strength with which a channel
modulator is bound to an ion channel. Its inverse, the dis-
sociation constant, predicts the propensity of complexes to
break up. Statistical mechanics shows us that this key ex-
perimentally measurable quantity is directly related to the
free energy of binding of the complex, the work needed to
unbind the complex in a reversible manner. Because it is
easier to compute free energies than to directly perform
measurements of binding affinity, the free energy of a com-
plex is perhaps the single most important theoretical quan-
tity to consider when computationally assessing the effec-
tiveness of a candidate channel modulator. Unfortunately,
calculating the free energy of a biomolecular complex is not
an easy matter. It depends in principle not just on a single
complexed state, but also on all possible configurations of
water and other extraneous parts of the system, as well as
all possible bound, unbound, and intermediate states of the
channel modulator.

We will begin our treatment of energetics and binding with
a discussion of free energy. We will then define the dissoci-
ation constant and show how the free energy and dissocia-
tion constant are related. Finally, we will look at the com-
putational methods used for calculating or estimating free
energies of binding and, hence, the dissociation constant.
The following sections are quite theoretical, and the reader
may choose to skip ahead if desired.

A. Free Energy and Potentials of Mean
Force

Suppose that we have a canonical (N, V, T) ensemble, with
fixed particle number N, volume V, and temperature T. The
most important quantity, from the point of view of ligand
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binding experiments, is the Helmholtz free energy3 of the
system, F � E � TS, where E is the average total energy, T
is the temperature, and S is the entropy. Free energy has a
direct relationship with the probability of the system being
in a given macrostate, whereas such a relation does not hold
for, say, the average potential energy of a macrostate.

Suppose we have a system, whose state space is �0, the set of all
possible microscopic configurations of particles. We are inter-
ested in the probability of finding the system in a macrostate
�b, which we will take to consist of the blocker bound to the
channel. We first calculate the free energy �b relative to �0

�F � Eb � E0 � T�Sb � S0� (10)

Here, Eb and E0 are the average total energy for the bound
macrostate and the whole state space, respectively, and Sb

and S0 are the corresponding entropies. We can write down
the probability of the blocker being bound as

P�b� � exp���F ⁄ kT� (11)

Note that this probability contains an energetic contri-
bution, from E, as well as an entropic contribution, from
S. The entropy, S, of a macrostate is, broadly speaking, a
measure of the number of possible microstates that be-
long to the macrostate. The higher the entropy, the
higher the probability of the system being in that macro-
state.

The discussion given above refers only to macroscopic
quantities such as entropy and total energy. Statistical me-
chanics shows us how these concepts can be related to mi-
croscopic states of the system. According to statistical me-
chanics, the probability of the system being in the bound
macrostate �b is

P�b� �
Zb

Z0
(12)

where the (configurational) partition function Zs for a state
s (with s � b or 0) is

Zs � ��s
exp��U ⁄ kT� (13)

where U is the potential energy of the system, with the
integral being taken over all microstates in either the bound
or total macrostates. Since we are just concerned with prob-
abilities, which always hinge on ratios of partition func-
tions, we have omitted some constant factors in front of the

partition functions. The free energy of binding can then be
defined as

Fb � �kT ln �Zb

Z0
� (14)

so that the binding probability is always exp(�Fb/kT). This
makes the link between the definition of F in terms of energy
and entropy, Equations 10 and 11, and the statistical me-
chanical definition in terms of integrals over microstates.

The concept of free energy allows us to separate the degrees
of freedom of the system that are directly relevant to the
binding process, such as the positions of the blocker and
channel, from those that are not directly relevant, such as
the configuration of all water molecules. This is possible
because the relevant degrees of freedom can be used to
define the macrostates while irrelevant degrees of freedom
are ignored, as for example when center of mass distances
are used to define bound and unbound states independently
of the positions of water molecules. Suppose we measure
the center of mass of the blocker relative to the channel.
This quantity is a continuous (vector) parameter which se-
lects subsets of the configuration space; in this case, these
subsets are the macrostates where the blocker lies at a cer-
tain position rCOM relative to the channel. The free energy
w(rCOM) of each of these macrostates, as a function of the
reaction coordinate, is termed the “potential of mean force”
(PMF). The symbol w, rather than F, is typically used to
denote that the free energy is expressed as the function of a
continuous set of reaction coordinates. The PMF is impor-
tant because its gradient gives the average force along the
reaction coordinate, just like a real potential. In the example
here, the average force on the blocker is ��w.

The PMF in the example above is defined on a three-
dimensional domain, but it is also common to define
one-dimensional PMFs. For an ion channel with approx-
imate cylindrical symmetry running along the z-axis, it is
common practice to take the projection of rCOM on the z
axis, or alternatively on an instantaneous axis of the
channel, as the reaction coordinate zCOM for a one-di-
mensional PMF. The PMF for the blocker unbinding
from the channel is then the free energy, as a function of
zCOM. When the blocker is a long way from the channel,
it is free to wander to infinity in the x-y plane, and hence
its free energy relative to the bound state will be negative
infinity. Recall that we are working in a framework
where there is a single channel and blocker, rather than
concentrations of each. If the blocker is free to wander
infinitely far from the channel, this will physically corre-
spond to zero concentration of blockers, and binding will
never be observed. To have a well-defined one-dimen-
sional PMF, therefore, some kind of restraining potential
is necessary. It is common to confine the blocker using a
cylindrical flat bottomed harmonic potential

3Often one works instead in a (N,P,T) ensemble, where the pres-
sure is fixed and the volume varies. Although slightly more compli-
cated, such ensembles are more experimentally relevant. For large
systems, the choice normally does not make much difference, hence
our use of the simpler (N,V,T) ensemble. Note that most of the
discussion in this section remains relevant for an isobaric (N,P,T)
ensemble, if energy E is replaced by enthalpy H and Helmholtz free
energy F by Gibbs free energy G.
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U�r� � �
1

2
k�r � R�2 : r � R

0 : r � R
(15)

such that the blocker is free to move around within the
interior of a cylinder of radius R but is prevented from
moving out of this cylinder by a strong harmonic force.
Adding the cylindrical restraining potential means that the
one-dimensional PMF will be calibrated to the blocker con-
centration set by the cylinder.

The process of actually obtaining potentials of mean force
and free energies will be explored in a later section, but it is
clear from the discussion above, and in particular from
Equations 13 and 14, that free energies are a function not of
single microstates, but rather of large ensembles of micro-
states, and for this reason their calculation can be very
difficult.

B. Dissociation Constants

In the discussion above, we have explained how the concept
of free energy is relevant to binding probability, and how it
relates to channel-blocker systems. Binding probability is
usually observed experimentally by performing assays
which measure the percentage of bound blockers in a solu-
tion containing blockers and channels, or indirectly by mea-
suring the actual block of current caused by the blockers. In
such experiments, values such as the binding affinity or its
inverse, the dissociation constant, are most relevant.

Assume we have a solution containing concentrations of
unbound channels [C], unbound blockers [B], and channel-
blocker complexes [CB], at equilibrium, we find that the
quantity

Kd �
�C��B�
�CB�

(16)

is a constant, independent of the concentrations. We call
this quantity the dissociation constant, as it measures the
propensity of [CB] to separate into components [C] and [B].
If half the total channels are bound, then [C] � [CB] and
hence Kd can be interpreted as the concentration of free
blockers [B] at which half the channels are bound. The fact
that Kd is in fact constant is not immediately apparent from
the equation above, but can be justified on microscopic
grounds, at least in the limit of low binding probability.

C. Statistical Mechanical Treatment of
Binding

Binding assay experiments measure dissociation constants.
To relate the results of such experiments to theoretical cal-
culations, we need a way to relate the dissociation constant

to the microscopic details of the channel-blocker interac-
tion. Not surprisingly, the key quantity turns out to be the
free energy of channel-blocker binding. The reason this is
the case is that both the free energy of binding and the
dissociation constant are directly related to the binding
probability.

Suppose we have a large volume V containing c channels
and b blockers. Further suppose that the channels and
blockers do not interact, except when a blocker enters a
small binding pocket located on the channel. Because the
channels are assumed not to interact with each other, the
energy of the system does not depend on their positions,
only on the positions of the blockers relative to the chan-
nels. Thus, although the problem can be formulated more
rigorously to arrive at the same result, we can assume that
all channels occupy fixed positions. Taking the reference
energy for an unbound blocker to be zero, each blocker then
contributes an amount equal to the volume V to the parti-
tion function, Equation 13, as it ranges over the free space
between the channels. Furthermore, in forming the parti-
tion function, the blockers also range over the binding
pockets of the channels, contributing an amount

I � �binding site
exp��w�x, y, z�

kT �dx dy dz (17)

to the partition function per interaction, where w is the
blocker-channel PMF. We can now write the partition func-
tion as a sum over the number of complexes i. The maxi-
mum number of complexes that can be formed is the mini-
mum of b and c. We need to multiply each term in the sum
by a multiplicity factor that counts the number of ways of
forming i complexes using c channels and b blockers: this is

multiplicity �
c ! b!

i ! �c � i� !�b � i�!
(18)

Putting all of this together, we can finally write down the
partition function

Zc,b � 	
i�0

min�c.b�

Zi;c,b

� 	
i�0

min�c.b� c ! b !

i !�c � i� !�b � i�!
Vb�iIi

(19)

We can then find the average number of complexes as

� i� �
1

Zc,b
	 iZi;c,b

�
cbI

V

Zc�1,b�1

Zc,b

(20)

This equation shows how the average number of complexes
depends on the properties of the sum Z. Here, we analyze
only very dilute solutions, where the binding probability
will be small and thus we can throw away all terms but the
leading terms Z0;c,q in the sums above. Doing so gives
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� i � �
cbI

V
(21)

The binding probability is simply the average number of
complexes divided by the number of channels

Pbind �
� i�

c

�
cbI ⁄ V

c

� ��B� 	 �CB��I

(22)

where we measure concentration in units of number den-
sity. But we can also express the binding probability directly
using the bound and unbound channel concentrations

Pbind �
�CB�

�C� 	 �CB�
(23)

and thus, from Equations 22 and 23,

I �
�CB�

��C� 	 �CB����B� 	 �CB��


�CB�

�C��B� �dilute, low binding prob.�

� Kd
�1

(24)

The importance of this equation is that the dissociation
constant Kd is directly related to the standard free energy of
binding, which is defined as �kT ln(C0I), where C0 is the
standard concentration of 1 M. The binding probability
itself is proportional to I. The fact that I does not depend on
the channel and blocker concentrations shows that Kd re-
ally is constant, at least in the limit of low binding proba-
bility.

It remains to relate this equation to the typical geometry
used in calculations involving ion channels (see FIG. 3). I
represents the integral of the probability density over the
binding pocket (Eq. 17), which is somewhat arbitrary. How-
ever, in typical cases involving binding in ion channels, the
binding pocket is a deep potential well, and the presence of the
exponential in the integral ensures that by far the dominant
contribution comes from bound states even if the integral is
taken over a region slightly larger than the actual binding
pocket. We only need to make sure that the region is large
enough to include the entire binding pocket. Due to the ap-
proximate cylindrical symmetry of ion channels and for con-
venience of calculation, normally I is calculated using a cylin-
der of radius R whose axis runs along the axis of the channel,
with one end of the cylinder z0 extending past the location of
the binding pocket on the channel side, and the other end z1

extending far enough into the bulk region that the PMF is close
to its value in the bulk. The radius of the cylinder is chosen

based on two competing considerations. We wish to avoid
excluding any interactions contributing to the binding process
(meaning R should be large), and we wish to avoid making our
sample space too large in order that the simulation may con-
verge (meaning R should be small).

As defined in Equation 17, I involves a three-dimensional
integral over the binding pocket. This can be achieved using
a one-dimensional potential of mean force. Suppose the
PMF w3(x, y, z) is defined on the cylindrical region dis-
cussed above, where the z coordinate runs along the axis of
the channel and the cylinder. Then the one-dimensional
PMF w1(z) is defined by

�R2exp��w1�z� ⁄ kT�
� �circle R

exp��w3�x, y, z� ⁄ kT�dx dy (25)

Integrating �R2 exp[�w1(z)/kT] over z is equivalent to in-
tegrating exp[�w3(x, y, z)/kT] over the whole cylinder. The
factor �R2, which acts as an energy offset for w1, is inserted
for convenience so that, in the bulk (z � z1), w1 can be
defined to be at zero energy; its purpose is to set the conver-
sion between number density and linear number density.
We then have, from Equation 24,

Kd
�1 � �R2�z0

z1
exp��w1�z� ⁄ kT�dz (26)

z

Rcyl

zcom

FIGURE 3. Typical geometry for 1-dimensional PMFs. In this fig-
ure, the channel is depicted in gray and the blocker in red. The z-axis
runs along the axis of the pore. The blocker is confined within a
cylinder of radius Rcy1. The z coordinate of the blocker center of
mass, relative to the channel, defines the reaction coordinate zcom.
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Finally, note that for ease of calculation we have been ex-
pressing concentrations in number density: to convert Kd

from SI number density to the more normally used moles
per liter, we need to insert a factor of 1,000 NA into the
equation

Kd
�1 � 1000�R2NA�z0

z1
exp��w1�z� ⁄ kT�dz (27)

A similar, but slightly less general, analysis can be found in
Woo and Roux (256).

D. Free Energy Methods

Since the free energy of binding is the ultimate determinant
of binding affinity, it is perhaps the most important goal of
theoretical and computational studies to predict this quan-
tity. Unfortunately, its prediction is extremely difficult, even
for small blocker molecules. For large molecules such as
polypeptide toxins, binding free energies have been com-
puted (39, 41, 42, 44, 45, 47, 48, 94), but such calculations
use simulation times that are smaller than ideal, and hence
their accuracy is still open to question.

In all free energy calculations, we wish to calculate the
change in free energy as the state of the system is changed
from one macrostate to another. We take the first macro-
state, state A, to be the state where the blocker is bound, and
the second, state B, to be the unbound state. The change in
free energy can be expressed as

�F ��kT ln �ZA ⁄ Z� 	 kT ln �ZB ⁄ Z�
��kT ln �ZA ⁄ ZB� (28)

where ZA and ZB are the partition functions for states A and
B, respectively, and Z is the total partition function. Be-
cause the partition functions involve integrals over micro-
states, we can see that the free energy of binding involves
integrals over all bound and unbound states of the system,
and is therefore likely to be very computationally costly to
compute. Furthermore, it is not feasible to directly compute
the partition functions ZA and ZB, meaning we cannot just
simulate the bound and unbound states and directly derive
the free energy difference. Instead, other means must be
used to compute the free energy. The most rigorous meth-
ods attempt to calculate the free energy according to Equa-
tion 28 by calculating free energy differences along a con-
tinuous path connecting the bound and unbound states.
Other approximate methods exist, where only the end-
points of the path (the bound and unbound states) are sam-
pled, and other approximations of the physics, such as us-
ing implicit solvent, or regression methods, are employed.
The most approximate methods rely on coarse graining,
where only a limited subset of the binding data is used to
estimate the free energy, with parameters developed based
on extensive data from the protein data bank. Starting at
the most rigorous end of this hierarchy, we shall discuss the
main methods for calculation of free energy of binding in
turn.

1. Free energy perturbation and thermodynamic
integration

We can write the free energy �F as

�FA,B ��kT ln�ZA

ZB
�

��kTln�ZA

Z1

Z1

Z2
· · ·

Zn�1

Zn

Zn

ZB
�

��kTln�ZA

Z1
� � kTln�Z1

Z2
� · · ·

�kTln�Zn�1

Zn
� � kTln� Zn

ZB
�

��FA,1 	 �F1,2 	 · · · 	�Fn�1,n 	 �Fn,B

(29)

If we now assume that state A is close to state 1, state 1 is
close to state 2, and so on, this shows that the free energy
can be written as a sum of small free energy differences
between a sequence of states connecting A and B in a nearly
continuous manner. It is possible to define these various
states as the equilibrium states of different potential energy
functions; so, for example, the potential energy function for
the unbound state B would contain terms making it ener-
getically unlikely for the system to be in the bound state A.

The first main idea behind the free energy perturbation
technique is that the intermediate states 1, 2, . . . in the
equation above need not represent physical states of the
system. Thus, to make the transition from the bound
blocker to the unbound blocker, we can employ two
blocker molecules, one bound and one in bulk. Initially, the
potential energy is defined so that the blocker in the bulk
does not interact with the other molecules in the simulation
at all: it is “turned off” and has zero potential energy. With
each successive term in the sum above, the interactions be-
tween the bound blocker and the rest of the system can be
gradually turned off while the interactions between the un-
bound blocker and the rest of the system are gradually
turned on. In other words, the bound blocker is gradually
made to “disappear” while the unbound blocker is made to
“appear.” The free energy differences at each step are
added, and the result is, in theory, the free energy of bind-
ing.

The second idea behind these methods is that, if successive
terms in the sum above are sufficiently close, then the free
energy difference can be calculated as, e.g.,

�F1,2 � �kT ln �exp����U2 � U1�� �1 (30)

where the average is taken by evaluating the potential en-
ergy difference U2 - U1 over an ensemble generated using U1

alone. Note that the potential energy, rather than the total
energy, can appear in the expression above for �F because
the kinetic energy dependence will cancel out in the canon-
ical ensemble when states 1 and 2 depend on position alone.
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The technique just described is known as the free energy
perturbation technique: the terms in Equation 29 represent
discrete jumps of the potential energy function. If we in-
stead smoothly vary the potential energy function accord-
ing to a parameter , and integrate du/d instead of sum-
ming �U at each step, then we arrive at the related tech-
nique of thermodynamic integration.

In practice, these techniques have practical difficulties when
calculating the absolute binding affinities of blockers. For
example, the Lennard-Jones and electrostatic potentials
need to be softened to overcome their infinitely large cores,
and entropy effects that arise just before the states vanish,
or have just started to appear, can also create problems.
More seriously, the “disappearing” and “appearing”
blocker paradigm means that the free energy is expressed as
the difference between two extremely large energies. The
error in such a difference might be on the order of many kT.
On a somewhat stronger footing is the use of either tech-
nique to calculate the relative free energy difference be-
tween two similar blockers: the bulk of the blocker remains
the same, while one functional group is mutated into an-
other (88).

2. Potential of mean force via umbrella sampling

The potential of mean force represents the free energy of a
system relative to a reaction coordinate, which, for exam-
ple, can be the center of mass of a blocker relative to a
channel. The free energy of binding can be calculated from
the PMF by straightforward integration.

The most direct means to find free energy differences is to
just simulate the system and calculate the ratios of observed
probabilities. For example, the free energy of binding is

�Fbind � �kT ln �Pbound ⁄ Punbound� (31)

The problem with directly observing these probabilities is
that only the most likely probabilities will be adequately
sampled, making it hard to determine the entire potential
energy function: only the bottoms of potential wells will be
accurately determined, and the system will furthermore
tend to remain in whatever potential well it started in.

Umbrella sampling is a means of overcoming the diffi-
culty of sampling rare events. Suppose we simulate the
system using the actual physical potential U0 as well as an
additional biasing potential U1, where U1 is chosen so
that the system is forced into a region of configuration
space that would otherwise not be seen in simulations.
Suppose we wish to measure the thermodynamic average
�A(r)	0 in the unbiased system. We simulate in the bi-
ased system. The desired average is then �A exp(�U1)	1/
�exp(�U1)	1 (the subscript 0 or 1 on the angle brackets
indicates whether the average is taken in the unbiased or
biased system), as we show below:

�A exp��U1� �1

�exp��U1� �1

�
� A exp��U1�exp����U0 	 U1��d3Nr

� exp��U1�exp����U0 	 U1��d3Nr

�
� A exp���U0�d3Nr

� exp���U0�d3Nr

� �A �0

(32)

We therefore have obtained a means of unbiasing averages
calculated using the biased potential.

Normally, U1 is chosen to be a harmonic potential for the
reaction coordinate z that confines it to be near a fixed value
z0. Then the biased system will sample configurations close
to z0, even when these would not be sampled in the unbi-
ased system. To obtain the potential of mean force, we
perform multiple simulations using different values z0i for
the harmonic force center. Each simulation is known as an
umbrella window. The mean force, as a function of posi-
tion, is calculated in each window, and potentials are de-
rived for each window using the unbiasing procedure given
above. Because each potential contains an arbitrary con-
stant offset, we then need to glue the potentials together.
This is done by a statistical procedure, the weighted histo-
gram analysis method (WHAM) (132) that minimises the
discrepancy between each umbrella window, in regions
where the windows overlap.

Umbrella sampling is one of the most commonly used
means of obtaining potentials of mean force. It has been
used to obtain approximate PMFs for large polypeptide
toxins unbinding from ion channels. Such computations
are, however, still extremely computationally expensive,
and convergence to the true PMF over practical computa-
tional timescales is uncertain, due to the extreme difficulty
of sampling over the full configurational space of the sys-
tem.

3. History-dependent bias methods

Like umbrella sampling, methods that employ history-de-
pendent bias potentials aim to force the system to sample
unlikely regions of the reaction coordinate, rather than sim-
ply staying near the local minimum of a potential well.
However, while umbrella sampling proceeds by running
multiple simulations with fixed and predetermined bias po-
tentials, history-dependent bias methods instead adaptively
modify the bias potential of a single simulation such that the
system is forced out of potential wells as the simulation
progresses. The advantage is that more complicated and
abstract reaction coordinates could be easily employed,
since, unlike umbrella sampling, there is no need to consider
in advance the location and spacing of the umbrella win-
dows or to generate initial configurations for each window.
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This strategy was first applied to molecular dynamics sim-
ulation in the local elevation method of Huber et al. (112).
To force the system out of the most commonly visited mac-
rostates, Gaussian hills are added at discrete locations close
to the current reaction coordinate. The height of these po-
tentials depends on how often the current conformation has
been visited relative to other conformations. Conforma-
tional flooding (101) is a similar idea that aims to speed the
rate of transitions between conformational states by
“flooding” the local free energy minima with single Gauss-
ian potentials whose parameters depend on the shape of the
local minimum. Initially, these methods were proposed as a
means of performing a conformational search, but they can
be used as a basis by which to calculate PMFs. For example,
local elevation umbrella sampling (105) uses the local ele-
vation bias potential as an umbrella potential in a subse-
quent PMF calculation. Below, we discuss two other com-
monly used methods; other variations on this idea exist.

Metadynamics (114) is a popular application of history-
dependent biasing approach. The system is initially simu-
lated in an unconstrained state, and a dwell histogram is
progressively built up over the reaction coordinate. As the
system evolves, biasing potentials, in the form of Gaussian
potential hills, are applied so as to flatten the potential
landscape by filling in the potential wells. Eventually, the
biased system is driven to uniformly sample the entire con-
figuration space, at which point the original PMF can be
obtained as inverse of the bias potential.

The adaptive biasing force method (61) is another similar
method that accumulates the average force system force,
rather than occupation probability, in each bin; the bias
potential is thus the negative of this average force. The
average system force itself corresponds to the gradient of
the free energy, and because force is continuous, the free
energy can be pieced together using several simulations car-
ried out in nonoverlapping windows.

We are not aware of such methods being used to derive free
energies for blocker-channel systems. Such methods should
be roughly as effective as umbrella sampling for this pur-
pose, but less sensitive to the choice of parameters (e.g.,
umbrella spring constants and window spacing are not an
issue). One problem is that, unlike umbrella sampling
where many windows can easily be run in parallel, the sim-
ulation needs to be run as a single serial simulation, unless
special steps are taken. For typical blocker channel systems,
however, this latter requirement is not really a problem.

4. Potential of mean force via Jarzynski’s equality

This computational technique belongs to a different class to
the techniques discussed above, as it calculates the free en-
ergy from nonequilibrium simulations. Jarzynski’s equality
is a remarkable equation which states that

�FA,B � �kT ln �exp[�� A,B(x0)] �A (33)

FA,B is the free energy difference between states A and B and
A,B(x0) is the work performed along the reaction coordi-

nate that takes the system from state A to B along a micro-
scopic trajectory that starts at the coordinates x0. There is
only one such trajectory for each point x0 because the equa-
tions of motion are deterministic. Note, though: the Ham-
iltonian is often taken to be time dependent. The angle
brackets �. . .	A denote an averaging over the initial con-
ditions x0 taken from the macrostate A.

Translating this into the problem of calculating the free
energy of binding of a blocker-channel system, we can de-
fine a time-dependent Hamiltonian in which the reaction
coordinate is pulled from the bound state A to the unbound
state B. Typically, this could be done by constraining the
center of mass distance between the blocker/channel system
using a time-dependent harmonic potential U(z,t) � �(1/
2)k[z � z0(t)]2. The distance z0 could be made to increase
more with constant velocity from its initial value towards a
value where the blocker is in the bulk. The ensemble of
initial conditions may be generated by taking frames from a
free simulation of the bound blocker-channel system. For
each initial point, the time-dependent pulling potential is
applied, and the average above is calculated to derive the
free energy between the end points of the path. Various
complications arise around the problem of sampling the
low probability trajectories, which are given a larger weight
in the sum.

The use of this method as a practical means of treating
blocker-channel systems was in fact considered by Baştŭg et
al. (13), who concluded that, for complex biomolecular
systems, umbrella sampling is more efficient.

5. Hybrid FEP/PMF method

The methods that we have discussed above were not spe-
cially formulated to deal with the problems of ligand bind-
ing and are perhaps more easily applicable to simple situa-
tions such as the calculation of the free energy of a single
ion. Because blockers are complex molecules, able to un-
dergo conformational change and to orient themselves
along any axis, the configurational space that must be sam-
pled to obtain ligand binding PMFs is large, and hence the
degree of difficulty involved in accurately determining their
binding free energy is much greater. Woo and Roux (256)
have proposed a hybrid FEP/PMF method that is designed
to overcome some of these difficulties.

The essence of their method is to define a pathway between
the bound and unbound states. The blocker is first con-
strained to its bound orientation and conformation, and to
a given axis, while in the binding site, is then pulled out of
the binding site along a straight line path, and is finally
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released from the conformational, orientational, and axial
constraints while in the bulk. The authors derive an expres-
sion for the binding constant in terms of the free energies
associated with the various constraints, as well as a term
which involves the potential of mean force of the con-
strained blocker being pulled out of the binding site, and
which does not correspond to a free energy. The free energy
terms are calculated using free energy perturbation, and the
PMF is calculated using umbrella sampling.

6. Linear interaction energy method

The preceding methods have all attempted, more or less, to
calculate the exact value of the free energy from atomistic
simulations. The next two methods we shall consider still
make use of atomistic simulations, but estimate the free
energy based on regression, in the first case, and an approx-
imation of the physics in the second.

The difficulty of the preceding methods is that they require
extensive simulations of all intermediate states between the
bound state and the unbound state. The linear interaction
energy (LIE) method (9) was developed to overcome this
computational bottleneck. Two simulations are only per-
formed, one on the bound state and one on the unbound
state. Both the van der Waals interaction energy (UVdW) and
the electrostatic interaction energy (Uelec) between the li-
gand and its environment are averaged for each simulation,
and the differences computed. The free energy is then esti-
mated as

�Fbind � ���UVdW � 	 ���Uelect � (34)

where � and � are phenomenological parameters, deter-
mined by fitting to known data. The use of the van der
Waals interaction energy occurs not because this is the main
contributor to the free energy (for example, hydrophobic
forces may be more important) but rather because it is an
easily computed proxy for the solvent-exposed surface area
of the ligand, and therefore varies approximately linearly
with other surface area-dependent effects such as the hydro-
phobic effect.

The linear interaction method appears to offer a reasonable
halfway house between the hugely computationally inten-
sive methods discussed above and more approximate or ad
hoc methods. There is an issue around the transferability of
the parameters � and � between different types of blocker
systems; for example, while the standard values may be
applicable for small, neutral drug like molecules, a different
set of parameters may need to be employed for large,
charged polypeptide toxins. Several ion channel blocker
studies exist for the case of small ligands (6, 155, 183, 199),
but little or nothing has been done for polypeptide blockers
or indeed any protein-protein complexes (10).

7. Implicit solvent methods

Moving to a further level of approximation, we shall now
consider implicit solvent methods, in which the molecular dy-
namics simulation is done away with altogether. Such simula-
tions are typically seen in docking applications, where an ex-
tremely rapid evaluation of the free energy (or a scoring func-
tion that acts as a proxy to the free energy) is required.

As discussed earlier, there are two primary contributions to
the free energy: the electrostatic contribution and a nonpo-
lar contribution that consists of van der Waals forces and
hydration effects such as the hydrophobic force. The first of
these is dealt with by solving the Poisson-Boltzmann equa-
tion, often using an approximation such as the generalized
Born approximation, and the second is normally dealt with
using a surface area-dependent potential. The main point to
note is that the free energy can be easily calculated from a
single configuration in both cases.

8. Molecular mechanics/Poisson-Boltzmann surface
area method

The molecular mechanics/Poisson-Boltzmann surface area
(MM/PBSA) method (54, 128, 215) shares some conceptual
ideas with the LIE method discussed above. In both meth-
ods, atomistic simulations are performed on the bound and
unbound systems, and then some approximation is used to
calculate the free energy difference between these two
states. However, while regression is used for LIE, MM/
PBSA instead seeks to apply the sampled conformations of
the molecular dynamics simulation to an implicit solvent
model (see above) in which the free energy can be more
easily calculated. The advantage of this over LIE is sup-
posed to be the fact that fitted parameters (which may not
be applicable over the full gamut of ligand/receptor types)
are not used; on the other hand, pitfalls in applying contin-
uum electrostatics may lead to other inaccuracies.

The free energy of the bound complex is first decomposed
into contributions, which are assumed to be additive.

�F � �FMM 	 T�SMM 	 �FPBSA 	 T�SMM (35)

The bound and unbound systems are simulated using standard
(usually explicit solvent) molecular dynamics. The term
�FMM, which represents the molecular mechanics bonded en-
ergies, is calculated by straightforward averaging over the tra-
jectory. The term T�SMM is the entropic contribution to the
binding free energy and may be estimated using quasi-har-
monic analysis or normal mode analysis. The term �FPBSA

represents the contribution to the free energy made by electro-
static and nonpolar nonbonded terms. This term is difficult to
derive directly from the molecular dynamics simulations. In-
stead, representative structures taken from the simulation are
evaluated using a continuum model. The electrostatic contri-
bution is calculated by solving the Poisson-Boltzmann equa-
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tion. The nonpolar contribution is given by the change in the
solvent exposed surface area of the ligand, scaled by a fitted
constant �; thus it is not completely true to say that this
method is parameter free.

This concludes our general discussion of computational
techniques and theory. In the rest of the review, we look at
specific examples of computational studies of ion channel
block and modulation.

IV. ION CHANNEL PHARMACOLOGY

Various ion channels, such as the voltage-gated K� (Kv) chan-
nels (210, 258), the calcium-activated K� (KCa) channels (252,
259), voltage-gated Na� (NaV) channels (68), Ca2� channels
(213), and Cl� channels (240), have been shown to be in-
volved in pathology or to act as drug targets. TABLE 1 lists
several Kv channels whose malfunction may cause a range of
human diseases such as immune disorders and cardiac dis-
eases. The pharmacological and pathological significance of
the Kv channels has been reviewed comprehensively elsewhere
by Shieh et al. (210) and Wulff et al. (258). Similar to K�

channels, NaV channels are also of high pharmacological im-
portance. For example, several subtypes of NaV channels in-
cluding NaV1.3, NaV1.7, NaV1.8, and NaV1.9 are potential
targets of novel analgesics (68, 211). The NaV1.5 channel,
expressed primarily in the heart, may be related to arrhyth-
mias such as long QT syndrome and atrial fibrillation (2).
Other less selective ion channels, such as transient receptor
potential (TRP) cation channels, have also been shown to be
involved in the pathology of various diseases including pain,
systemic diseases, aging, and cancer (178). Thus the patholog-
ical roles of a variety of ion channels have been discovered.

V. ION CHANNEL STRUCTURES

The structure of the Kv1.2 channel (40, 151), as illustrated
in FIGURE 4, shows that the channel is composed of four
identical subunits, with each subunit containing a voltage-
sensing domain, a pore domain, and a cytoplasmic domain.
The voltage-sensing domain is comprised of four helices

S1-S4, which move in response to membrane depolarization
and open the channel, while the pore domain contains the
S5-S6 helices that form the conduction pathway for ions
and the inactivation gate. This voltage-sensing domain does
not exist in the bacterial K� channel KcsA (FIGURE 5). Oth-
erwise, KcsA is very similar to the pore domain of Kv1.2.
The crystal structure of the bacterial voltage-gated sodium
channel NaVAb is displayed in FIGURE 6A. NaVAb is also
formed by a pore domain and a voltage-sensing domain.
The voltage-sensing domain of NaVAb formed by S1–S4
helices is similar to that of Kv1.2, consistent with the pro-
posal that the general architecture of the voltage-sensing
domain is conserved among different channels (35).

VI. ION CHANNEL MODULATORS

Numerous molecules, ranging from small ligands to large
polypeptide toxins, that occlude the ion-conducting path-
way of ion channels (pore blocker), or interfere with the
movement of the voltage-sensing domain of voltage-gated
ion channels (gating modifier), have been identified. These
molecules are useful probes of the structure and function of
ion channels, as well as having potential as drugs or drug
scaffolds. Knowledge of the detailed mechanisms by which

A

B

FIGURE 4. The structure of Kv1.2 (PDB ID 3LUT; Ref. 40) viewed
perpendicular to (A) and along (B) the channel axis. The three do-
mains, voltage-sensing domain, pore domain, and cytoplasmic do-
main, are highlighted in yellow, red, and blue, respectively. In A, the
position of membrane is indicated with horizontal bars.

Table 1. Pharmacological significance of Kv channels

Subtype Current Disease

Kv1.3 IKN Autoimmune
Kv1.5 IKur AF
Kv4.3 IKto Arrhythmia
Kv7.1 IKs AF, LQTS
Kv7.2 IKM Epilepsy
Kv10.1 IKdr Cancer
Kv11.1 IKr Arrhythmia, cancer

AF, atrial fibrillation; LQTS, long QT syndrome.

GORDON, CHEN, AND CHUNG

785Physiol Rev • VOL 93 • APRIL 2013 • www.prv.org



these molecules interfere with channel gating should prove
useful for developing novel modulators with lower toxicity
and higher efficacy, which may be of clinical use.

To understand the detailed interactions between a channel
and its modulators, knowledge of the channel structure is
essential. Fortunately, since the first crystal structure of the
K� channel KcsA was published in 1998 by Mackinnon and
co-workers (71), structures of various cationic channels
have been reported, such as the calcium-activated K� chan-
nel MthK (117), the voltage-gated K� channel KvAP (118),
the voltage-gated K� channel Kv1.2 (151), the Kv2.1-Kv1.2
chimera channel (152), the inward-rectifier K� channels
Kir2.2 (228) and Kir3.2 (255), the two-pore domain chan-
nels K2P1.1 (166) and K2P4.1 (25), and the voltage-gated
Na� channel NaVAb (187). The available structures of di-
verse channels have enabled experiments that probe the
functional surface of channel modulators and their receptor
sites. While the functional surface of the modulators and the
location of their receptor sites on channels can be inferred
with fair confidence from experimental measurements, the
exact binding modes such as the orientation of the toxin
upon binding and the modulator-channel interacting resi-
due pairs, which are important for the rational design of
novel channel modulators, are only indirectly observable
with currently available experimental techniques. Although

the interatomic distances inferred from NMR experiments
can be used to construct ligand-channel complexes, as dem-
onstrated by Yu et al. (263) and Lange et al. (137), the
distances represent ensemble averages and may be mislead-
ing if distinct conformations exist. In addition, such exper-
iments suffer from practical difficulties such as the slow
tumbling of the large modulator-channel complex in solu-
tion and high mobility of transmembrane helices of the
channel leading to broadening of proton signals, and thus
have not found routine use. Theoretical approaches such as
molecular docking and molecular dynamics (MD) simula-
tions, in which the interactions between channels and mod-
ulators can be examined in atomic detail, have been used as
an aid to experiment. In this section, we look at examples
where computational methods have been used to under-
stand the mechanism of action by channel modulators. We
will focus on potassium and sodium channels only, whose
structures are better understood than other ion channels.

A. Pore Blockers

1. Pore blockers of K� channels

A large number of polypeptide toxins that act on K�

channels by occluding the ion conduction pathway have

B
Outer vestibule

Inner
vestibule

Inactivation gate

A

FIGURE 5. The structure of KcsA (PDB ID 1BL8; Ref.
71) viewed from the periplasmic side along the channel
axis (A) and perpendicular to the channel axis (B). The
green spheres represent the K� in the selectivity filter.
In A, the four channel subunits are highlighted with dif-
ferent colors. In B, only two channel subunits are shown
for clarity.

A B

FIGURE 6. The structure of NaVAb viewed from the
periplasmic side along the channel axis (A) and perpen-
dicular to the channel axis (B). In A, the four channel
subunits are shown in blue, orange, gray, and red,
respectively. In B, the yellow sphere represents a so-
dium ion.
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been isolated from venomous creatures such as scorpi-
ons, snakes, cone snails, and sea anemones. These toxins,
usually containing 30 – 40 amino acids tightly packed by
three or four disulfide bonds, can block the K� current
across K� channels with nanomolar or picomolar affin-
ity. Several subtypes of K� channels, such as the voltage-
gated K� channel Kv1.3, which is a target for the therapy
of autoimmune diseases, have particularly high binding
affinities to various polypeptide toxins. Kv1.3 and simi-
lar channels exhibit one or several rings of acidic residues
lining the wall of the extracellular vestibule. The posi-
tively charged toxins, which are abundant in basic resi-
dues, are drawn towards the outer vestibular wall of the
channel and the entrance of the selectivity filter, where
they physically occlude the conducting pathway (137,
138, 185, 263). For example, the NMR structure of the
bound complex between charybdotoxin (ChTx) and
KcsA (263) reveals that the toxin residue Lys27 wedges
into the selectivity filter (FIGURE 7), in line with previous
mutagenesis experiments (185). On the other hand,
Kv1.5 and Kv4.3 channels carry several basic residues on
the outer vestibule, which are repelled by the positively
charged toxins. Therefore, Kv1.5 and Kv4.3 are not sen-
sitive to these toxins. For example, charybdotoxin
(ChTx), dendrotoxin, and kaliotoxin have been shown to
block Kv1.5 with an IC50 of 	100 nM, 	1 �M, and 	1
�M, respectively, compared with the values of 2.6 nM,
250 nM, and 0.65 nM for Kv1.3 (100).

Some of the most well studied toxins are ChTx, margatoxin
(MgTx), agitoxin (AgTx), maurotoxin (MTx), �-kaliotoxin
(KTx), and ShK which is isolated from a sea anemone. The
structures of these toxins are very similar, as illustrated in
FIGURE 8. One or two acidic residues are commonly found
at the opposite side of the key lysine residue, which occludes
the selectivity filter on binding. These acidic residues may be
involved in orienting the toxin as it approaches the channel,
such that the key lysine residue is pointing to the filter (44).

There also exist small K� channel blockers of nonpeptidic
nature, such as PAP-1, 4-aminopyridine (4-AP), and tetraethy-
ammonium (TEA). In general, the affinities of these small
blockers for K� channels are in the micromolar to millimolar
range, significantly lower than that of peptide toxins (104).

Computational studies of ion channel blockers typically in-
volve two steps. First, binding modes of the toxin and channel
are predicted, often with the help of existing knowledge from
experiment. During this step, different methods, such as
Brownian dynamics simulations, molecular docking, and mo-
lecular dynamics simulations, with experimental knowledge
being used to define restraints, may be used. Then, the pre-
dicted binding modes are validated, and unrealistic or incor-
rect binding modes ruled out. This can be done by calculating
experimentally observable quantities such as interaction ener-
gies and relative or absolute free energies of the binding modes,
which can then be compared with experiment.

Without taking into account any existing knowledge from
experiment, it may be possible to use Brownian dynamics
simulations to predict toxin-channel interactions. For ex-
ample, Cui et al. (59, 58) investigated the binding of the
scorpion toxin Lq2 to KcsA, and another scorpion toxin
P05 to the calcium-activated K� channels of small conduc-
tance (SKCa). Brownian dynamics calculations were per-
formed to sample the binding modes by each toxin and
channel. Subsequently, triplet contact analysis was used to
identify the most frequent interacting residue pairs from the
Brownian dynamics trajectories. It was found that three
arginine residues of P05 form electrostatic interactions with
two aspartate residues on the outer vestibular wall of SKCa

(58, 59). Different binding modes predicted were ranked by
calculating the potential energy of each bound toxin due to
the electrostatic field created by the channel protein (58,
59). Using similar methodology, Yu et al. (262) examined
the binding of six toxins, AgTx2, ChTx, KTx, MgTx, NTx,
and Pi2, to Kv1.3. They used Brownian dynamics algo-
rithms to survey the possible binding modes by each toxin
and molecular dynamics simulations to measure the struc-
tural flexibility of the proteins. It was shown that two basic
residues, one lysine and one arginine, of each toxin were in
frequent contact with the outer vestibule of the channel,
suggesting the important roles of these two residues in bind-
ing (262). The potential energies of the toxins due to the
electrostatic field of the channel were computed as a mea-

FIGURE 7. The NMR structure of ChTx in complex with KcsA (PDB
ID 2A9H; Ref. 263). The side chain of the Lys27 residue of ChTx
which occludes the selectivity filter is highlighted in blue. Two channel
subunits are shown in pink and light blue, respectively.
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sure of the binding affinities. Moderate agreement between
the predictions and experiment (correlation coefficient r2 �
0.6) was obtained (262), indicating that the binding modes
predicted may be reasonable.

Given experimental knowledge of interaction pairs in the
bound state, one can use biased molecular dynamics simu-
lations to dock the toxin onto the outer vestibular wall of
the channel. For example, in the work by Eriksson and
Roux (76), harmonic restraints were applied to maintain
the distances between certain toxin-channel residue pairs
within certain ranges inferred from mutagenesis experi-
ment. With the restraints applied, the toxin AgTx2, when
released in water �20 Å from the binding site, was gradu-
ally drawn to the outer vestibule of the Shaker (Kv1.0)
channel. Depending on the number of restraints applied,
four different binding modes were obtained (76). Two of
the four binding modes predicted appeared to be unstable in
explicit water in unrestrained molecular dynamics simula-
tions, and thus were ruled out. The continuum solvation
approximation method was used to calculate the changes in
binding free energies due to point mutations of the toxin
and channel (76). The binding free energies calculated for
the two binding modes agreed equally well with experi-
ment, suggesting that there may be two possible binding
modes or the method used was not accurate enough to
discriminate between the two binding modes (76). Never-
theless, the two binding modes predicted can be validated
by specifically designed experiments (76). Recently, a simi-
lar docking method was used by Chen and Chung (46) to
examine the binding modes between MTx and three closely
related channels, Kv1.1-Kv1.3. A distance restraint was ap-
plied between the side-chain nitrogen atom of the Lys23
residue of MTx and the carbonyl groups of a ring of four
glycine residues in the selectivity filter. The upper bound of
the distance restraint was gradually reduced from 15 to 3 Å,

such that the Lys23 residue of MTx was gradually drawn
into the channel selectivity filter (46). To verify the robust-
ness of the biased molecular dynamics used as a docking
method, each simulation was repeated a second time with
different random initial velocities, and a third time with a
different toxin orientation at the start of the simulation
(46). In addition, the binding mode of MTx to Kv1.2 was
also examined using a rigid-body docking method. It was
found that the three simulations predict identical binding
modes for all the three channels, and the docking calcula-
tions of Kv1.2 was in good agreement with the MD simu-
lations. Thus biased molecular dynamics may be used to
rapidly predict the binding modes between the toxin and
channel, if experimental data are available for at least one
distance restraint to be defined.

A third approach to predict toxin-channel binding modes is
to combine molecular docking calculations and molecular
dynamics simulations. For example, this method has been
used by Yi and co-workers (260, 261) and Jin et al. (119) for
the blockade of Kv1.2 by MTx and Kv1.3 by ShK, respec-
tively. In all these studies, the docking calculations were
used to generate various toxin-channel complexes, which
were subjected to cluster analysis. The clustering allowed
the distinct binding modes to be identified from the docking
calculations. In the case of ShK-Kv1.3, two distinct binding
modes were identified (119). Subsequently, molecular dy-
namics simulations were used to relax the bound complexes
in implicit solvent. The MM/PBSA method (128) was ap-
plied to derive the change in binding free energy due to
point mutation for each binding mode. The predicted rela-
tive free energies were compared with experiment, and the
binding mode most consistent with experiment was consid-
ered as being correct. Alternatively, unrealistic binding
modes predicted by docking calculations can be eliminated
with available experimental data (42, 44, 45).

AgTx2 ChTx KTx

MgTx MTx ShK

FIGURE 8. The structures of the six poly-
peptide toxins: AgTx (PDB ID 1AGT; Ref.
130), ChTx (PDB ID 2CRD; Ref. 23), KTx
(PDB ID 2UVS; Korukottu et al., unpub-
lished data), MgTx (PDB ID 1MTX; Ref.
120), MTx (PDB ID 1TXM; Ref. 22), and
ShK (PDB ID 1ROO; Ref. 236). The side
chain of one key lysine residue is highlighted
in blue. The side chains of all acidic residues
are shown in red. �-Helix is shown in green
and �-sheet strand in yellow.
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Although continuum solvation approximation methods
such as MM/PBSA allow the binding free energies to be
derived at low computational cost, several difficulties are
associated with these methods. For example, the calcula-
tions of the enthalpic component of the free energy involve
the subtraction of large numbers, resulting in an inherent
error in the order of about 
20 kT (127). In addition, the
entropic component of free energy is limited to conforma-
tional entropy, which cannot be estimated accurately with-
out extensive calculations either (253). In fact, in various
previous works such as the ones of Jin et al. (119) and Yi
and co-workers (260, 261), the entropic component of free
energy was assumed to cancel out between the wild-type
and mutant proteins. However, this assumption does not
necessarily hold because mutant toxins can have different
structural folds (79) and can bind with distinct modes
(138). Moreover, the wild-type toxin may bind in alterna-
tive binding modes (44). Thus it is desirable to calculate the
absolute free energy of binding and directly derive the dis-
sociation constant Kd, which is experimentally observable.

To determine the absolute free energy of binding, the PMF
profile as a function of the position of the toxin along a reac-
tion coordinate such as the central channel axis, can be con-
structed. However, direct sampling of the probabilities of the
toxin along the reaction coordinate is impractical with the
current molecular dynamics simulation techniques, because of
the limited time scale accessible. Thus methods that enhance
the sampling of low probability configurations are required
for reliable PMF profiles to be constructed (see sect. IIID). The
umbrella sampling technique is considered as the most reliable
method for constructing the PMF profile for complex ligands
such as polypeptide toxins (13).

Chen and Kuyucak (39, 41), starting from the NMR struc-
ture of ChTx complexed with KcsA (263), constructed with
umbrella sampling techniques the PMF profiles for the dis-
sociation of ChTx from KcsA. Initially, the PMF profile was
at a depth of �33 kT, corresponding to an absolute free
energy of binding of �28 kT. This value was substantially
lower than the value of �14 kT expected from experiment
(39). It was found that the structure of the toxin was signif-
icantly deformed in bulk (39). The energy associated with
the conformational changes of the toxin was estimated to be
about �15 kT (39). Once the energy due to the toxin de-
formation was subtracted from the PMF, the resulting value
of �13 kT, corresponding to a Kd value of 2 �M if an R
value of 10 Å is assumed in Equation 27, would be in
reasonable agreement with the experimental Kd value of 0.9
�M (39). In the subsequent work (41), the toxin structure
was maintained rigid with restraints. The PMF profile con-
structed was in a depth of 19 kT, corresponding to a Kd

value of �0.9 �M assuming a R value of 0.7 Å in Equation
27. Although it is unclear why two vastly different R values
(10 and 0.7 Å) have been used by Chen and Kuyucak (39,
41), their work demonstrates that in principle it is possible

to construct reliable PMF profiles for the dissociation of the
toxin from the binding site, with molecular dynamics sim-
ulations and umbrella sampling. Similar techniques have
been used by Khabiri et al. (124), Chen and co-workers (42,
44), and Gordon and co-workers (93, 94).

Recently, Chen et al. (42) have applied a molecular docking
method, molecular dynamics simulations, and umbrella sam-
pling to understand the structural basis of the binding of three
toxins, ChTx, ShK, and OSK1, to Kv1.3. A crude binding
mode between each toxin and Kv1.3 was selected from vari-
ous poses generated by rigid body docking. Experimental data
were taken into account in selecting the binding modes; the
residue Lys27 of ChTx and OSK1, and Lys22 of ShK were
assumed to enter the selectivity filter (42). Each crude binding
mode was then allowed to evolve to a low energy state with
molecular dynamics simulations in the absence of any re-
straints, allowing favorable binding interactions to be formed
(42). The binding modes revealed that all three toxins form
two strong electrostatic interactions with the channel, one in
the entrance of the selectivity filter and the other at the outer
vestibular wall (42). The binding mode of OSK1 to Kv1.3 is
shown in FIGURE 9A as an example. In addition, the longest
principal axis (FIGURE 9B), and not the dipole moment of the
toxins, was aligned with the channel permeation pathway in
the bound states (42). With the use of umbrella sampling, the
PMF profiles for the unbinding of the three toxins from Kv1.3
were constructed (FIGURE 9C). The dissociation constants Kd

of toxin unbinding calculated were 25 nM for ChTx, 0.17 nM
for ShK, and 0.02 nM for OSK1. The Kd values determined
experimentally are 0.71–2.6 nM for ChTx (3, 100), 0.011–
0.133 nM for ShK (123, 188), and 0.014 nM for OSK1 (171).
Therefore, the Kd values calculated for the three toxins were
within one order of magnitude of experimental values, sug-
gesting that the binding modes predicted are of reasonable
quality (42).

In conclusion, the studies mentioned above have shown
promises in predicting the absolute binding free energy and
Kd for the toxin blockers with computational methods.
Such calculations allow the predicted binding modes to be
directly validated against experiment. In the view of the
authors, computational methods will play growing impor-
tance in understanding the mechanisms of action by pore
blockers of K� channels.

2. Pore blockers of Na� channels

Voltage-gated sodium channels (NaV), responsible for the
rising phase of action potential, are widely distributed in
muscle and neuronal cells (33). In addition to mammals,
NaV channels have also been discovered in bacteria (126,
203). Bacterial NaV channels are homo-tetramers; each
monomer is comprised of six transmembrane helices (S1–
S6), as revealed by the crystal structure of the NaV channel
from Arcobacter butzleri (NaVAb) (187). The four helices
S1–S4 form the voltage-sensing domain, whereas the S5–S6
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helices form the pore domain that lines the ion permeation
pathway. Mammalian NaV channels, on the other hand, are
integral proteins containing four nonidentical subunits.

Neurotoxins bind to different receptor sites on NaV channels
and interfere with the gating mechanism (217). The receptor
site 1, formed by the selectivity filter and the outer vestibular
wall, provides the binding site for two classes of toxins, gua-
nidinium toxins and �-conotoxins. Once bound, these pore
blocker toxins are believed to physically occlude the ion per-
meation pathway. Two widely recognized guanidinium tox-
ins, tetrodotoxin (TTX) and saxitoxin (STX), are illustrated in
FIGURE 10. Both TTX and STX carry one or two guanidinium
groups. In contrast to guanidinium toxins, which are relatively
small molecules compared with the size of one or two amino
acids, �-conotoxins are polypeptides containing typically
22–25 amino acids (229). The backbone of �-conotoxins is
stabilized by three disulfide bridges and therefore very rigid.
This rigid backbone may be important for maintaining the
functional surface of �-conotoxins.

Due to the unavailability of the crystal structure of mam-
malian NaV channels, which is required for reliable results
to be derived from structured-based theoretical methods

such as molecular docking, Brownian dynamics, and mo-
lecular dynamics simulations, much of the computational
work on the binding of pore blocker toxins to NaV channels
has been focused on homology modeling and molecular
docking. Typically, the crystal structure of a potassium
channel such as KcsA (71) and MthK (117) is used for
generating a model of a NaV channel (147, 148, 232). De-
spite the fact that the homology models of the NaV channels
were generated based on the assumption that the selectivity
filter of NaV channels is similar to that of Kv channels, such
models allowed some molecular docking (147), Monte
Carlo sampling (232), and molecular dynamics simulations
(162) to be performed. Several models for the mechanism
and binding modes of TTX and STX (147, 232) and
�-conotoxins (162) to NaV channels have been proposed.
However, the exact binding modes between these blockers
and NaV channels have yet to be elucidated.

In 2011, the first crystal structure of NaV channels, NaVAb
(187), was reported. Although the structure of NaVAb
shares many features with potassium channels such as KcsA
(71) and MthK (117), there are also significant differences,
especially in the selectivity filter region. For example, the
diameter of the selectivity filter of NaVAb is 5 Å, �2 Å
wider than that of potassium channels. This highlights the
fact that the binding modes of the NaV channel blockers
predicted using homology models based on the structure of
potassium channels need to be reassessed.

The crystal structure of NaVAb provides a structural basis for
understanding the mechanism of action by Na� channel
blockers, such as TTX, STX, and �-conotoxins. Although
NaVAb is resistant to TTX (203), it has been demonstrated
that the channel is inhibited by a subtype of �-conotoxins,
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PIIIA (44). The selectivity filter includes a ring of glutamate
residues (E177), and a ring of glutamate residues (E189) is
located on the outer vestibule of the channel (see FIGURE 11A).
With the use of molecular dynamics simulations, it was found
that the positively charged toxin PIIIA, released in water 15 Å
above the binding site, spontaneously bound to the channel
outer vestibular wall and occluded the ion permeation path-
way with the side chain of either a lysine or an arginine residue
(FIGURE 11B), indicating that PIIIA is capable of inhibiting
NaVAb (44). The results also indicated that PIIIA may block
NaVAb with multiple binding modes, which was confirmed by
free energy calculations (44). The free energy calculations
showed that different binding modes share similar free ener-
gies of binding, suggesting that the binding modes are equally
probable. This interpretation was also confirmed experimen-
tally by Stevens et al. (218). Thus certain toxins may block
NaV channels with alternative binding modes, rather than the
single binding mode generally assumed.

In addition to TTX, STX, and �-conotoxins, drug mole-
cules like local anesthetics may also act as pore blockers of
NaV channels. The receptor site of local anesthetics has
been shown to be in the inner vestibule (177), rather than
the outer vestibule for �-conotoxins. Recent docking calcu-
lations suggest that local anesthetics may block the current
by creating a positive electrostatic field in the inner vesti-
bule, which repels cations (148).

B. Gating Modifiers

1. Gating modifiers of K� channels

A number of polypeptide toxins that interfere with the gat-
ing mechanism of voltage-gated K� (Kv) channels have
been isolated from spider venoms. These tarantula toxins
bind to the voltage-sensing domain of Kv channels within
the membrane and hinder the conformational changes that
occur during channel opening (141, 165, 164, 220). Once
the voltage-sensing domain is bound with toxins, a stronger
depolarization is required to activate the channel, thus shift-
ing the activation-voltage curve to the right (220).

Tarantula toxins are typically of 25–40 amino acids in
length. The structure of tarantula toxins is rigid, as the

toxin backbones are cross-linked by three or four disulfide
bonds forming the inhibitor cysteine knot motif, which is
also commonly found in pore-blockers (180). Some of the
most well-characterized tarantula toxins are hanatoxin
(HaTx) (221), Scodra griseipes toxin (SGTx1) (160), het-
eropodatoxin (HpTx) (207), phrixotoxin (PaTx) (69), and
the voltage sensor toxin (VSTx) (205). The solution struc-
ture of these toxins suggests that a hydrophobic surface is
conserved across tarantula toxins (225, 121, 140), although
the size and shape of this surface varies. The critical role of
this hydrophobic surface in toxin function has been dem-
onstrated experimentally (165, 220, 245). The toxins may
use this hydrophobic patch to interact with the voltage-
sensing domain. Once bound to the voltage-sensing do-
main, they may stabilize it in the closed conformation so
that the channel is harder to open. The functional surface of
tarantula toxins on the voltage-sensing domain of Kv chan-
nels has been examined extensively with mutagenesis tech-
niques (64, 65, 145, 146, 191, 222, 223, 264). These
showed that the periplasmic half of the S3 helix forms part
of the receptor site. However, the exact binding modes by
tarantula toxins have not been resolved by experiments.

To date, most molecular dynamics simulations have been
concerned with the energetics associated with partitioning
tarantula toxins into membranes. For example, using ato-
mistic molecular dynamics simulations, Bemporad et al.
(17) examined the preferred location of VSTx1 within lipid
membranes. The simulations showed that VSTx1, when
placed within the hydrophobic core or the aqueous phase,
spontaneously moves to the surface region containing the
lipid headgroups. When bound to the surface region, about
half of the toxin remains buried within the hydrophobic
core of the lipid bilayer, whereas the other half is interacting
with the head groups of lipids (17). Contrastingly, in the
work of Nishizawa and Nishizawa (179), HaTx1 was ob-
served to penetrate deeply to near the center of the bilayer,
but not to form a stable complex with the bilayer when
bound to the surface region. In subsequent studies, the PMF
profiles of VSTx1 along the bilayer normal reveal that the
preferred binding location of VSTx1 is �20 Å from the
center of a lipid bilayer (248, 250). Thus all the simulations
illustrated here are in support of the earlier proposal which
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FIGURE 11. A: structure of the pore domain
of the NaVAb channel, viewed perpendicular to
the channel axis. Only two subunits are shown
for clarity. B: PIIIA blocks the ion conduction
pathway of the NaVAb channel with the side
chain of the residue Arg2. Green ribbon repre-
sents the toxin backbone, and the yellow sphere
represents a sodium ion. [From Chen and Chung
(44), with permission from Elsevier.]
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states that tarantula toxins bind to the voltage-sensing do-
main within membranes. Molecular dynamics simulations
have also been used to understand the binding modes be-
tween VSTx1 and the isolated voltage-sensing domain of
KVAP (249). VSTx1, which is in the water phase at the
simulation start, spontaneously binds to the voltage-sensing
domain of KVAP in multiple coarse-grained simulations
each on a time scale of 3 �s (249). The receptor site on the
voltage-sensing domain was found to be primarily formed
by residues from the S1 and S4 helices (249).

2. Gating modifiers of Na� channels

Eukaryotic NaV channels are integral proteins consisting of
four homologous subunits (I–IV); each subunit contains a
voltage-sensing domain and a pore domain. A large number
of polypeptides isolated from venoms of scorpions, spiders,
and sea anemones have been shown to interfere with the
gating mechanism of NaV channels (32, 217). For example,
scorpion �-toxins bind to the periplasmic side of the volt-
age-sensing domain of the subunit IV and slow or inhibit
channel inactivation (96). Scorpion �-toxins, on the other
hand, bind to the voltage-sensing domain of the subunit II,
trap the voltage-sensing domain in an outward position,
resulting in the channel to open at less depolarized voltages
(103). Scorpion �- and �-toxins are typically of 60–80
residues in length and have rigid backbone cross-linked by
four disulfide bridges (195). Although �- and �-toxins
have distinct functional effects on NaV channels, their
shape and secondary structure are rather similar, as illus-

trated in FIGURE 12. As scorpion �- and �-toxins are be-
lieved to be potential leads for developing novel insecticides
(96, 103), numerous experiments have been carried out to
understand their functional surface and binding modes to
NaV channels. However, despite the fact that several mod-
els have been constructed with molecular docking methods
for the bindings of the �-toxin LqhII (247) and the �-toxin
Css4 to NaV1.2 (34, 265), the binding modes of scorpion �-
and �-toxins to NaV channels have not been fully resolved
by experiments. In addition to scorpion �-toxins, various

-conotoxins isolated from marine cone snails have also
been shown to inhibit the fast inactivation of NaV channels
(14, 78, 254). The receptor site of 
-conotoxins overlaps
with that of scorpion �-toxins (142), suggesting that the
two families of toxins may inhibit channel inactivation with
similar mechanisms.

Using a molecular docking method and molecular dynamics
simulations, Chen and Chung (47) have examined in detail
the binding of two �-toxins, Css4 and Cn2, to the isolated II
voltage-sensing domains of rat NaV1.2 and rat NaV1.6,
respectively. Experimentally, Css4 has been shown to inter-
fere with the gating mechanisms of both NaV1.2 and
NaV1.6, whereas Cn2 selectively targets NaV1.6 (208), at
nanomolar toxin concentrations. Yet, Css4 and Cn2 share a
sequence identity of 83%, being significantly different at
only three positions, 7, 8, and 64, which are in spatial
proximity due to the disulfide bridge between Cys12-
Cys65. As the difference in these three residues apparently
gives rise to the distinct sensitivity of Css4 and Cn2 to NaV
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FIGURE 12. The secondary structure of two
�-toxins, AahII (107) and Lqh�IT (237) (A), and
two �-toxins, Css4 and Cn2 (194) (B). The
structure of Css4 is modeled on Cn2. The two
toxins are 83% identical in sequence. Helices
are shown in purple, �-sheet strands in yellow,
and others in gray. The side chains of residues
at positions 8, 18, and 64 are highlighted. Ba-
sic residues are colored in blue, acidic in red,
and others in green. [Modified from Chen and
Chung (48).]
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channels, it is likely that they are involved in binding (208).
Following the assumption that residues 7, 8, and 64 form
part of the functional surface, a docking method was used
to search for a plausible binding mode between Css4-
NaV1.2 and Cn2-NaV1.6 (47). For each toxin-channel pair,
a unique structure that is consistent with the assumption
was selected out of 300 docking poses. Each selected struc-
ture was then embedded in a lipid bilayer and a box of
explicit water, and run for 20 ns with molecular dynamics
simulations without the presence of any restraints, allowing
the complex to evolve to a stable state in a membrane-like
environment. The toxin-channel interacting residue pairs
were identified and validated by comparing with mutagen-
esis experiments and previous models (47). The Kd values
derived with umbrella sampling were 20 nM for Css4 and
70 nM for Cn2, which were in reasonable agreement with
the experimental values of 1 and 40 nM, respectively (47).
The simulations revealed that both Css4 and Cn2 wedge
into the receptor site with a loop between positions 8 and 18
(FIG. 13, A AND B), which is referred to as the Linker domain
(47). In this loop, two charged residues, Lys13 and Glu15,
are commonly found in anti-mammalian �-toxins. These
two charged residues and a critical glutamate residue
(Glu28) were observed to form hydrogen bonds and salt-
bridges with the receptor site (FIGURE 13C), stabilizing the
toxin-channel complex. Thus the simulations suggest that
the functional surface of anti-mammalian �-toxins is con-
served, centered on the Linker domain (47). Interestingly,
the crystal structure of Cn2 bound to its antibody also
shows that the Linker domain plays a central role in the
binding (29).

The functional surface of �-toxins uncovered by Chen and
Chung (47) appears to overlap with the functional surface
of �-toxins determined experimentally, consisting of the
NC-domain around residues 7, 8, and 64, and the Core
domain around the residue 18. These two domains are in-
terconnected by the Linker domain, which wedges into the
receptor site in �-toxins. Given the similarity between the
structure of �- and �-toxins, it seems that the functional

surface may be conserved not only in �-toxins, but also
between �- and �-toxins. Following this assumption, Chen
and Chung used molecular dynamics simulations with dis-
tance restraints as a docking method to examine the binding
of two �-toxins, the anti-mammalian toxin AahII, and the
anti-insect toxin Lqh�IT, to the IV voltage-sensing domain
of rat NaV1.2 (48). The distance restraints were determined
assuming that the Linker domain of the two �-toxins wedge
into the receptor site in a similar orientation to that of
�-toxins. With the distance restraints applied, the toxins
were drawn to the receptor site rapidly within a few nano-
seconds. It was found that both AahII and Lqh�IT were
able to form several favorable electrostatic and hydropho-
bic interactions with the receptor site, demonstrating that
toxin-channel complex is stable with the Linker domain
wedging into the binding groove. The Kd values derived
were 17 nM for AahII and 1 �M for Lqh�IT, which agree
well with experiment which shows that AahII is about three
orders of magnitude more potent than Lqh�IT for NaV1.2
(122). Computational mutagenesis calculations were per-
formed on two channel mutants (48), E1551R and
R1626E. Experimentally, these two mutations did not have
any measurable effects on toxin binding affinities (247).
However, both E1551 and R1626 were observed to form
salt bridges with the toxin in the models, which casts doubts
on the consistency between the models and experiment. The
computational mutagenesis calculations eliminated this
doubt. It was found that AahII was able to form an equiv-
alent salt bridge when the one due to E1551 or R1626 was
broken due to the mutation, such that each of the mutations
did not change the binding affinity of AahII significantly.
For example, the Kd value calculated for the E1551R mu-
tant channel compared favorably with that of the wild type
(48). This highlights the importance of interpreting mu-
tagenesis data with caution. In support of the binding
modes predicted for AahII-NaV1.2, the 
-conotoxin EVIA
was observed to bind to the VS domain of NaV1.2 sponta-
neously in 50 ns, forming similar salt bridges as that ob-
served in the AahII-NaV1.2 complex (48).
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E15
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F44
V793

E28
R850

E15
R853

A B C
FIGURE 13. A: the position of Css4 bound to
the IIS1-S4 voltage-sensing domain of NaV1.2,
relative to the lipid bilayer. The surface of the
voltage-sensing domain is shown in transparent
silver. Toxin backbone is in yellow. Horizontal lines
indicate the average position of the phosphate
groups of the lipids. The loop between positions 8
and 18 of the toxin is highlighted in red. B: Css4
bound to the voltage-sensing domain of NaV1.2.
The side chains of two key residues of the toxin,
Lys13 (blue) and Glu15 (red), are highlighted. The
S2 and S4 helices of NaV1.2 are highlighted in
pink and lime, respectively. C: Css4 bound to the
voltage-sensing domain of NaV1.2 showing three
of the key contacts. Toxin backbone is shown in
yellow. The complexes shown in B and C are ro-
tated by �90° counterclockwise from that of A.
[From Chen and Chung (47).]
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In conclusion, the computational studies of Chen and
Chung (47, 48) demonstrated the key role of the Linker
domain in the binding of �- and �-toxins to NaV channels.
In all the models of �- and �-toxins bound to NaV channels
predicted (47, 48), at least one salt bridge between the toxin
and the S4 helix of the VS domain was observed. It remains
to be elucidated whether or not such a salt bridge is vital for
the action of the toxins.

VII. FUTURE PROSPECTS

We have first outlined some theoretical principles underly-
ing state-of-the-art computational tools currently being
used for studying biological macromolecules. We then sum-
marized some of the salient features uncovered using com-
putational methods of the actions of channel blockers, con-
centrating on polypeptide toxins extracted from venomous
animals, on voltage-gated cationic channels. In the future,
computational modeling of ligand-channel interactions
may play a prominent role, providing physical explanations
of the mechanisms underlying modulations of channel
properties by large polypeptides and intermediate-sized
drug molecules. For example, detailed knowledge of the
bioactive conformations of polypeptide toxins to specific
channel subtypes may lead to a host of novel pharmaceuti-
cal products.

In theory, one should be able to gain important knowledge
of ligand-channel interactions using computational tech-
niques. For example, in silico studies should enable us to
identify the ligand binding site, reveal pairs of interacting
ligand-channel residues, and determine the binding affinity.
Many efficient algorithms and computational tools have
been devised over the past decades, designed to unveil the
modes of interactions between macromolecules. Undoubt-
edly, these tools will be further refined and improved, such
that they will rapidly provide insights into how small or
large molecules modulate the conductance properties of bi-
ological ion channels.

To date, computational studies of blocker-channel interac-
tions mainly rely on two-step procedures. First, with the use
of molecular docking programs, Brownian dynamics, or
biased molecular dynamics simulations, a toxin is com-
plexed to the external vestibule or the voltage-sensor of a
specific channel. If a docking program is used for this step,
one or two docking poses among a large number of possible
poses generated by the program are selected based on prior
experimental knowledge. Many state of the art docking
programs do not currently appear to be accurate enough to
routinely derive correctly docked bound states of polypep-
tide toxins on ion channels without a degree of operator
input and prior knowledge. This would be a problem for a
truly high-throughput screening and ranking system, which
in any case we believe is some way away. When experimen-
tal information is available, this can be incorporated into

the docking procedure using distance restraints (43). Biased
molecular dynamics also works well for this purpose (46,
48). Toxin pore blockers, which block the channel by in-
serting a lysine or arginine residue into the pore, are an
easier case, because each toxin has only a small number of
such residues available to be inserted into the pore, and
inserting a residue into the pore vastly constrains the num-
ber of available poses. Thus, in these cases, the problem
appears to simply be one of finding the correct protocol and
tools rather than a deficiency in current algorithms.

Following the generation and selection of docked poses, the
free energy of binding and binding affinity, which are ex-
perimentally observable quantities, may be calculated.
Also, the bioactive surface of a specific toxin can be identi-
fied by examining the residue pairs forming hydrogen bonds
in the toxin-channel complex. Moreover, it is possible to
carry out theoretical site-directed mutagenesis to enhance
its sensitivity and selectivity (45, 123) or prune the molecule
to render it smaller and more durable (52, 63, 125). In
recent studies, the Kd values derived using the umbrella
sampling technique and explicit representation of water ap-
pear to be within one to two orders of magnitude of that
measured experimentally in various toxin-channel systems
(41, 42, 46, 94, 200). These approaches, however, cannot
be routinely used to search for lead candidates of channel
blockers from large numbers of available compounds, be-
cause of prohibitively high computational costs. Typically,
it takes between 50,000 and 75,000 CPU hours of a modern
supercomputer to construct a profile of potential of mean
force of one toxin, using molecular dynamics umbrella sam-
pling methods with simulation times that are barely suffi-
cient. As discussed in the review, other, approximate, free
energy methods are available, but it is harder to assess their
accuracy in predicting the binding affinity of toxins to ion
channels, due to a lack of computational studies. The LIE
method did not work well in predicting the relative binding
affinities of MTx to Kv1.1, Kv1.2, and Kv1.3 in one study
(46), possibly because the entropic component of the free
energy which is ignored by the method cannot be cancelled
out between the channels. The MM-PBSA method, on the
other hand, appears to offer a plausible means of calculat-
ing the changes in free energy due to a single mutation to the
toxin (119, 260, 261). But clearly more work needs to be
done to achieve a more generally applicable methodology.

It will therefore be desirable to devise a computational al-
gorithm, either an improved version of molecular docking
programs, a more sophisticated Brownian dynamics tech-
nique incorporating the flexibility of ligands and channels,
or a clever modification and specialization of standard mo-
lecular dynamics, that can rapidly determine the binding
mode between the ligand and the channel and accurately
calculate the free energy of the binding. Such an algorithm
might have the following features, all of which are found in
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various existing programs and techniques but which will
need to be further synthesized and improved.

Implicit water, and possibly lipids, will probably be needed.
Modeling all of the water molecules in the assembly takes us
into the realms of standard molecular dynamics, which is
too slow for our desired purpose. Note that not all the water
needs to be implicit. Explicit water could in principle be
employed around the channel pore and blocker, with im-
plicit water being used further away.

Large portions of the simulation assembly could be fixed,
treated using rigid body approaches or otherwise treated in
a simplified manner. The purpose is again to increase com-
putational efficiency. It is probably too ambitious to take an
approach where all possibilities of large-scale conforma-
tional change are taken into account. Instead, the confor-
mations of large parts of the channel and blocker should be
taken to be invariant, thus allowing fixing to take place.

The long-range electrostatics should be reasonable. This is
particularly important for ion channel blockers that bind in
the pore. Such blockers are usually highly charged and are
attracted to the oppositely charged outer vestibule of the
channel by long-range electrostatic forces that contribute a
significant portion of the total binding affinity. The channel
pore itself is a region where strong, highly focused electric
fields are present, and thus getting the electrostatics right in
this region may be important.

Hydrogen bonding and salt bridges need to be correctly
dealt with. These short range forces contribute a large per-
centage of the binding affinity of typical ion channel mod-
ulator toxins.

Nonpolar hydration forces, such as the hydrophobic force,
need to also be reasonably well modeled, because these
forces are also important to binding.

Flexibility should be taken into account. We have spoken
above about fixing parts of the system. When protein toxins
bind to an ion channel, we would require that the residues
involved in key contacts be able to attain the necessary
geometric configuration. We would also require, where nec-
essary, that the selectivity filter of the channel should be
flexible enough to allow basic side chains to be inserted into
the filter, as is seen in many ion channel blocker toxins.

Implicit water, lipids, and the fixing of the interior of the
protein and lipid regions necessitate the use of some kind of
macroscopic electrostatics treatment. We have discussed
various approaches to macroscopic electrostatics in the ear-
lier sections of this review. Presolving Poisson’s equation or
the Poisson-Boltzmann equation and then storing the re-
sults in lookup tables is an extremely fast approach often
taken by Brownian dynamics and docking programs. Ap-

proximations are necessary to deal with the interactions
between two or more molecules or ions in such an ap-
proach, due to considerations of dimensionality of the
lookup tables. Generalized Born electrostatics are able to
deal with nonrigid bodies, and are also able to deal with all
interactions between simulation bodies, but are slower and
potentially less accurate. A combination of the two might be
worth trying. If explicit water were to be employed only
inside the channel and around the binding interface, then it
might be possible to get away with a very fast and simplified
version of macroscopic electrostatics.

The treatment of hydrogen bonding and salt bridges is also
difficult. Hydrogen bonds exist as a delicate balance be-
tween attractive Coulomb forces involving small, mobile
hydrogen atoms, repulsive steric forces, attractive disper-
sive forces due to the van der Waals potential, and the
mediating influence of the surrounding solvent. Atomistic
molecular mechanics often deal with this by explicitly mod-
eling all elements of the above, using a carefully calibrated
parametrization. Changing any of the elements, for exam-
ple, fixing hydrogens or combining them with parent atoms
or using an implicit solvent force field, will seriously disrupt
this delicate balance. It seems likely that either of two ap-
proaches might be taken. The first approach models the
binding interface and other important parts of the system
using fully atomistic, explicit solvent molecular dynamics
while retaining more approximate representations in more
distant regions. The second approach introduces special
empirical forces for hydrogen bonding and salt bridges. The
latter treatment is common in docking programs.

The treatment of nonpolar forces faces problems similar to
that of hydrogen bonds. Implicit solvent force fields often
rely on a surface area-based approach, where the nonpolar
energy of a group of one or more molecules scales with the
solvent accessible surface area. Scaling constants are pa-
rametrized based on the calculated solvation free energies of
libraries of molecules. There is some danger that the param-
eterizations may not lead to accurate binding forces due to
the simplified nature of the model. More sophisticated
treatments exist, but at the time of writing it is hard to pick
a clear winner. Again, the approach of including explicit
water molecules around the binding region may help to
ameliorate the problems.

In general, state-of-the-art implicit solvent force fields seem
to be able to predict the solvation energies of biomolecules
to within several kcal/mol (115, 139). Careful parameter-
izations (38) seem to be able to derive potentials of mean
force for small molecular fragments that have a comparable
error scale. Ideally, we would like to be able to compare and
rank the binding free energies of similar toxins, where an
accuracy of a few kilocalories per mole might still give use-
ful information. Therefore, it appears that current algo-
rithms are probably somewhere on the cusp of success ver-
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sus failure in this regard. A good treatment of solvation will
therefore be a critical part of any new tool.

The other critical requirement is flexibility, which was dis-
cussed in the sections on Brownian dynamics and docking.
While flexible side chains and a limited degree of flexibility
in the channel can be designed into computational tools
without incurring too much overhead, there are areas, such
as the treatment of unordered turret loops in the outer ves-
tibules of ion channels, that are inherently hard to deal
with, and will probably remain so for some time. Results
might therefore need to be interpreted carefully in the light
of these kinds of uncertainties.

The discussion above tends to view the problem from a
physical perspective, referring as it does to various types of
physical forces. It will also be interesting to see how more
abstract force fields, based on machine learning, such as
that used in Autodock Vina (234) will perform in the future,
and whether such approaches will prove useful for studying
channel-toxin binding.

Thus there are difficult, but surely not insurmountable,
problems to be overcome. The authors of this review are
involved in investigating the use of Brownian dynamics to
study ion channel modulator systems. Our system employs
a fixed channel, lookup-based electrostatics, and blocker
molecules that consist of coupled rigid bodies. Phenomeno-
logical pair potentials are used for hydrogen bonding, salt
bridges, and also for modeling hydrophobic forces. The
calibration of the parameters of the model is in general
difficult, largely because the parameters tend to have a high
degree of interdependence. The calibration methodology
will therefore need a good deal of thought and research. We
believe that it might be worthwhile to develop a set of
specialized parameters aimed squarely at ion channels and
toxin blockers. We are hopeful that this approach might
allow a program that is accurate enough to predict binding
modes of toxins and can correctly rank different toxins or
mutations of toxins. This kind of specialized approach
would also be worth investigating from the point of view of
developing existing molecular dynamics free energy tech-
niques, such as LIE or MM-PBSA. Even a very specialized,
but fast and accurate, methodology would find important
clinical applications.

There are numerous polypeptide toxins yet to be discovered
and characterized from venoms of arachnids, reptiles, and
marine invertebrates. For example, it has been estimated
that there are 500 Conus species, each of which has �100
different conotoxins (230). Only a handful of conotoxins to
date have been characterized and tested. The advent of a
new, powerful algorithm will enable us to rule out rapidly a
very large number of untested toxins with inferior blocking
characteristics so that in vitro or in vivo experimental test-
ing can be more focused. These approaches will also render

computational and theoretical approaches to be useful for
the design of modern drugs targeting biological ion chan-
nels.
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