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ABSTRACT 

A parameterized Markov chain model is developed to represent the characteris- 
tics of channel currents that either are the superposition of many single channels or 
show multiple conductance sublevels. The simplified model takes the form of a set of 
binary chains that are interdependent according to a simple lumped coupling 
parameter. When varied, this parameter realizes a range of behaviors from tight 
coupling to complete independence. Other model parameters describe the intrinsic 
characteristics of the binary chains. An identification procedure for the model 
parameters is developed based on hidden Markov modeling ideas but incorporating 
a novel parameter estimation. The usefulness of the model in analyzing certain types 
of data is demonstrated with examples of real channel currents. 

1. INTRODUCTION 

Analysis of channel currents over the past decade has been domi- 
nated by the kinetic model proposed by Colquhoun and Hawkes [1]. It is 
based on a finite-state, continuous-time, homogeneous Markov process, 
where each state represents a hypothetical conformational state of the 
channel macromolecule. Thus, the channel molecule is believed to 
undergo a small set of discrete conformational changes, from closed 
states to open states. In this formulation, the observed channel currents 
are assumed to be binary; namely, the channel can be either open or 
closed. There are, however, instances in which channel currents cannot 
be represented as a two-state chain. First, a patch of membrane en- 
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closed by the rim of the electrode tip frequently contains more than one 
active channel that open and close independently of each other, espe- 
cially when the patch is maintained at physiological temperatures. 
Theoretical schemes for deriving properties of multiple channels have 
been proposed previously [2-4]. Second, numerous types of channels 
show multiple conductance levels. Among these are channels activated 
by acetylcholine [5, 6], neuroactive amino acids [7-9], or intracellular 
messenger systems [10-12]. The distinction between multiple channels 
and channels with subconductance levels becomes blurred when individ- 
ual pores within a single channel become partially coupled. Indeed, 
when the action of a number of these pores couples rigidly, the 
properties of such multiple pores will be kinetically indistinguishable 
from those of a single two-state channel. 

It is desirable to quantify whether multiple channels contributing to 
patch-clamp recordings are independent or have some dependency, as 
suggested by others [13, 14]. The ultimate goal is, naturally, to describe 
the collective behavior of channels with a set of dynamical equations. 
As a preliminary step toward such a physical model, a simplified 
mathematical model is developed in this paper. In the first part of the 
paper, we formulate a mathematical representation of a vector of 
partially coupled Markov chains. In our formulation, a finite number 
of stochastic processes, each characterized by an identical two-state, 
discrete-time, first-order, homogeneous Markov chain, is coupled with a 
dimensionless numerical quantity K, which we call the coupling coeffi- 
cient, in a way analogous to a system of linear differential equations 
linked with a static or dynamic coupling term. In the second part, we 
outline a scheme that enables the identification of the critical parame- 
ters of coupled Markov chains, when their realization is embedded in 
white Gaussian noise. The model identification problem is formulated 
in the framework of a hidden Markov model (HMM), and then a novel 
parameter estimation procedure is applied to obtain estimates, optimal 
in a sense to be defined, of the relevant parameters. When the coupling 
and other parameters of such a vector Markov process are altered, a 
rich variety of qualitative behavior is generated. In the final part of the 
paper, we illustrate how our model can be applied for the analysis 
of channel currents recorded from excised patches of the biological 
membranes. 

2. PROBLEM FORMULATION 

2.1. O V E R V I E W  

Suppose there are two discrete open levels in patch-clamp recordings 
of ion channels, and the transition from the closed level to the higher 
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open level or vice versa rarely occurs. We will say that the recordings 
represent the superposition of two independent or uncoupled "pores." 
We adopt this different terminology because the distinction between 
single-channel currents and multiple-channel currents, as commonly 
used in the literature, becomes ambiguous when several single channels 
contributing to a patch-clamp recording open and close in partial 
synchrony at times and in full synchrony at other times. When the pores 
are totally coupled, their collective behavior will appear as a single 
channel (composed of multiple pores) that can take on only two conduc- 
tance levels. The model we propose here seeks to explain the discrete- 
time (sampled) observed process by providing a plausible mathematical 
mechanism for the underlying process. The structure of the Markov 
chain model is guided by insight into the underlying physical process, 
the prominent aspect of which is the notion of coupling between 
identical pores which, as an ensemble, can also give an appearance of a 
single channel or a channel with multiple subconductance levels. 

Whereas it is anticipated that the coupling mechanism may be quite 
involved and depend on the geometry of the channel, our model 
simplifies the description by characterizing the coupling through a 
single parameter. In this sense the parameter is lumped and the model 
approximate. This means that when we use the model as the basis for 
identifying a real channel, for example, we are able to determine in a 
coarse quantitative manner whether or not the pores exhibit any cou- 
pling. Moreover, with our formulation, channel currents representing an 
algebraic sum of many independent channels can be decomposed and 
the kinetics of single channels can be estimated. 

2.2. NOTATION 

We define in Table 1 the notation used throughout the paper. Note 
that matrices are represented with bold type and vectors with capital 
Roman letters. 

2.3. SIGNAL MODEL 

We make the following assumptions about the Markov process s~ r). 

Discrete-Time Representation. It is convenient to deal with discrete- 
time Markov processes embedded in noise. In formulating the signal 
model, it makes little difference whether the process is envisaged as a 
continuous-time or discrete-time chain, since we can move between the 
two process descriptions by observing that the transition probability 
matrix P is the matrix exponential of the intensity matrix Q times the 
sampling period T. [We note here that a given P sometimes cannot be 
mapped back to a valid Q via Q =(1/T)log(P), as log(P) may be 
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TABLE 1 

Notation and Description of Symbols 

Symbol Description 

k 
L 
ql 
q2 
q ~ {ql, q2} 
S(k r) 
Vij 
v 
p(1) 
p(C) 
P 
{Uo ..... uL} 
Zk 
Yk 
Sk 

P 
K 

Discrete time index 
Number of pores in the channel 
Closed-pore conductance level 
Open-pore conductance level 
Set of possible pore conductance levels 
State of rth pore in channel (binary) at time k 
Transition probability for an isolated pore s(k r) ~ s~ + 1, Vr 
Transition probability matrix for a single pore 
Transition probability matrix for L uncoupled pores 
Transition probability matrix for L completely coupled pores 
Transition probability matrix for L partially coupled pores 
Set of L + 1 possible output channel conductance level values 
Total channel conductance level before additive noise 
Noisy measurement of total channel conductance level 
State of channel (binary L-vector with components s(k r)) 
Pore closed-to-closed probability 
Pore open-to-open probability 
Coupling coefficient (probability) 

complex.] However, for any proposed model of channel dynamics, we 
need to obtain optimal estimates of the parameters  featured in it and 
evaluate how well it describes the observation sequence. The measure-  
ment obtained in the laboratory invariably contains random noise in 
addition to the signal of interest. It is when dealing with these noisy 
observations that a continuous-time formulation of a Markov chain 
poses added technical difficulties. The mathematical  tools for handling 
continuous-time processes, the realization of which is hidden in noise, 
are still being developed and involve advanced mathematics such as Ito 
calculus and Wiener processes. The discrete-time formulation, on the 
other hand, avoids these theoretical problems. 

First-Order, H o m o g e n e o u s  Markovian.  We assume that the probability 
of  the elementary pore being open at time k + 1 depends solely on the 
state it was in at time k. The transition probabilities of  passing from one 
state level (dosed or open) at time k to another  state level (dosed or 
open) at time k + 1 form a 2 × 2 state transition probability matrix V. 
We further assume that the transition probabilities are invariant of  time 
k. It is easy to extend the signal model to second- or higher order 
Markov chains or to semi-Markov processes, in which the transition 
probability is a function of the time the process spends in a particular 
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state. A mathematical description of this extension is given by Krishna- 
murthy et al. [15]. 

Insensitivity to the First-Order Markovian Assumption. Theoretically, the 
open- or closed-time interval histogram tabulated from a first-order, 
homogeneous Markov chain is distributed according to a single expo- 
nential function. However, a finite-length data segment does not con- 
form strictly to the first-order Markov statistics. Moreover, interval 
distributions, especially closed-time distributions, obtained from real 
channel currents can best be fitted with two or three exponential 
functions. In formulating our coupled Markov model, we have neverthe- 
less represented the kinetics of an elementary pore as a binary first-order 
Markov process. This simplification makes the mathematics underlying 
the coupled chains tractable and reduces the number of parameters that 
have to be estimated from the observation sequence Yk" Having devised 
a parameter estimation scheme based on a simplifying assumption, it is 
desirable to demonstrate empirically (by deliberately violating the un- 
derlying assumption) that the processing scheme is not sensitive to 
deviation from such an assumption. 

Elsewhere, we have demonstrated that the departure from the first- 
order Markov assumption has little, if any, effect on the performance of 
the HMM processing scheme and fluctuation analysis [16-18]. Using 
these processing schemes formulated under the assumption that the 
underlying signal sequence can be construed as a first-order Markov 
process, we analyzed noisy records that contained periodic rectangular 
pulses or fictitious channel currents obeying a Colquhoun-Hawkes 
gating model. The accuracies of the estimated parameters (such as the 
transition probability matrix, signal amplitudes, and signal sequence) 
were relatively unaffected when the signal statistics deviated consider- 
ably from the underlying assumption. From an extensive series of 
simulations, we have also ascertained that the coupling parameters 
between the constituent pores can be deduced with a fair degree of 
confidence by using the algorithm presented here even when the 
modeling assumptions are invalid. Thus, our analytical method can 
effectively be applied to a collection of pores that do not strictly 
conform to first-order Markov processes. 

Remarks. In the Colquhoun-Hawkes formulation [1], the channel 
molecule is assumed to undergo a series of conformational changes, 
from the closed states Co, C1, . . . ,C n to the open states O 0, O1,...,O m. 
The underlying transitions from one conformational state to the other, 
each represented as a continuous-time Markov process, are not directly 
observable, but some of their properties can be deduced from the 
behavior of single-channel currents. Because the n + m underlying 
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conformational states have been aggregated into just open- and closed- 
channel states, the signal sequence generated by this model is not a 
two-state Markov chain. When the number of underlying states is small, 
for example, n = 2 and m = 1, the process can be represented as a 
discrete-time, three-state, homogeneous hidden Markov model with 
aggregation to two observable states, and the maximum likelihood 
estimates of the relevant parameters featured in the model can be 
obtained [19]. If, on the other hand, a binary process embedded in noise 
is generated by a large number of underlying conformational states, or 
the observed data result from the superposition of several such pro- 
cesses, which are partially interdependent, the relevant parameters 
cannot be easily identified. It is not entirely clear how one can design a 
computationally efficient maximum likelihood estimator that is robust 
in the presence of white noise if the channel current is assumed to 
result from a large number of partially coupled pores, each of which can 
be modeled as an N-state, continuous-time Markov chain aggregated to 
a binary process. 

We note here that the meaning of "state" in our representation 
differs from that adopted in the Colquhoun-Hawkes model [1] but is 
consistent with that used in mathematical literature [e.g., 20, 21]. The 
underlying conformational state, which is not directly observable from 
measurements, does not feature in our scheme. 

2.4. B I N A R Y  VECTOR CHAIN PROCESS 

Consider L identical discrete-time, binary, homogeneous Markov 
processes denoted S~k 1) . . . . .  S~ L), such that at each time k, s~ r), r = 1 . . . . .  L, 
is a binary random variable taking on one of two states in the set 
q ~ {q~, q2}. So one can for ql read "closed" and for q2 read "open,"  
and the state of the channel corresponds to some combination of L 
open or closed pores. Define the vector process at time k that describes 
the ensemble of the L scalar processes, 

Sk zx [,,(1) ,,(2) ~(L)'~ - - \ ~ ' k  , °k  , ' " , ° k  ) 

with state space 

qL & q x q x  ... x q ,  

L times 

that is, qL is the L times Cartesian product of q (ordered binary 
L-tuple). Note that the set qL has N = 2 L elements. We index each of 
these states according to a binary ordering in Table 2. 
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TABLE 2 

Indices for the Corresponding Pore State Configurations 

Index State 

0 (ql,ql . . . . .  q l )  

1 ( q 2 , q l  . . . . .  q l )  
2 (q2,q2 . . . . .  q J )  
3 ( q 2 , q 2  . . . . .  q l )  

N -  1 £ 2 L - -  1 ( q 2 , q 2 1  . . . .  q2) 

117 

Each of the identical binary processes will be modeled as a Markov 
chain, with transition probabilities 

Uij ~B~ P/e(r)'tl~'Jk+ 1 = qj Is~r)=qi), i,j~{1,2}'Vl<~r<~L, . (1) 

So, for example, Val is the probability that the pore remains closed at 
the next sampling measurement instant k + 1, given that the pore is 
closed at the current sampling instant k. These transition probabilities 
do not depend on values taken by the state at time instants before k; 
that is, the Markov property means that vq, as expressed in (1), does 
not depend o n  S(k r)_ 1' s(r)-2' or earlier (and further this probability is 
independent of time k by the homogeneous assumption). This mathe- 
matical property considerably simplifies the subsequent analysis and 
forms perhaps the simplest nontrivial example of a stochastic process. 

The corresponding 2 × 2 transition probability matrix that combines 
the above four transition probabilities will be explicitly represented as 

V = [ u21  u 2 2  1 p p 

and is sufficiently parameterized, as indicated, by only two parameters, 
~" and p. 

2 .5 .  GENERAL MODEL FOR L PORES 

When we consider the ensemble of L pores forming the channel, we 
have an analogous mathematical structure but this time of greater 
dimension. Let p(G) ~(G)) =Q'mn" denote a generic transition probability 
matrix of the vector binary process Sk; that is, for Qm ~- (qi,, .... qi,) and 
Q.&(qj , ,  .... qjL), 

pf.~ ~= P (  Sk+ 1 = Q. I S~ = Q m )  
p / ' ~ ( 1 )  ~, e ( L )  = ,-i s(L) __ I.°~+1 'til . . . . . .  k+l=qiL IS~ ') qiL)" (3) = ~ t / i l ,  • " " ,  k - -  

Then P(~) is a square matrix with 4 L elements. 
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2.6. UNCOUPLED CASE 

We can determine the specific transition probability matrix when the 
constituent components of the vector process are independent as a 
special case of (3). This means that the pores forming the channel open 
and close with complete disregard for their neighbors. That is, P(I)= 

( I )  (Pmn) is defined as the L times tensor (Kronecker) product of V (2): 

p(*) A V®V® --. ®V, (4) 
L times 

where ® denotes the tensor product. Alternatively, this means that the 
components of (4) can be factored as 

L 
p(l) = H Pie(r) s(r) mn - - k ° k +  1 =qjrl =qir)" 

r = l  

As an example, with L = 2 and V as in (2), 

V®V = 

¢2 ¢ ( 1 - ¢ )  ( 1 -  ¢ )¢  ( 1 - ¢ )  2 ] 

¢ ( 1 -  p) Cp ( 1 -  ¢ ) ( 1 -  p) ( 1 - ¢ ) p  
( 1 - p ) ¢  ( 1 - p ) ( 1 - ¢ )  pC p ( 1 - ¢ )  " 
( 1 -  p)2 ( 1 -  p)p  p ( 1 -  p) p2 

(5) 

To confirm that this description makes sense we can compute the 
probability that at time k the first pore is closed and transits to be open 
and the second pore is open and transits to be closed, say. Since the 
pores act independently, the probability of the first event is v12 = 1 - ¢, 
that of the second is v21 = 1 - p ,  and that of the joint event, by 
independence, is the product (1 - ¢ )(1 - p). This product can be identi- 
fied in (5) as the entry in the second row and third column. 

2.7. COUPLED CASE 

A second special case of (3), which we denote as p(C), plays an 
important role. This vector chain represents the situation where the L 
binary chains are tightly coupled, 

[ ~ 0 .-. 0 loi ] 0.5 0 ... 0 5 c 
p(C) & . • • . 00; j 

1 - p  0 ... 0 

(6) 
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The selection of the parameters to be equal to those in p(1) reflects a 
modeling assumption that the behavior of an ensemble of pores that are 
tightly coupled is identical to that of a single isolated pore. The value of 
0.5 in (6) affects only the one step transient and is not crucial to our 
development. 

There are only two recurrent vector states: (ql, ql . . . . .  ql), corre- 
sponding to all pores being closed, and (q2, qz,-.-, q2), corresponding to 
all pores being open. That is, after the short transient, all pores will 
either be simultaneously closed or simultaneously open and transit is in 
unison. 

2.8. PARTIAL COUPLING 

In the most useful model that we consider, the constituent chains 
need not be either independent (4) or fully coupled (6), leading to the 
transition probability matrix 

P & ( 1 -  K)P (I)+ KP (c), 0 ~< K ~< 1, (7) 

where K (a probability) is the coupling factor. This means that (1) 
whenever K is near 0, the pores open and close (essentially) indepen- 
dently; (2) whenever K is near 1, the pores tend to open and close 
together as a group; and (3) for values of K between 0 and 1 the pores 
have a tendency to open and close in groups, although at times they 
may seem to act independently. 

Gathering together all the parameters, we see that P can be parame- 
terized by the set 

(8) 

The number of pores, L, also implicitly parameterizes the model. 
Despite the seemingly low number of parameters, we will see that a very 
rich range of qualitative behavior is possible. We argue that in a concise 
framework, this model can account, albeit approximately, for a wide 
range of seemingly disparate behavior observed in experiments. 

2.9. A G G R E G A T E D  M A R K O V  CHAIN 

Because of the nature of the observation process, it is possible to 
simplify, particularly in terms of level of computation required, the 
above Markov chain model to one of a significantly lower order via an 
aggregation procedure. This is achieved by grouping together the binary 
vector states into aggregated states in a natural way. We define a scalar 
finite-state stochastic process corresponding to a noiseless observation 



120 SHIN-HO CHUNG AND RODNEY A. KENNEDY 

of the form 

L 

z k & l r S k  = ~_~ s~ r), (9) 
r = ]  

that is, the inner product of the state vector S k and the vector with all 
elements equal to 1. The state space of z k, or the set of values that z k 
can assume, then consists of L + 1 distinct values in the range 

A 
u o = L q l  , 

u I & ( L - 1 ) q  1 + q2, 

u 2 & ( L - 2 ) q  I +2q2,  

u L & L q 2 .  (10) 

This means that, in terms of our observations, we will see L + 1 distinct 
levels uniformly distributed, although, once buried in noise, the levels 
may be not immediately evident from a laboratory measurement. How- 
ever, even in noise a subset of these levels can usually be determined 
and, noting that the difference between levels is a constant equal to 
ql - q2, one can infer the locations of the levels and even the number of 
levels. 

This output process (9) adds the conductances of the L pores. Recall 
also that in our previous modeling, all the L pores were assumed to be 
identical. The marriage of these two facts makes it clear that on the 
basis of measurements of the (potentially noisy) observations of z~ it 
will be impossible to distinguish between channel configurations with 
the same number of open and closed pores. This leads to the notion of 
a Markov chain formed by aggregating states. That such an aggregation 
preserves the important Markov property is considered in the Appendix. 

A separate motivation for considering the aggregation is that the 
dimensionality of the problem is reduced considerably. A naive applica- 
tion of (7) would have a transition probability matrix involving 4 L 
elements, whereas if we define z~ (9) as the state at time k the 
transition probability matrix has only (L + 1) 2 elements. For  the range 
of L values that we wish to consider, the latter dimension is easily 
handled. 

In light of the output equation (9), which defines the process z k, we 
define aggregated states: 
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A G G R E G A  TED S T A T E  

A state S k belongs to aggregated  s ta te  i if there are i pores that are 
open, that is, exactly i pores with conductance q2 and L - i pores with 

conductance ql. As such, there are ( L )  (binary vector) states in 
aggregated state i. 

In other words, states that are equivalent up to permutations of the 
binary components belong to the same aggregated state (equivalence 
class). The aggregated states are indexed by i ~ {0, 1, 2 . . . . .  L}. Aggre- 
gated state 0 corresponds to (ql, ql . . . . .  ql), and aggregated state L 
corresponds to (q2, q2 . . . . .  q2)- As a further explicit example, if L = 3 
then we aggregate the 2 L =  8 S k states into the L + 1 = 4 aggregated 
states as shown in Table 3. 

Finally, in terms of the output measurement process we have the 
simple observation 

z k = u i ~ S k ~ aggregated state i ,~ exactly i pores open. (11) 

2.10. R E L A T I O N S H I P  B E T W E E N  O R I G I N A L  A N D  
A G G R E G A T E D  S Y S T E M S  

It is possible to express the transition matrix of the aggregated 
system in terms of the transition matrix of the nonaggregated system 
(7). The (L + I )× ( L + I )  aggregated probability transition matrix A 
corresponding to (7) takes the form 

A & LPR = (1 - K) LP{OR + KLp~C)R, (12) 
Aol A~C~ 

where L is an (L + 1) × 2 L matrix with components 

1 

li j & if state j ~ aggregated state i, 

otherwise 

TABLE 3 

Indexing for the Aggregated States 

Aggregated state index i Set of States 

0 ( (q l , q l , q l ) }  1 
1 { (q2 , q l , q l ) , ( q l , q2 ,q l ) , ( q l , q l , q2 ) }  3 
2 { ( q 2 , q g , q l ) , ( q 2 , q t , q z ) , ( q . q z , q 2 ) }  3 
3 {(q2,q2,q2)} 1 
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and R is a 2/- × ( L  + 1) matrix with components 

FJi-~- 0 
if state j ~ aggregated state i, 
otherwise. 

Here we note that under aggregation Lp(c)R maintains the form of (6) 
save that the dimensions are ( L + I )× ( L + I )  rather than 2 L×2  L. 
However, LP(/)R differs in form from (4); for example, if L = 2 then 
V ® V is given by (5), whereas 

A ct) & L(V®V)R = 
~.2 2,~(1_ sr ) ( l _ f f ) 2 ]  

~ ' (1-  p) ~'p + ( 1 -  ~ ' ) ( 1 -  p) ( 1 -  ~')p . 

(1 -  p)Z 2 ( 1 -  p)p pZ 
(13) 

At this point we note that evaluation of the components of A 
according to (12) is somewhat impractical for large L because of the 
computation of the uncoupled component A ~1), which involves the 
Kronecker product expression. 

2.11. MEASUREMENT NOISE 
Next we assume that the chain z k is 

observed by measurements y~ of the form 
hidden, that is, indirectly 

Yk = z~ + w k , (14) 

where w k is zero mean Gaussian noise of variance 0.2. Define the 
vector of conditional probability functions b( 0.2, q, Yk) = (bi(0"2, q, Yk)), 
where 

bi(0.~,q, y k ) ~ = p ( y k l z k = u i ) _  1 [ -- (y_k-- ui) 2 ] 
21/2~0.w exp 20.w z ] (15) 

for 0 ~ i ~< L. We denote the sequence of observations {Ya, Y2 . . . . .  Yk} by 
Yk. The problem takes the form of a hidden Markov model (HMM) 
because w k is white, leading to the property 

P(yl, l z k = u i , z k _ l = u i , Y k _ l ) = P ( y k l z ~ = u i )  (16) 



COUPLED MARKOV CHAIN MODEL 123 

(see also the Appendix). Also we assume that the initial state probability 
vector 7r = (vr m) is defined from ~r i = P ( z  I = ui) .  

3. PARAMETER ESTIMATION 

3.1. O V E R V I E W  

Now we address the problem of how to estimate the parameters of 
our model given real data measurements. Our emphasis lies in defining 
a procedure that obtains the estimates rather than focusing on the 
detailed development and analysis of the technique employed. We will 
therefore rely heavily on the literature and focus only on the novel 
aspects. 

We summarize the estimation procedure as follows. 

T w o - S t e p  E s t i m a t i o n .  

(1) Classical HMM identification of the transition probability matrix 
and associated relevant parameters (e.g., output levels ql, q2 and noise 
variance ~rwZ). 

(2) Novel optimal parameter fit according to the partially coupled 
model using gradient descent numerical techniques (recursions). 

As motivation for the above, we note that the first step is indepen- 
dent of the "preferred" Markov model parameterization (7); that is, it 
imposes no bias toward the structure (12) we seek. Incorporating the 
first step also has the advantage of using existing theory (and software) 
with no modification. The second step is a well-defined procedure that 
can be employed on more general systems than those we consider; that 
is, it is not particularly restricted to the parameterization that we have 
developed. This feature enables the procedure to be easily modified in 
the event that, for example, the model were to be extended or changed. 

3.2. H I D D E N  M A R K O V  M O D E L I N G  

We begin with a brief description of the standard HMM formulation 
that we use. The complete HMM parameter set is usually denoted 

A & {A, b, ~-}. 

The matrix A is the transition probability matrix with entries 

/x 
ai] = P (  zk  + 1 = u j  [ z k = u i ) ,  i , j e { 0 , 1 , 2  . . . . .  L } , V k  

which gives complete information regarding the statistical properties of 
the transition between the states. The vector b was defined in (15) and 
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depends on the parameters {q~, q2, ~rw}" This vector relates actual 
observations to the hidden state. The third element of A, 7r, defines the 
initial probability distribution across the states and is less crucial. 

Some important things to note regarding standard HMM theory are 

(1) Extensive work has been done developing computationally 
tractable recursions for evaluating maximum likelihood parameter esti- 
mates [22]. 

(2) These recursions crucially rely on estimating parameters corre- 
sponding to the "naive" parameterization; for example, the parameters 
aij are directly estimated. 

(3) The estimation objective is to find the model estimate A= 
{i~, ~, Or} that maximizes the probability of the complete observation 
record YK, that is, 

a_ {~,~, Or} = argm,ax P(  YK I 3, ), (17) 
A 

where argmax means the argument (here A) that maximizes the indi- 
cated function. 

In terms of the parameters that we seek, the parameters ql, q2 and ~r 2 
can be directly estimated from the above standard HMM framework, 
whereas we need new methods to deal with the problem of estimating 
the parameters in O that enter in a nonlinear fashion. 

3.3. IDENTIFICATION OF THE NUMBER OF STATES 

One disadvantage of the HMM technique--a common drawback for 
many identification schemes--is that the number of states in the 
underlying Markov process must be known a priori. The question of 
deducing the number of states in a Markov chain is an area of current 
research interest, and one proposed criterion for model order selection 
is the compensated likelihood approach [23]. Researchers in this area 
often focus on asymptotic estimators of the number of states. In 
practice the sample size is finite, and these estimators may exhibit bias 
in some cases. We will see later that in practice this problem can be 
overcome readily. 

The maximum likelihood amplitude distribution of noisy channel 
currents, obtained under the assumption that there are a large number 
of evenly spaced current levels, frequently reveals prominent peaks 
corresponding to the closed state and several open states. Alternatively, 
we appeal to the principle of parsimony in comparing models with 
different numbers of free parameters. In other words, we measure the 
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goodness of fit by evaluating the log likelihood of the model and weigh 
this against what is to be gained by increasing the number of parame- 
ters, which generally increases the likelihood. The error in fitting a 
model to a given set of data decreases with the number of free 
parameters in the model. Thus, it makes sense, in selecting a model 
from a set of models with different numbers of parameters, to penalize 
models that have too many parameters. Therefore, if a plot of log 
likelihood versus model order (i.e., the number of states) shows a 
"knee" for a certain model order, we would prefer this model to one of 
higher order. This approach has been used in determining the number 
of conductance substates in channel currents activated by 3,-aminobu- 
tyric acid (GABA) [8]. 

3.4. P A R A M E T E R  F I T T I N G  

In the above HMM parameter estimation problem, we assume that 
we have available optimal estimates of the transition probability matrix 
coefficients aig. Since our model developed in Section 2.2 impinges 
primarily on the transition probability matrix, estimating the parameters 
in the set O (8) concerns only the ai/ parameters. Let the maximum 
likelihood matrix estimate generated from the data by the HMM 
processing have components given by aij (17), and let the partially 
coupled Markov chain model have transition probability matrix denoted 
a i j ( O ) .  We seek to estimate O. 

We pose the following parameter-fitting problem: 

O* & arg m~n IIIA(®)-.~112 

1 L L 
= ai i  ) , (18) argrn~n ~ E }--'- (aij(O) - - ^  2 

i = O j = O  

J(o)  
where [['IIF is the Frobenius norm of a matrix, and argmin means the 
argument (in this case O) that minimizes the given index or cost J (O) .  

We can visualize the cost J ( O )  to be minimized as a surface in the 
parameter space O. The objective is to determine the parameter setting, 
here denoted ®*, that realizes the minimum cost. This translates to 
trying to find the minimum of the surface and reading off the corre- 
sponding parameter setting (argument). Given that an initial parameter 
vector estimate is in error (an approximation or guess), a strategy that 
leads to the minimum, at least in a local sense, is to head downhill in a 
series of small steps, that is, attempt to locally decrease the value of 
the cost J (O) .  Mathematically the direction to head is gleaned from 
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the gradient of the surface with respect to the parameter vector 19. 
The sequence of steps thus generated will be denoted l~(j), where j is 
the step index. More explicitly this leads to the difference equation 

0 S  
~ ( j  + 1) = 6 ( j )  - / z ~ - ~  e = c:)O)' (19) 

where 

es v j = [ a s  as 
a19 = [ a~ Op OK J 

is the gradient with respect to 19 (evaluated at 19). Using (18), the 
partial derivatives in turn are written 

a S  L L Oaij(19 ) 
O( = Z Z [ a i j ( 1 9 ) - a i j ]  O~ 

i = o j = o  

and similarly with respect to the remaining parameters in 19. Finally, in 
(19)/z represents a small positive stepsize parameter, typically between 
0.001 and 0.01. 

At this point we highlight the need for efficient means to compute 
both the components aij(19) and the partial derivatives, for example, 
Oai/19)/O(, above. When running the update equation (19) we initial- 
ize with 

6(0) [0.5 0.5 0.5]' 

because the parameters to be estimated are known to be probabilities; 
that is, we take values between 0 and 1. The step size is typically taken 
as /~ = 0.01 or smaller to ensure numerical stability. Also, in the 
algorithm, as a safety measure, we project the parameters of O to the 
range [0, 1] to ensure that they remain probabilities each time the 
estimates are updated. 

4. APPLICATION TO ANALYSIS OF CHANNEL CURRENTS 

4.1. OVERVIEW 
In this section we illustrate the application of the coupled Markov 

model to the analysis of channel currents recorded from biological 
membranes. These records were chosen solely to illustrate the method; 
the biological significance of the observations will not be dealt with in 
any detail here. Currents analyzed here were recorded from inside-out 



COUPLED MARKOV CHAIN MODEL 127 

patches of membranes from rat ventricular myocytes and neonatal 
hippocampal cells grown in culture for 7-10 days, using a current-to- 
voltage converter (Axopatch 200A amplifier, Axon Instrument). 

4.2. DISCRIMINATION B E T W E E N  CONDUCTANCE SUBLEVELS A N D  
MULTIPLE CHANNELS  

When there are more than one open level in channel currents, either 
the lower levels are considered to be conductance substates of the fully 
open channel or the current record is believed to represent the super- 
position of two or more independent channels. The criterion used when 
inferring that one level is a conductance substate of another is that one 
can find examples of synchronous openings and asynchronous closings 
or vice versa. It is difficult to establish that channels show some form of 
linkage by visual inspection of current records, especially if the signal- 
to-noise ratio is low. With the mathematical formulation given in the 
previous section, we can unambiguously determine whether the con- 
stituent channels are totally independent or partially coupled. 

Current records generated by step changes in the membrane poten- 
tial across an inside-out membrane patch revealed the presence of 
multiple open levels. In the example illustrated in Figure la, the three 
open levels, deduced accurately from the maximum likelihood ampli- 
tude distribution (see Figure lb), were spaced nearly evenly, at 0.67, 
1.24, and 1.91 pA. Are the two lower openings conductance sublevels of 
a channel whose open level is 1.91 pA, or does the patch contain three 
active channels? The transition probability matrix A constructed from 
an entire record failed to provide an unambiguous answer, which read 

'0.975 0.025 0.000 0.000 
0.020 0.961 0.018 0.001 A =  0.014 0.075 0.878 0.003 
0.000 0.006 0.169 0.825 

Although the predominant transitions were between the neighboring 
levels, there were finite probabilities that the current would jump 
between two discrete levels. For example, the probability that the 
current jumps to the 0.66 pA level at time t + 1 given that it was at the 
1.91 pA level at time t was 0.006. Similarly, there was a finite probabil- 
ity (0.014) of closing to the baseline at time t + 1 given that the current 
was at the 1.24 pA level at time t. The maximum a posteriori estimate 
of the signal sequence, illustrated in Figure lc, does not provide an 
unambiguous answer. By selecting a few examples of instantaneous 
transitions from the fully open level to the baseline, or from the 
baseline to the second open level, one could have argued that the 
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F~G. 1. Independent single channels. (a) A 1000-point segment of channel cur- 
rents generated by voltage-gated sodium channels. In this and the subsequent 
figures, the upward deflections represent open-channel currents. (b) The maximum 
likelihood amplitude distribution was obtained using the HMM processing method. 
About 10,000 points were used to construct the amplitude distribution. The peak at 
the left-hand side (at 0 pA) represents the baseline, whereas those to the right 
around 0.67, 1.24, and 1.91 pA represent the amplitude distribution of open-channel 
currents. (c) Under the assumption that the signal can be represented as a four-state 
Markov chain, a maximum a posteriori estimate of the signal sequence was obtained. 
The record was obtained from an inside-out patch of a cardiac myocyte maintained 
at 8°C. The channels were activated by voltage steps applied across the patch, and 
the resulting current flows were amplified, filtered at 5 kHz, and digitized at 10 kHz. 
The sum of the chemical potential arising from an asymmetrical concentration of 
sodium between the two faces of the membrane and the electric potential applied 
across the patch was 119 mV. The currents flowing due to capacitative transients 
were subtracted from the records to yield records with an essentially flat baseline. 
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channel has one or two conductance sublevels at which it dwells 
preferentially. The coupling coefficient K determined by our method 
from the matrix given above, however, is precisely zero, indicating that 
the three active channels contained in the patch opened and closed 
independently of each other. We thus conclude that the smallest open 
level of 0.66 pA represents the amplitude of a single voltage-gated 
sodium channel. 

4.3. DECOMPOSITION OF MULTIPLE-CHANNEL CURRENTS 

A membrane patch contains not just one but many active channels of 
the same type, especially if the recordings are made at physiological 
temperature. The signal then will be composed of an algebraic sum of L 
identical channels, and we will see L + 1 distinct levels (including the 
baseline level), although, once buried in noise, the levels may not be 
immediately evident from laboratory measurements. From such a real- 
world process, our task is then to (1) identify the number of active 
channels contributing to the summed current, (2) deduce whether or 
not the active channels have some form of linkage, and (3) determine 
the kinetics of single channels, such as the mean open duration and the 
open time distribution. 

Figure 2a shows a segment of a current trace from a patch that 
contained many active voltage-gated sodium channels. From the his- 
togram of the raw data, which merely shows a skewed distribution (not 
shown here), no information about the amplitude of single channels or 
the number of active channels contained in the patch could be gleaned. 
However, clearly defined levels can be discerned from the maximum 
likelihood amplitude distribution obtained with the HMM processing 
technique (Figure 2b). The 10 identifiable peaks in the amplitude 
distribution are separated by 0.62 + 0.02 pA. These current levels were 
then used to produce the maximum likelihood estimates of signal 
sequence (Figures 2c and 2d) and transition probability matrix A. The 
coupling coefficient deduced from the matrix was close to zero (K = 
0.012), and p in the binary matrix given in Equation (2) was 0.946, thus 
indicating that the mean open duration of the constituent single chan- 
nels was 1.85 ms. 

4.4. PARTIALLY COUPLED PORES 

The chloride currents flowing through a channel activated by GABA 
fluctuate over a wide range. Instead of switching between the fully open 
state and fully closed state instantaneously, currents dwell at intermedi- 
ate levels at variable times. Three segments of such a record obtained 
with a pipette potential of 100 mV are shown in Figure 3a. The 
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FIG. 2. Decomposition of multiple-channel currents. (a) A 1000-point segment of 
channel currents generated by voltage-gated sodium channels. The patch was main- 
tained at room temperature. In response to a step change of the membrane potential 
(from - 1 5 0  to - 5 0  mV), many single channels were activated and then inactivated. 
The trace contains responses to seven such step changes. (b) The maximum likeli- 
hood amplitude distribution reveals 10 or possibly 11 discrete peaks that are spaced 
evenly. The identifiable peaks are separated by 0.62 + 0.02 pA. These current levels 
were then used to produce the maximum a posteriori signal sequence shown in (c). 
(d) A response to one step change of the membrane potential shown on a larger time 
scale. 
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FIG. 3. Partially coupled pores. (a) Three 1000-point segments of GABA-activated 
chloride channel currents. The patch was held at a hyperpolarized potential (Vp = 
+ 100 mV). Downward deflection represents opening of the channel. (b) The 
maximum likelihood amplitude probability distributions were obtained using the 
HMM processing method, iterating the same observation sequence repeatedly. The 
sequential histograms estimated at successive iterations are presented as a three- 
dimensional graph. The presence of conductance sublevels becomes more and more 
distinct as the records are further iterated. Channel  currents were recorded from an 
inside-out membrane patch of a cultured rat hippocampal neuron. The patch 
electrode contained 0.25 p,M GABA. The record was filtered at 2 kHz and sampled 
at 5 kHz. (c) A 1000-point segment of simulated channel currents. Five fictitious 
pores with r = 0.933 and p = 0.894 were coupled with the coupling coefficient K of 
0.17. The amplitude of each pore and the standard deviation of noise were assumed 
to be - 0 . 5  pA and 0.25 pA, respectively. 
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maximum likelihood amplitude distributions obtained with the HMM 
processing method, exhibited in Figure 3b, show several peaks, each 
separated by about 0.5 pA. These peaks, which become progressively 
more prominent with increasing number of iterations, can be construed 
as conductance sublevels at which currents dwell preferentially. Alter- 
natively, we can envisage that the collective behavior of several partially 
coupled pores generates a complex pattern of gating kinetics that 
characterize many naturally occurring channels. 

We estimated the transition probability matrix of constituent chains 
and their coupling coefficient. The channel currents exhibited in Figure 
3a can be modeled as the superposition of five pores that are partially 
coupled with the coupling factor K of 0.17. The estimated ~" and p of 
the elementary pore are, respectively, 0.933 and 0.894. Using these 
parameters and taking the standard deviation of noise in the absence of 
channel activity to be 0.25 pA, we have simulated an observation 
sequence of fictitious channel currents generated by five partially cou- 
pled pores. A segment of such a record, exhibited in Figure 3c, shows 
that the gating behavior of the synthesized data sequence is broadly 
similar to that of the real channel currents. When the transmembrane 
potential was reduced stepwise from a hyperpolarized potential to zero, 
the value of K decreased systematically as did the number of pores 
contributing to the summed currents. When the direction of the electric 
field was reversed, only two pores were active, each opening and closing 
independently of the other (i.e., K = 0). The current-voltage relation of 
the summed currents, owing to the reduced number of pores and 
coupling strength at hyperpolarized potentials, showed a pronounced 
outward rectification, but for each elementary pore the current-voltage 
relationship obeyed Ohm's law. 

5. DISCUSSION 

We developed a Markov chain model that incorporates partial cou- 
pling among a set of binary Markov chains and then formulated a 
scheme for estimating the parameters featured in a vector Markov 
chain hidden in noise. The model identification method we devised uses 
standard HMM techniques [17, 18, 22] and a gradient descent numerical 
iteration scheme in a novel way. When the parameters featured in our 
model are varied, the resultant vector Markov chains exhibit a rich 
range of characteristics that resemble channel currents recorded from 
patches of neuronal membranes. We have extensively tested the reliabil- 
ity of our estimation scheme in characterizing partially coupled or 
uncoupled Markov signals buried in noise. Our estimation scheme has 
been devised for characterizing summed channel currents obtained 
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from patch-clamp recordings and thus allows up to 12 independent or 
partially independent pores contributing to the summed currents. For 
studying the records that are the sum of a larger number of channels, 
such as those recorded from a whole-cell configuration or with an 
intracellular electrode, a new analytical method such as the one de- 
scribed elsewhere [16] should be used. 

Our analytical method rests on the premise that the signal sequence 
of each pore can be represented by a binary, first-order Markov chain. 
We emphasize that the processing scheme is relatively insensitive to 
deviation from what appears to be a severely restrictive assumption. 
One of the properties frequently observed in real channel currents is 
that channels remain closed for prolonged periods. Such gaps give two 
or sometimes three distinct exponential distributions in the closed-time 
interval histograms, and the observed binary channel can best be 
approximated as a switched Markov chain. The coupling coefficient we 
estimate, showing whether the constituent pores open and close inde- 
pendently or have some form of linkage, is unaffected by the presence 
or absence of long silent gaps. Also, it is relatively straightforward to 
introduce a further parameter,  say to, that can take account of long 
closed intervals, which may be due to the diffusion of transmitter 
molecules near the receptor, binding of these molecules to the binding 
sites, and the phenomenon of desensitization. By introducing the pa- 
rameter to, again a probability, we have been able to generate inter-burst 
interval distributions that are kinetically distinct from intra-burst inter- 
val distributions. We have made such an extension to the theory, but it 
is not reported here. 

Using three examples of real channel currents, we have demon- 
strated the usefulness of our model in analyzing certain types of data. 
Instead of switching between the fully open and closed states instanta- 
neously, observed channel currents appear to dwell at intermediate 
levels for variable times. These sublevels in some cases are clearly 
spaced in equal steps. We represented such an observation sequence 
with a coupled Markov model and noted how some of the model 
parameters, especially the coupling coefficient K, changed systemati- 
cally with the strength and direction of the applied electric field. 
Whether  or not the mathematical representation we adopted for the 
analysis of GABA-activated chloride currents reflects the physical real- 
ity remains to be investigated. We have also illustrated how multiple 
channels contained in a recording can be analyzed using the mathemati- 
cal framework presented here. The method enables us to deduce 
unambiguously whether or not the channels contributing to the summed 
currents are independent and provides a numerical measure of the 
coupling strength when they are not totally independent. Using our 
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model, one can readily characterize individual channel kinetics from a 
record containing multiple channels, coupled or otherwise. Such an 
analysis would have been difficult to carry out without the aid of a 
versatile mathematical model such as the one we present here. 

The mathematical formulations for determining various statistics 
from the multichannel recordings have been proposed by others [3, 4]. 
Unlike the previous formulations, the model presented here links 
Markov chains with a coupling term. Such a coupling occurs in many 
physical systems, a prominent example of which is a series of damped 
harmonic oscillators that are interlinked with a coupling term. Although 
the dimensionless parameters featured in the model are introduced in a 
formal mathematical setting that describes the collective behavior of 
coupled Markov chains, they assume physical significance. 

In our formulation, we have assumed for computational simplicity 
that the individual pores contributing to the total channel currents have 
identical amplitudes. In principle, our identification techniques can be 
readily modified for the cases where nonidentical pores are superim- 
posed. However, since the pores are no longer describable by a common 
dynamical process, we would need to consider the nonaggregated 
Markov model, which consists of 2 L distinct values, where L is the 
number of such pores. The details of the identification procedure 
represent a straightforward generalization of the gradient descent ap- 
proach. However, when more than four or five such nonidentical pores 
are present, the identification of all the parameters will become compu- 
tationally expensive. Fredkin and Rice [2] and Chung et al. [18] have 
considered the superposition of two nonidentical uncoupled channels. 

This work was supported in part by grants from the Australian Research 
Council and National Health and Medical Research Council of Australia. 
We thank Dr. D. A. Saint for making the data illustrated in Figure 2 
available to us. 

APPENDIX 

MARKOV PROPERTY OF THE AGGREGATED STATES 

Given a finite state Markov process it is always possible to generate a 
lower dimensional process by grouping into aggregated states. This has 
two important effects: (1) information is thrown away, and (2) generally 
the Markov property is destroyed. However, in certain instances the 
information that was desired to be inferred about the original process is 
retained by the aggregated process because coarse versus fine informa- 
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tion was desired. Also for certain processes the Markov property holds 
for the aggregated process. In other words, knowledge of the current 
state is all that is required for determining the transition probability. 
This is important in our theory as HMM identification techniques are 
employed. 

In considering the relationship claimed by (16) we need to examine 
the definition of the aggregated states. Under the measurement (14) it 
is clear that the noise w k is of secondary importance because it is 
independent of the state dynamics and is assumed to be an independent 
process; that is, given measurements up to time k -  1, no information 
can be inferred about w k. It therefore has no bearing on the Markov 
property with respect to Yk (i.e., does not introduce any additional 
difficulty). This means that {Yk} is a Markov process if and only if the 
noiseless random process {z k} is one. 

We focus on the partially coupled model of (7). Consider an arbitrary 
state, say Qm, in aggregated state i at time k and the transition 
probability to aggregated state j at time k + 1 (i.e., the probability that 
we transit to some state in aggregated state j). This transition probabil- 
ity is given by 

aij = E P ( S k + l = Q n l S k = Q m ) ,  1TQm =i" (20) 
1TQn = j 

We now wish to show that all states in the aggregated state i share this 
same transition probability. This implies that we can form aggregated 
states with a sensible transition probability label. 

By assumption, the pores are equivalent. Let II be an arbitrary 
L × L permutation matrix consisting of L ( L -  1) zeros and L ones 
where there is exactly one one appearing in every column and row. Such 
a matrix satisfies I I r l I  = I (the identity matrix). Then the equivalence 
above can be expressed as 

p(Sk+I=Q, , ISk=Q, , , )=P(Sk+I=IIQ, , ISk=I IQ, , , ) ,  (21) 

which can be thought of as a relabeling of the pores. Substituting (21) 
into (20) yields 

a i j =  ~ P ( S k + I = I - I Q n I S k = I I Q m )  
lrQn = j 

= y'. p ( s k + l = Q r l S , = I I Q m )  
1THrQr = j 

= ~ P(Sk+l=Qr lS~=I IQm)  • 
1TQ,. = j 
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Note  that  I T I I Q , ,  = i and  tha t  all e l emen t s  of  the  aggrega ted  s tate  i can 
be  expressed  this way. W e  have used  the p r o p e r t y  that  I I  r is also a 
p e r m u t a t i o n  matr ix  and the re fo re  satisfies l r l I  T =  I. 

The  above  a rgumen t  is i n d e p e n d e n t  of  i and  j and  reveals  that  the  
aggrega ted  f in i te-s ta te  p rocess  possesses  all the  a t t r ibu tes  of  a f inite-  
s ta te  Markov  process .  
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