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Abstract 

Given a discrete-time signal consisting of N identical, independent, binary Markov chains observed in white noise, we 
consider the problem of estimating the non-zero state level, the number of chains and the elementary transition 
probability matrix. We derive formulae for the central moments, first- and second-order auto-correlation functions and 
the power spectrum of a first-order, discrete-time Markov chain. We show that the mean, variance, third central moment 
and power spectrum provide sufficient information for the estimation of the parameters of the signal in question. We 
demonstrate the estimation procedure with numerical examples for both simulated and real biological data, and describe 
a method for estimating the non-unity eigenvalue of the transition matrix as well as the noise variance from the power 
spectrum of the noisy signal. 

Zusammenfassung 

Gegeben sei ein zeitdiskretes Signal, dal3 aus N gleichartigen, unabhfngigen, binliren Markov-Ketten besteht und in 
weil3es Rauschen eingebettet ist. Wir betrachten das Problem der Schgtzung des Niveaus des Nicht-Nullzustandes, der 
Anzahl der Ketten und der elementaren Matrix der ubergangswahrscheinlichkeiten. Wir leiten Formeln her fiir die 
zentralen Momente, die Autokorrelationsfunktionen erster und zweiter Ordnung und das Leistungsspektrum einer 
zeitdiskreten Markov-Kette erster Ordnung. Wir zeigen, daf3 der Mittelwert, die Varianz, das dritte Zentralmoment und 
das Leistungsspektrum geniigend Information zur Schltzung der Parameter des fraglichen Signals bereitstellen. Wir 
demonstrieren die Schltzprozedur anhand von numerischen Beispielen mit sowohl simulierten als such realen biologi- 
schen Daten und beschreiben eine Methode zur Schltzung des Nicht-Einheitseigenwertes der ubergangsmatrix sowie 
der Rauschvarianz aus dem Leistungsspektrum des verrauschten Signals. 

Pour un signal B temps discret don& compost: de N chaines de Markov binaires indkpendantes et identiques observt 
dans du bruit blanc, nous considCrons le problkme de l’estimation du niveau d’ttat non nul, du nombre de ch6nes et de la 
matrice de probabilitts de transition. Nous d&ivons des formules pour les moments cent& pour les fonctions 
d’auto-corr&lation du premier et du second ordre, et pour le spectre de puissance d’une chaine de Markov $ temps discret 
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du premier ordre. Nous montrons que la moyenne, la variance, le moment centrt d’ordre trois, et le spectre de puissance 
fournissent une information suffisante pour l’estimation des parametres du signal en question. Nous illustrons la 
procedure d’estimation avec des examples numeriques provenant de donnees simultes et de don&es biologiques reelles, 
et decrivons une mtthode d’estimation de la valeur propre non unitaire de la matrice de transition et de la variance du 
bruit a partir du spectre de puissance du signal bruit& 

Keywords: Markov chain; Parameter estimation; Ionic channei; Whole-cell recording 

1. Introduction 

Since the advent of the patch-clamp technique 
for monitoring drug-induced activity in cell mem- 
brane channels, there has been considerable 
interest in identifying probabilistic models of the 
kinetics of these systems [l, 2,11,22,29,32]. In the 
biological sciences, these parameter estimation 
techniques are commonly referred to as noise anal- 
ysis or fluctuation analysis. Patch clamping allows 
the current due to a single ion channel to be ob- 
served. In contrast, our work is motivated by the 
possibility of measuring the membrane current due 
to a whole cell comprising many identical channels 
and hence estimating the parameters of a Markov 
model for the individual channels. Moreover, the 
present approach leads to an identification proced- 
ure that is computationally efficient and practically 
viable. 

Our approach is to regard the net channel re- 
cording as a linear superposition of an unknown, 
possibly large number of identical and independent 
elementary channels, or pores, observed in white 
noise. Each elementary channel under the influence 
of an introduced drug (chemical transmitter) is 
modelled as a discrete-time, binary, homogeneous 
Markov chain. The effect of the drug is to tend to 
open the pores but the action is in fact random in 
the sense that pores open and close in a non-deter- 
ministic manner. This gives justification to the use 
of a Markov chain model. We assume initially that 
the variance of the noise can be determined a priori 
from a control data segment and also that the 
closed current level due to each channel is zero. We 
then go on to derive a practicable statistical pro- 
cedure which identifies the individual open channel 
current, the matrix of four transition probabilities 
and the number of channels present in the record. 

We later relax the assumption of a known noise 
variance, showing how this can be estimated from 
the power spectrum of the noisy data. We point out 
that although techniques such as hidden Markov 
modelling [8,9] could in principle be applied to 
this multi-channel estimation problem, in practice 
the computational burden would be excessive when 
the assumed number of channels is large. 

Fluctuation analysis has been fruitfully exploited 
in biophysics. Utilizing the signal mean and vari- 
ance, and the corner frequency of the power 
spectrum, it has been possible to estimate the con- 
ductance, the mean open duration and the number 
of single channels contributing to the record 
[ 1,321. Previous estimation procedures, however, 
relied on the assumption that the probability of 
a channel being in the open state was small. The 
‘low concentration limit’ used by Anderson and 
Stevens [l] is such an example. This assumption 
may not be realistic in some circumstances, and 
consequently we have extended the estimation 
technique so that it can be applied without the need 
to make unnecessary assumptions on the behaviour 
of the system. Further discussions concerning these 
and other modelling assumptions may be found 
in [lo]. 

We deal in Section 2 with the computation of 
statistics of finite-state, discrete-time Markov 
chains. For further details of this theory, the reader 
is referred to [4, 12,17, 191. We obtain expressions 
for the moments, second- and third-order correla- 
tion functions and cumulants, and the power 
density spectrum. The computations are quite 
straightforward but have been included since the 
treatment of the discrete-time case does not appear 
to be well documented in the literature. The com- 
putation of power spectra of Markov chains has 
been addressed in the communications literature 
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on coded modulation [3,5,6], but the emphasis 
is on Markov chains arising from shift register 
processes, and these tend to have a special struc- 
ture. We present our results in a more accessible 
form. Our calculations for the moments and 
spectra extend easily to the case of memoryless 
functions of a Markov chain [14, 151 so that the 
theory may be applied to chains with aggregated 
states such as discrete-time Colquhoun and 
Hawkes models, although in such cases it is not 
clear how to solve the parameter estimation prob- 
lem. We show how to modify the results when the 
observed process consists of a sum of independent 
and identical chains with additive noise. 

Section 3 is concerned with the problem of iden- 
tifying the parameters of a superposition of binary 
Markov chains. We solve this problem for the case 
of additive white noise of known variance using the 
theory developed in Section 2. In Section 4 we 
discuss the estimation of moment statistics and 
spectra, indicating how to estimate the non-unity 
eigenvalue of the transition matrix and the noise 
variance from measurements of the power spec- 
trum. Numerical examples are presented in Section 
5 for simulated as well as real biological channel 
data, followed by a discussion of some possible 
extensions of the work. 

2. Mathematical preliminaries 

We will concern ourselves in this part with the 
computation of statistics of finite-state, discrete- 
time Markov chains, namely, the central moments 
of arbitrary order, the second- and third-order 
correlations and cumulants and the power 
spectrum. We treat the case of a single, homo- 
geneous, regular chain with n states first, then 
specialise to the 2-state case. We present results 
which are most relevant to solving the inverse 
multi-channel problem of Section 3. We go on to 
consider superpositions of N identical, indepen- 
dent, 2-state chains observed in white noise. We 
demonstrate that only the first three moments give 
non-redundant information regarding the process 
parameters, and that these moments are most eco- 
nomically expressed in terms of the steady-state 
distribution. 

2.1. Moments of finite-state Markov chains 

We consider an n-state, homogeneous, discrete- 
time, scalar Markov chain {xk}k z o with state space 
Y = {sl, . . . , s,} c R”. The stochastic process {xk} 
is fully specified once we know the initial probabil- 
ity distribution 

x0 = [Pr(xo = sl), . . . , Pr(xo = s,)] 

and the transition probability matrix 

P = (pij), i,j = 1, . . . , n, 

where the transition probabilities are defined as 

Pij = Pr(xk+ 1 = Sj 1 xk = Si). 

In what follows, we will assume that {xk} is a regu- 
lar Markov chain in the sense that a unique station- 
ary distribution (or steady state distribution) II with 
components xi exists which satisfies 

lr = nP (1) 

subject to the constraint I?= I 7ti = 1. This guaran- 
tees that the dominant eigenvalue of P is unity and 
that all other eigenvalues lie inside the unit circle in 
the complex plane. 

Note that a sufficient condition for this to hold is 
that all the entries of P be positive. Equivalently, we 
may write [17, p. 891 

n: = any row of p, P = lim Pk. 
k-cc 

Furthermore, we will only be interested in obtain- 
ing the steady-state StatiStiCal prOpertieS of (xk}, 
and so we ignore the initial distribution no. Thus 
we may consider {xk} to be defined by its transition 
probability matrix P and state space Y. We turn to 
the calculation of the moments. 

The qth order moment of a stationary stochastic 
process {xk} is defined as 

m,(x) = E{x%}, q = 1,2, . . . , 

and the qth order central moment as 

p&c) = E{(xk -E(Q))‘}, q = 273, . . . 

4 

= 4 4 ( - ml(X))4-iltli(X). 
i=O I 
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The last line follows from the binomial theorem, 
with m, = 1. So that, generally, &x) is expressible 
in terms of {mi(x), i = 1, . . . , q}. When {xk} is a dis- 
crete-time Markov chain it follows from the defini- 
tion that, in the steady state, 

m,(x) = i Sf Pr(xk = Si) 
i=l 

= fl Sf 7ti = 7CSq1, (3) 

where 1c is given by (l), S = diag[s, , . . . , s,] and 
1 = [l, . . . ) llT E [w” (T denotes transposition). 

It is clear from (3) that the moments of all orders 
of the Markov chain {xk}, and hence its first-order 
probability distribution or, equivalently, its histo- 
gram, are specified once the state levels Y and 
stationary distribution II are known. In other 
words, any two chains sharing the same state space 
and steady-state probabilities have the same prob- 
ablity distributions, although they may have differ- 
ing correlations. Since L has n - 1 independent 
entries and there are n state levels si, from the point 
of view of identification this means that at most 
2n - 1 independent equations involving these 
parameters may be obtained from the set of mo- 
ment equations of the process. This fact has impor- 
tant consequences when we come to solving the 
multi-pore problem in Section 3. 

We explained that an n-state Markov chain can 
be regarded as specified by the nz + n quantities 
comprising P and 9. Now, since P is a stochastic 
matrix, only n(n - 1) + n = n* of these parameters 
may be independent. Thus, in general, whenever 
there are two or more process states, there is an 
excess of n* - (2n - 1) = (n - l)* independent 
quantities which are not fixed by specifying the 
moments alone. For this reason, we will need to 
consider ‘correlation-type’ information, and we 
present this next. 

2.2. Correlations and cumulants of Markov chains 

In this section we derive expressions for the 
second- and third-order correlations and cumu- 
lants of the n-state Markov chain introduced in the 
last section. The calculations for the correlation 

functions are roughly analogous to the continuous- 
time case treated by Fredkin and Rice [lS] whose 
matrix notation we have borrowed. 

The second-order correlation function of a ho- 
mogeneous Markov chain {xk} is defined as 

KG,) = E(xkxlr+kl} (4) 

and the third-order correlation by 

R,(ki, k,) = E{x~xlr+k, xk+kz}, (5) 

whereas the second- and third-order cumulants are 
defined, respectively, as 

CA) = E&I‘ - ml(X))(Xk+kt - mdX))>, 

C,&, k,) = E{(Xk - ml(X))(Xk+kl - W(X)) 

x (Xk+ka - mlb))>, 

where ml(x) is the mean of {xk} . The second-order 
correlation is known as the auto-correlation and 
the second-order cumulant as the autocovariance. 
We look at the case of k2 2 kl > 0 first. We have, 
with the same notation as before, 

R,(k,) = dPk’S1, kl 2 0, (6) 

R,(kl, k2) = zSP~‘SP~~-~‘SI, k2 >, kl 2 0, (7) 

which can be derived by using the fact that the 
k-step transition probabilities p$’ are the entries of 
Pk. By considering all six possible orderings of the 
quantities 0, kl, k2, it is straightforward to show 
that the correlations for arbitrary lags are given by 

R,(k,) = mWkl’S1 3 (8) 

R,(kl, k,) = nSP”‘SP”‘S1, (9) 

where the non-negative lags Xi are given by 

rcl = med{O, kl, k,} - min{O, kl, k,}, (10) 

IC* = max{O, kl, k,} - med{O, kl, k,}, (11) 

and med is the statistical median. 
To proceed further, we need to find a spectral 

representation for P. If P has distinct eigenvalues, 
this is furnished by 

P = ~ ~iAi, 
i=l 

(12) 
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in which {Ai} are the eigenvalues of P and the 
projector matrices Ai are generated according to 

Ai = mini, (13) 

where mi and Iii are, respectively, the right and left 
eigenvectors of P corresponding to li. Note that the 
Ai matrices satisfy 

AiAj = A$ij, iiI Ai = Zn, (14) 

where bij is the Kronecker delta and Z,, is the unit 
matrix of order n. It follows that 

Pk= i LfAi, k>,O. 
i=l 

(15) 

If the eigenvalues of P are not distinct, we must use 
a Jordan representation for P and the computa- 
tions become more involved [6,13, 171. We do not 
treat the repeated eigenvalue case in this paper. 
Assuming then that (15) is valid, (8) and (9) simplify 
to 

R,(k,) = f: riAF1’, 
i=l 

06) 

where we have defined 

ri = d?AiSl, i = 1, ... ) ny 
(17) 

rij = nSAiSAjS1, i, j = 1, . . . , n. 

We can simplify these expressions even further by 
noting that, due to the assumption of irreducibility 
of P, the unity eigenvalue, say &, is unique and has 
associated projector AI = la. Therefore, we have 

Y, = &AI??1 = (nSl)2 = m:(x) (18) 

and also 

Tlj = ~,~AjSl = ml(X)rj, 
(19) 

as obtained by Fredkin and Rice [lS] in the 
continuous-time case. The autocovariance is now 
expressible as 

C,(k,) = i rilZ\kl’, (20) 
i=Z 

where &, . . . ,A, are the distinct, non-unity eigen- 
values of the transition matrix. Furthermore, the 
third-order cumulant is given by 

C,(kl, k,) = R&l, k,) - ml(x){R,(kl) + R&2) 

+ R,(kl - k2)} + 2m?(x). (21) 

In particular, the variance and third-order central 
moment are given, respectively, by 

/&) = C,(O) = nS(Z - AI)S1, (22) 

k(X) = Cx(O, 0) 

= nS(S - 3AS + 2A1SA1)S1, (23) 

where AI = lx and ml(x) = nS1 is the process 
mean. These formulae will be of use in Section 3. 

2.3. Power spectrum of a Markov chain 

The power spectrum computation for the con- 
tinuous-time case and discrete-time case may be 
found, respectively, in [32] and [6,21]. However, 
especially in the communications literature, the cal- 
culations focus on transition matrices with special 
structure, corresponding to, for instance, coded sig- 
nals. This makes it hard to interpret the results 
when arbitary transition matrices are involved. 

The power spectrum S,.(w) is the Fourier trans- 
form of the autocovariance, or, equivalently, its 
Z-transform evaluated on the unit circle [25], viz, 

S,(w) = Z(C,(k)}, = e1-r. (24) 

Here, T represents the sampling interval. From (20) 
we have 

S,(W) = f2 riZ( Jb\k’}z = .g”*, (25) 

which suggests that we need to compute the follow- 
ing Z-transform: 

1 -A2 
= (1 - nz-‘)(l - 12)’ 

which converges whenever IAl < 1zI < l/In) and 
11) < 1. Noting that, since P is the transition matrix 
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of a regular Markov chain, (&I < 1 for i # 1 in (25), 
we see that 

i.e., it has only two possible states si and s2. Let the 
transition probability matrix be parametrised as 

where ri was defined in (17). We note that S,(o) 
could also be generated by passing white noise 
through a linear auto-regressive moving-average 
(ARMA) filter with appropriately chosen coeffi- 
cients. Let us briefly examine the structure of (27). 
Clearly S,(o) is a rational function of cos(oT) (as is 
the case for discrete-time linear systems corres- 
ponding to ARMA processes). Suppose we parti- 
tion the set of eigenvalues of P in the following way: 

in which il* is the complex conjugate of I and 
r + 2c = n. Then we may write (27) as 

+2tRe 
i=l I 

(29) 

in which Re(A) denotes the real part of 1. This form 
makes apparent the components of the spectrum. 

Suppose now that one state level, e.g., si, in the 
binary chain may be taken as zero. This can be 
arranged by shifting the origin in the state space. In 
this case, the mean, variance and third-central mo- 
ment can be written as 

In the biological literature, the power spectrum 
of binary Markov chains observed in white noise is 
fitted with a Lorentzian distribution. The terms 
corresponding to the real eigenvalues, 

(1 - J?T)ri 

ml(x) = 712s2, P2b) = ~1~2& 

P3W = 711712h - 712)A 

while the spectrum may be expressed as 

(34) 

sew = (1 - n2)P2b4 
1 + A2 - 21cosoT’ (35) 

can be compared to their Lorentzian counterparts 
for the continuous-time case, namely 

2ri li 
Ai + (OT)2’ 

where 1 is the real, non-unity eigenvalue of P. It is 
possible to deduce a simple expression for the qth- 
order central moment in this case, and this may be 
found in Appendix A. 

The two components have similar behaviour for 
oT<<l, but differ as o approaches the Nyquist 
frequency 1/2T. 

2.4. Superpositions of independent binary chains 

As an example which will be important later, we We now indicate how to compute the central mo- 
consider a regular Markov chain which is binary ments and power spectrum of a process consisting 

(30) 

where<= 1 -candp= 1 -p,and{andparenot 
both zero. The eigenvalues of P are 

A, = 1, /12%=[+p-1=1-f-p. 

(31) 

Note that - 1 < 1 < 1. The steady-state distribu- 
tion is easily shown to have components 

(32) 

The spectral expansion of P is given by 

P=A1+U, 

where 

(33) 

This holds for any 2 x 2 stochastic P since a repeat- 
ed eigenvalue can only occur if P = I. 



G. Pulford et al. / Signal Processing 43 (1995) 207-221 213 

of N independent, binary Markov chains. We make 
the simplifying assumption that all chains are iden- 
tical, so that they possess the same state space and 
transition matrix. For some results concerning 
superpositions of non-identical Markov chains, see 
[16,33]. Specifically, the process is represented by 

N 

Xk = 1 xy, 
i=l 

where the {xy’> are independent and identically 
distributed (iid), binary Markov chains (as treated 
in the preceding section). Since the chains are iden- 
tical, we cannot distinguish states of (xk} in which 
equal numbers of elementary chains are in (say) the 
open state. Therefore, {xk} has a state space with 
N + 1 elements called aggregated states. The 
Markov property is preserved by this aggregation 
because all the chains {xc’} are identical. 

The transition probability matrix Pagg of {xk} can 
be computed as 

Pagg = L(P@P@ .‘. @P)R, 
< I Y 

N 

(37) 

where L and R are aggregation matrices [l&20] 
and 0 is the Kronecker product. We could com- 
pute the moments and power spectrum directly 
using this (N + 1) x (N + 1) transition matrix. This 
is unnecessary, however, as the moments and spec- 
trum of the process are clearly N times their values 
for a single chain, when the chains are independent, 
as described in Sections 2.2 and 2.3. 

Finally in our model we assume that we only 
have access to noisy observations { yk} of the pro- 
cess (36), 

L’k=Xk+nk, (38) 

where {nk} is a sequence of white Gaussian random 
variables with zero mean and variance g2 indepen- 
dent of the signal process {xk}. The mean and 
variance of { yk} are given in terms of the mean and 
variance of {xk} by 

ml(Y) = ml(X), Pz(Y) =cL2(4 + g2. (39) 

Moreover, and less obviously, the third-order cen- 
tral moment, like the mean, is unaffected by the 
noise and we have p3(y) = p3(x). This holds when- 
ever the noise density is symmetric about its mean 

value since all odd-order cumulants of { y, j are the 
same as those of {xk) [24]. We point out that the 
same cannot be said for odd-order moments about 
the origin, e.g., m3(y) # m3(x) in general. This sim- 
plification justifies the use of central moments in 
the calculations. The spectrum of { yk > is given by 

S,(o) = S,(o) + 02, (40) 

since the noise is white and has a flat spectrum. 

3. Multi-channel inverse problem 

Up to this point we have characterised, in terms 
of various statistical quantities, the superposition of 
a set of independent binary Markov chains. This 
model is a close approximation of transmembrane 
currents which arise from the collective behaviour 
of many single channels that open and close inter- 
mittently. Such situations can occur when mem- 
brane currents are measured with intracellular 
electrodes, from whole-cell configurations or ex- 
cised patches containing multiple channels. 

We can now state the following problem, called 
the multi-pore problem (MPP): 

Problem 3.1. Given observations of a process { yk} 
consisting of an addition of iid, binary, homo- 
geneous Markov chains, observed in additive white 
Gaussian noise, determine the number of binary 
chains, the two elementary state levels and the 
transition probability matrix of the individual 
chains in terms of statistically measurable quantities. 

Initially, we will not attempt to solve the MPP in 
this generality, instead, we make the following ad- 
ditional assumptions: 
(Al) The variance of the noise is known. 
(A2) One state level, si, of the identical binary 

chains is zero. 
Assumption (A2) may be made without loss of 

generality. We show in Section 4 how to estimate 
the noise variance and non-unity eigenvalue of the 
single-chain transition matrix using the power 
spectrum of the noisy data, so that assumption (Al) 
should not be an impediment in practice. We stress 
here that, although the general problem can be 
solved in principle using hidden Markov model 
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techniques, it is impractical to do so when the 
number of individual chains is large. In addition, 
the transition matrix of an individual chain P must 
be obtained from (37), and this involves the solu- 
tion of an overdetermined system of non-linear 
equations. We now proceed to solve the MPP sub- 
ject to assumptions (Al) and (A2), using the theory 
developed in Section 2. 

Let the observable process be written in the usual 
notation as 

N 

yk = c xf’ + nk. 

i=l 
(41) 

From Sections 2.1-2.3 it follows that the mean, 
variance, third-order central moment and power 
spectrum of {yk) are given, respectively, by 

ml(y) = Nml (x”‘) = Nn 2 29 s (42) 
p2(y) = Np2(x(‘9 + cr2 = N7c17r2s; + e2, (43) 
am = Nj#)) = N7r17r2(7c1 - n,)s; (44) 
and 

S,(o) = N&U,(~) + o2 

N711~2&1 - 1”) + a2 

= 1 +12-221coswT . 
(45) 

The fourth central moment of {yk} may be shown 
to be 

pa(y) = N7~1712(71: + ~3)s: + 6N~17~2~~~q + 30~. 

As before, if P is the transition matrix of {CC:‘}, nl, 
n2 are the components of the steady-state distribu- 
tion of P, ;1 is the non-unity eigenvalue and s2 is the 
non-zero state level. Note that, in the absence of 
noise, 

~z(Y) = szml(y) - m:(y)lN, 

a similar result holds for Bernoulli processes for 
which 5 = 1 - p in (30), as obtained by Sigworth 
c311. 

The unknowns in this problem are s2, 1, 7c1, A~, 
N and the transition matrix itself, which may be 
determined from the spectral expansion (33) once 
A, nl, 7c2 are known. Of course, 7r1 + 7c2 = 1, so we 
can reduce the number of unknown parameters to 
four. We emphasize again here that no further 
information relevant to determining the transition 

probabilities can be gained by considering central 
moments of order higher than 3. (This can be estab- 
lished using the results of Appendix A.) As men- 
tioned in Section 2, the moments provide only 
2 x 2 - 1 = 3 independent equations, so that cor- 
relation-type information must be considered (or 
equivalently spectra). 

With Eqs. (42)-(45) in hand, it is a straightfor- 
ward matter to identify the desired parameters. 
Since the noise variance is assumed to be known, 
we can replace p2 ( y) by 

P2c4 = P2(Y) -cJ2 

and subtract the noise power from the spectrum to 
obtain the noiseless signal spectrum 

S,(w) = S,(o) - 02. 

It follows simply from Eqs. (42)-(44) that the 
unique solution for (rr, s2, N) is 

a, = (2 - y)-‘, K2 = 1 - 711, 

CL&) s2 - 
ml(y)nl’ 

N = him: 
GZ’ 

(46) 

where the dimensionless quantity y is defined by 

y,ml(Y)~3(Y) 

(P2 (a2 
(47) 

Note that in practice N would need to be rounded 
to an integer value. Since n1 E (0, 1) for a Markov 
chain with no absorbing state, it follows that y < 1. 
In practice, outliers in the data may need to be 
removed to ensure that the latter condition holds 
for the estimated moments. 

Furthermore, we can obtain il and hence the 
transition matrix from the spectrum. An analytical 
solution is given by 

I-l-2(1+v)_‘, v4 (48) 

although, from a numerical point of view, it is 
better to fit the analytical expression (45) to the 
spectrum estimate rather than relying on informa- 
tion at only two frequency points. The transition 
probabilities are determined via 

r = Wl + 7r25 p=712+nl;l, 

%=1--c, fi=l--p. 
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Remarks. (1) The above results indicate the de- for chains with roughly equal diagonal transition 
pendence of the parameters on the moments and probabilities. We later give an example for which 
power spectrum of the process (41). both these conditions apply. 

(2) Satisfactory performance of the algorithm 
depends on the implementation of the statistical 
moment and power spectrum estimators. 

Power spectrum estimation is well covered in the 
literature, and details may be found in [7,23,27]. 
For the purposes of demonstrating the algorithm, 
segmental averaging of windowed periodograms of 
the data was found to be adequate and we describe 
this briefly. The data are divided into non-overlap- 
ping blocks, typically of size 1024 points. The data 
in each block are de-biased and windowed. The fast 
Fourier transform of the block is then computed 
and the periodogram formed. The running average 
of the periodogram over blocksjs taken and yields 
the power spectrum estimate S,(Oi) for the N/2 
frequencies Oi, i = 0, . . . , N/2 - 1. This estimate is 
then normalised using the computed data variance. 

4. Moment and spectrum estimators 

We consider how to obtain estimates of the re- 
quired statistics from a finite-length sample of noisy 
data ( yk}kK, I from the process (41). We assume that 
the noise has an effectively flat spectrum over the 
frequency range of interest (0, 1/2T), where T is the 
sampling period, and that an initial estimate of its 
variance may be obtained prior to estimation of the 
parameters. With this initial estimate, a signal vari- 
ance estimate can be calculated by subtracting the 
noise variance from the variance of the noisy signal. 
The noise variance may also be estimated indepen- 
dently from the power spectrum. We also assume 
implicitly that the process is stationary over the 
observation period. 

The sample mean, and second and third central 
moments of the data are computed using standard 
formulae. It is well known that the standard es- 
timators for the variance and third central moment 
can be de-biased by the appropriate scaling, but 
this bias is inconsequential for large N. Further 
remaks concerning the consistency of standard mo- 
ment estimators may be found in, e.g., [26]. We 
mention that the skew of the process (41), defined as 

E{(Yk - E{Yia3} 

%{(Yk - -qYk})z})3’2’ 
(49) 

is expressible as 

(50) 

in the absence of noise. Moreover, the skew is small 
when the components of the steady-state distribu- 
tion are approximately equal, or nnl x 7c2. This has 
implications in terms of the number of data points 
needed to obtain good estimates of the third central 
moment, which becomes more difficult to estimate 
accurately as the number of chains N gets large, or 

The power spectrum estimate of the raw data 
should be examined graphically to ascertain initial 
estimates for the signal parameters. Let S,,, and 
Smin be the maximum and minimum values of the 
power spectrum obtained by visual examination. 
Furthermore, let o. represent the - 3dB frequency 
or half-power point obtained by locating the fre- 
quency at which the power spectrum drops to half 
its maximum value, measured with respect to its 
minimum value. It then follows simply from (45) 
that o. and the non-unity eigenvalue 1 are related 
by 

2i 
cos(0,) = - 

1 +A*’ (51) 

so that an estimate of A may be obtained as 

;1 = 1 - sintoo) 

cos(w0) . 
(52) 

Estimates of the signal variance I’ and noise vari- 
ance g2 can then be obtained using 

o* = C1 + 1)2Smin - (I1 - A)2Smax 
4A (54) 

These variance estimates should sum to give the 
variance of the noisy signal. The initial parameter 
estimates can be refined by fitting a function of the 
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form (45) using least squares or a recursive variant 
thereof. Further details may be found in [lo]. Alter- 
natively, the power spectrum fitting procedure could 
be replaced by a recursive estimator for the linear 
auto-regressive system having the same power spec- 
trum (for white noise input) as the Markov chain 
signal. Finally, we point out that all of the opera- 
tions involved in the estimation procedure can be 
performed sequentially over blocks of data. 

5. Numerical examples 

We first give some numerical simulation exam- 
ples demonstrating the effectiveness of the multi- 
pore identification technique. We assume that the 
noise variance is known, and so only use 
power spectrum fitting to estimate the non-unity 
eigenvalue of the process. We chose the following 
parameters for the multi-pore signal: transition 
probabilities [ = 0.99, p = 0.97; non-zero state level 
s2 = - 5; noise variance 0’ = 25; number of sam- 
ples = 106. The data were rounded to three signifi- 
cant figures to simulate quantisation noise. The 
number of points was taken to be large so that the 
initial Markov chain transient did not bias the 
estimation. The cases we have listed correspond to 
channels with N = 10 and N = 100 pores. The 
exact statistics of the net signal resulting from the 
sum of the elementary pore signals, computed from 
(42)-(44), are shown in Table 1. Note that the 
non-unity eigenvalue of the elementary transition 
matrix is 0.96. The first-, second- and third-order 
statistics of each of the three data records were 
computed as described in Section 4, and these are 
displayed in Table 2. 

Fig. l(a) shows a 1000 point segment of noise-free 
data from the lo-chain simulation, with a sample of 

Table 1 
Exact statistics of multi-pore data 

Noise + Third-order 
signal central 

N Mean Variance variance moment 

10 - 12.5 46.875 71.875 - 117.1875 
100 - 125 468.75 493.75 - 1171.875 

Table 2 
Estimated statistics of multi-pore data for one run of length lo6 
points 

Noise + Third-order 
signal central Eigen- 

N Mean variance moment value 

10 - 12.5127 72.2969 - 115.994 0.9612 
100 - 124.938 469.027 - 1035.875 0.9578 

(0) 

,o 

(b) 

Fig. 1. Parameter identification from a record containing 10 
chains. A segment of the noise-free signal and a segment with 
additive white noise are shown in (a) and (b). The estimated 
power spectrum, and corresponding fitted curve, are shown 
in (c). 

the noisy data displayed in Fig. l(b). The 512-point 
power spectrum, obtained as described in Section 4, 
is displayed in Fig. l(c). We used non-overlapping 
blocks of 1024 points with a Hanning window. Also 
shown in Fig. l(c) is the fitted spectrum curve which 
was obtained using the method in [lo]. Since the 
noise variance was assumed known, only the eigen- 
value 1 was required in the fit and the results are 
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values are given in Table 3. The quantities rii and 
Fiji are the elements of the estimated steady-state 
distribution and elementary transition matrix. It is 
clear that these estimates are in good agreement 
with their true values. Note that the eigenvalue 
estimate I is only needed to estimate the transition 
probabilities, the other quantities being determined 
from the moment statistics and noise variance. 

(b) --7 

217 

8 

c 

Fig. 2. Simulation for a large number of chains. A segment of 
the noise-free signal sequence, containing 100 identical chains is 
displayed in (a) and an observation sequence contaminated by 
white noise is shown in (b). The estimated power spectrum and 
fitted curve are shown in (c). 

listed in Table 2. Similarly, a segment of the noise- 
less data for the lOOchain example is shown in Fig. 
2(a), with a lOOO-point sample of the noisy data in 
Fig. 2(b). The corresponding computed and fitted 
power spectra are given in Fig. 2(c). 

Using the central moment estimates together 
with the estimated non-unity eigenvalue and the 
known noise variance, the elementary chain para- 
meters were calculated from Eqs. (46) and the 

In order to demonstrate the consistency of the 
estimation algorithm we have included a set of 
Monte Carlo simulations. We chose the following 
parameters for the simulations: transition probabil- 
ities < = 0.98, p = 0.97; non-zero state level 
s2 = - 25; noise variance c? = 625; number of 
chains N = 100. In this example the skew (50) of the 
noiseless process is only O(lO- 3), making the es- 
timation of the third moment more difficult than 
for typical cases involving fewer chains or processes 
with more widely differing diagonal transition 
probabilities. 

The experiment consisted of 100 Monte Carlo 
runs each for simulation lengths varying between 
20000 and 500000 points. Note that theoretical 
values for the process statistics are in this case: 
mean - 1000; variance (signal plus noise) 15625; 
third central moment - 75000; non-unity eigen- 
value 0.95. For each simulation, the parameters 
were computed from the estimated moments and 
power spectrum (assuming a known noise vari- 
ance). A simple outlier detection strategy was ad- 
opted to improve the accuracy of the third moment 
estimator. 

The mean parameter values and their standard 
deviations (depicted as error bars extending one 
standard deviation above and below the line) are 
plotted in Figs. 3(aHe) against the number of 
points in the simulations. The convergence of the 
parameter estimates is evident in these graphs. For 
this example, adequate performance was obtained 

Table 3 
Estimated signal parameters from 10 and 100 pore simulations, assuming a known noise variance 

True value -5 0.75 0.25 0.99 0.97 
N=lO. 9 - 5.11 0.74 0.26 0.9900 0.9713 
N=lOO 102 - 4.77 0.7443 0.2557 0.9892 0.9686 
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0g8 E- 1 

-40 !- i 

Fig. 3. Estimator performance as a function of data length. The 
mean value of the parameter estimates for steady-state distribu- 
tion (a) nr and transition probabilities (b) c and (c) p. non-zero 
state level(d) sr and number of chains(e) N are shown. The error 
bars have length equal to twice the standard deviation of the 
estimate. 

for around 50000 points, although for processes 
with larger values of skew, the data length can be 
reduced substantially. In typical biophysical experi- 
ments, membrane currents are recorded over a pe- 
riod of between 10 and 30 min and the entire record 
is digitised at 10 kHz. At this sampling rate, 50 000 
points of data could be acquired in 5 s real time. 

Lastly, we provide examples of the performance 
of the algorithm when applied to real data. Inward 
currents due to sodium ions, activated by a brief 
application of 100 uM N-methyl-D-aspartate 
(NMDA) to a cultured hippocampal neuron, were 
recorded with a whole-cell patch clamp technique. 
Fig. 4 shows the current trace recorded immediate- 
ly before, during and after the application of 

(b) 

(cl 

Fig. 4. Parameter estimation for real data. The current trace of 
a whole-cell patch clamp experiment is shown in (a). The 75000- 
point record was passed through a median filter and then 
compressed into 500 points. The period during which 100 FM 
N-methyl-D-aspartate (NMDA) was applied to the cell surface 
is indicated by the bar above the current trace. Short segments 
corresponding to activity prior to, and during the application of 
the drug (NMDA) are shown in (b) and (c) respectively on 
a larger time scale. The record was filtered at 2 kHz and sampled 
at 5 kHz. 

NMDA. An unknown number of channels opened 
and closed intermittently while NMDA was being 
applied to the cell surface, as indicated by a bar just 
above Fig. 4(a). When the application of the 
channel agonist ceased, the magnitude of inward 
currents slowly decayed to the baseline (the zero- 
current level), reflecting a slow diffusion of agonist 
molecules from the cell surface. Figs. 4(b) and (c) 
show the current before and during the application 
of NMDA on an expanded time scale. Although the 
process is clearly non-stationary during the period 
in which the system relaxes back to the equilibrium, 
it may be considered stationary during the applica- 
tion of NMDA. Using lOOOO-points of the record 
taken during the stationary period, we estimated 
the relevant parameters of the single NMDA chan- 
nels. The estimated number of channels activated 
during the peak of inward currents was 77 with an 
estimated conductance of 51.2 pS (corresponding 
to an amplitude of - 2.56 PA). The estimated dia- 
gonal transition probabilities were [ = 0.9876 and 
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p = 0.985. These results are in accordance with 
generally accepted experimental values. 

6. Discussion 

We have presented a technique for the identi- 
fication of parameters of a signal consisting 
of a superposition of identical, independent, 
binary Markov chains observed in white noise. 
This was based on the computation of the mean, 
variance, third-order central moment and power 
spectrum of the process data. The technique is 
simpler than other methods based on hidden Mar- 
kov models or histograms and for this reason is 
better suited to the estimation of single channel 
characteristics given data arising from a large 
number of identical channels. In addition, the 
technique is still useful even when the Markov 
property fails to hold due to aggregation of model 
states or if the independence assumption is 
violated by weak coupling of the channels [lo]. 
From a practical standpoint, we only require one 
data segment for analysis. 

We provided numerical examples demonstrating 
the performance of the technique. These tests 
showed the accuracy of estimation given a large 
enough data set, and also the general dependence 
of errors on the data length. The estimate of the 
third central moment can be quite noisy, especially 
for processes with small values of skew (as assumed 
in some of the examples), and it is advisable 
to select data points that lie within some confi- 
dence interval around the mean in order to lessen 
the variance of this estimate. The length of data 
required for satisfactory estimation of the third 
moment is typically much less for processes with 
larger skew. 

Although we assumed that the noise variance 
was known a priori for simplicity in the simula- 
tion, it is feasible to obtain an estimate from the 
power spectrum, using Eq. (54). The interest 
in biological applications is in obtaining a second, 
independent, estimate of the noise variance as 
this is thought to increase with the onset of 
channel activity due to the shot-noise effect 
[28,30]. If the contribution of shot-noise to 
the power spectrum can be considered constant 

over the bandwidth of interest, then our approach 
can be applied to yield an estimate of its 
variance. All that is required is a comparison of 
the variance of the control data segment, contain- 
ing no channel activity, and the noise variance 
obtained from the power spectrum of the multi- 
channel record. 

Two possible refinements of the technique con- 
cern the effects of filtering on the measurements 
and the violation of the independence assump- 
tion of the individual chains. Regarding filtered 
observations, it is a relatively easy matter to correct 
the statisics and power spectrum assuming the 
transfer function of the filter is known. We have 
derived compensation formulae for the case of 
multi-channel data that have been passed through 
a first-order auto-regressive filter [lo]. For typical 
values of membrane resistance and capacitance 
encountered in physiological preparations, the 
correction factors relating the actual and filtered 
signal statistics are close to unity. When the indi- 
vidual pores are identical but no longer indepen- 
dent, the net channel current process is still a 
Markov chain, but Eq. (37), for instance, is 
no longer valid. A simple description of such 
a coupled Markov process has been formulated in 
[18] and essentially involves only one further 
parameter to describe the amount of coupling. 
The extension to the case of non-identical chains 
seems difficult, although some results for the 
continuous-time case may be found in Fredkin and 
Rice [16]. 
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Appendix A 

Formula for the qth central moment of a binary Mar- 
kov chain 

In the notation of Section 2.3 we have 



220 G. Pulfod et al. / Signal Processing 43 (1995) 207-221 

E{(x - mlWq> 
q-1 

=E c 4 
{ 0 xi-‘( - m,(x))’ + ( - w(X))4 

j=O J 

= (- ml(x))jE{x:-j} + ( - ml(X))q 

q-1 
= =2 c 0 4 

j=o J 
(- ml(x))js4,-j + (- ml(x))” 

and E { xz} = 7~~~42. Continuing, we have 

Et@ - ~I(x))~I 

= 712b2 - m(X))q - n2( - ml(X))4 

+ ( - ml(x))g 

= 7t2(s2 - ml(xNq + ZI(- ml(x))q 

= 7z17r2S9[7fp + (- 1)%4,-‘-J 

since ml(x) = n2s2 when s1 = 0. 
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