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Ion channels are protein macromolecules that form biological nanotubes across the membranes of
living cells. Given many possible geometrical shapes of an ion channel, we propose a computa-
tional scheme of selecting the model that best replicates experimental observations, using adaptive
Brownian dynamics simulations together with discrete optimization algorithms. Brownian dynamics
simulations emulate the propagation of individual ions through the sodium ion channel nanotube at
a femto time second time scale and Angstrom unit (10−10 meter) spatial scale.
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1. INTRODUCTION

Ion channels are biological nanotubes formed by protein
macromolecules residing within the cell membrane of all
living organisms. They regulate all electrical activities of
a cell by controlling the passage of ions into and out of
the cell, thus maintaining the resting membrane potentials
and, when needed, causing the generation and propaga-
tion of action potentials. Understanding the structure and
dynamics of ion channels is a fundamental problem in
biology. It is now known that genetic alterations of some
of the genes synthesizing channel proteins are known to be
associated with many inherited disorders, such as epilepsy,
muscular disorders, cystic fibrosis, and diabetes.8 Elucida-
tion of how single ion channels work will ultimately help
neurobiologists find the causes of, and possibly cures for,
a number of neurological and muscular disorders.

Recently the structures of several bacterial ion chan-
nels have been determined by crystallographic analyses.5�6

These discoveries have led to several recent papers where
Brownian dynamics modelling and Brownian dynamics
simulations of ion channels have been used to unravel
structural properties of similar ion channels. Brownian
dynamics (BD) modelling of an ion channel captures the
dynamics of ions both within the ion channel and in
the vicinity of the ion channel as a large scale interact-
ing particle stochastic dynamical system. The modeling
method deals with the computer simulation of this large
scale stochastic dynamical system at an Å spatial scale
and femto-second time scale resolution. The dynamics

∗Author to whom correspondence should be addressed.

(velocity) of individual ions of this large scale stochastic
dynamical system evolve according to a large dimensional
vector stochastic differential equation called the Langevin
equation. The Langevin equation also takes into account
of systematic forces acting on ions within the nanotube of
the ion channel—these systematic forces are a function of
the structure of the ion channel, such as charge of amino
acids lining the inner wall of the ion channel and the three
dimensional shape of the channel. Thus the average time
taken for an ion to cross the ion channel depends on these
structural properties. It logically follows that by optimiz-
ing the fit between the Brownian dynamics simulated ion
channel current (charge per unit time) and the experimen-
tally measured ion channel currents, one can estimate the
structural properties of an ion channel. This is the under-
lying idea of the paper.

The key idea in this paper is to derive a novel discrete
stochastic approximation based algorithm to dynamically
control the behaviour of the BD simulation. The resulting
algorithm yields the optimal estimate of the shape of an
ion channel by optimizing the match between the BD sim-
ulated ion channel current and experimentally determined
current. By using a parameterized structure, we formulate
the problem of estimating the shape of an ion channel the
discrete stochastic optimization problem.

The paper is organized as follows. We begin by for-
mulating the BD algorithm to calculate currents through
ion channels. We then discuss the optimization algorithms
devised to search and converge on the optimal shape of the
pore for sodium channels. We then provide a numerical
analysis of the performance of our algorithms.
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2. SODIUM ION CHANNEL MODEL AND
BROWNIAN DYNAMICS ION
PERMEATION MODEL

2.1. Construction of Sodium Ion
Channel Structural Model

The aim of this subsection if to carefully construct a
finite number of feasible structural shapes for a sodium
ion channel. These feasible shapes need to capture the
following unique properties of the sodium ion channel.
First, the sodium ion channel allows over 106 ions through
the channel every second, and yet is able to distinguish
between sodium and other ions. Second, it has a high
affinity for monovalent ions, is rapidly blocked by diva-
lent ions and allows no anions through. Third, the channel
exhibits a symmetric, linear current–voltage curve when
there is symmetric concentrations of NaCl in the intra-
cellular and extra-cellular regions, and the current rapidly
saturates with increasing concentrations. Finally, the chan-
nel is completely blocked when divalent ions are present
in the external solution, but only marginally reduced in
presence of intracellular divalent ions.

In order to model the sodium ion channel, and due to
the lack of data available on its atomic structure, feasi-
ble models for the sodium channel must take into account
the above properties and successfully reproduce available
experimental current–voltage and current–concentration
responses of the channel.

A sodium ion channel comprises of four functional com-
ponents: external vestibule, selectivity filter, internal pore,
and internal entrance region. The family of sodium ion
channels are believed to be structurally similar to the fam-
ily of potassium ion channels. Thus, we have based the
feasible shapes of the sodium channel on the KCsA potas-
sium channel, the structure of which was recently crystal-
lized by Doyle et al.5 We have shortened the selectivity
filter and added an external vestibule to the existing potas-
sium channel shape. Below we describe in detail how by
carefully varying the dimensions of the above structural
components there are a finite number of distinct possibil-
ities for the shape. The candidate channels are depicted
in Figure 1 and the various parameters of these candidate
channels are given in Table I
(i) Outer vestibule: The outer regions making up the
sodium channel protein are believed to be composed of
the P loops of the protein that form a conical outer
vestibule.8�15

(ii) Selectivity filter: Similar to the KCsA, we include a
short selectivity filter followed by an internal pore region.
All channel models contain a selectivity filter with a radius
of r = 2�2 Å derived from permeant cation studies by
Hille.10 As the length of the filter is unknown, we vary this
parameter to fit the current. We use only the two charged
rings suspected to lie in the selectivity filter, and known
from mutation studies to have a large effect on selectivity

and conductance of the sodium channel.9�19�21 The two
charged rings are placed around the filter region as point
charges, 1 Å behind the protein boundary, at a distance of
z= 14 Å and z= 18�5 Å from the central axis of the chan-
nel. The inner ring contains a positively charged lysine
and a negatively charged glutamate and aspartate amino
acid group, and the outer ring contains two negatively
charged glutamates and two negatively charged aspartates.
The positive lysine in the inner ring is fully charged, but
we believe that more than one negative residue is likely to
be protonated. For the position and charged states of these
residues we have used the data of Ref. [22]. They find
that two residues must be protonated at any given time to
reproduce the experimental data. The inner ring has a total
charge of −1�0 × 10−19 C on average, where the lysine
has the charge of one proton, and the negative residues
in the inner ring a charge of −1�3× 10−19 C each. The
outer ring contains a total charge of 3�8× 10−19 C where
the total charge is shared equally among all four negative
residues, giving each residue a charge of 0�95× 10−19 C.
We distribute equal charges among all residues in a ring
because the exact charge state of any residue at a given
time is difficult to calculate, only the average behaviour of
the charged residue can be estimated.
(iii) Inner pore: Followed by the selectivity filter is an
inner vestibule region. This is again adopted from the
KcsA structure. The diameter and length of this region is
unknown and has been varied in the shape estimation of
the channel.
(iv) Internal entrance: The internal entrance leads into the
inside of the cell. This region contains the carboxyl end
of the protein making up the sodium channel. For this
reason we include a set of dipole charges at z = −20 Å,
mimicking the intracellular helix dipoles of the channel
protein. The magnitude of charge on the helix dipoles is
0�6× 10−19 C. The negative end is nearer to the channel
entrance, the positive ends are buried deep inside the pro-
tein and its effect is negligible.

The channel model is generated by creating an initial out-
line of the channel pore and then rotating it by 180 �C to
create a three-dimensional shape. Cylindrical symmetry is
assumed with the channel centered around z = 0 Å and
extending out to z = ±27. An extracellular and intracel-
lular reservoir, �1 and �2, is attached to either ends of
the channel. The channel model has been varied systemati-
cally, all shapes used are given in Figure 1 and Table I. On
the above stated basic outline (of outer vestibule, selectiv-
ity filter, inner pore and internal entrance), we have varied
the dimensions of the channel to obtain currents through
each individual channel. The parameters that were var-
ied are stated in Table I. We have varied the width and
height of the outer vestibule (shapes 1 and 2), length of the
selectivity filter (shapes 3 and 4), width of the inner pore
(shape 5), and the width of the intracellular pore (shapes 4,
6, and 7) and the width, and height of the outer vestibule

2 J. Nanosci. Nanotechnol. 7, 1–9, 2007
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Fig. 1. Nine candidate channel shapes for the sodium ion channel nanotube considered in this paper. The 6 dots in each figure denote point charges
in the protein lining the inner wall of the nanotube—all units are in angstrom units Å (1 Å = 10−10 m). The upper four dots represent the point charge
approximations of the two charged rings in the selectivity filter, and the bottom two dots in the internal entrance of the ion channel represent the
dipole charges that mimic the intracellular helix dipoles of the sodium channel protein. For further details on charge types, magnitudes and positions
see Section 2.1.

and length of the selectivity filter simultaneously (shape 8
and 9). We have maintained a fixed length of 54 Å for
all channel shapes, as this is close to the length of the
potassium channel.

2.2. Brownian Dynamics Ion Permeation Model in
Sodium Channel

Figure 2 shows a schematic illustration of a BD simu-
lation assembly for a sodium ion channel. The sodium

J. Nanosci. Nanotechnol. 7, 1–9, 2007 3
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Table I. Nine candidates for channel shapes of the sodium ion channel
considered in this paper. All dimensions are in Å (1 Å = 10−10 meter).

Radius Height

Outer Inner Outer Selectivity Inner
Shape vestibule Cavity pore vestibule filter pore

1 14 6 4�5 10 4 28
2 8 0 0 15 0 0
3 7 6 4�5 10 8 28
4 7 6 4�5 10 4 28
5 14 6 4�5 10 8 24
6 14 6�5 6�5 10 4 27�5
7 14 6 2�5 10 4 28
8 14 8 4�5 10 4 26
9 15 8 4�5 20 4 16

ion channel is placed at the center of the assembly. The
atoms forming the sodium ion channel are represented as
a homogeneous medium with a dielectric constant �p = 2
(shaded in Fig. 2). The channel protein is assumed to have
a rigid structure corresponding to the average positions
of atoms forming it. Despite this necessary simplification
imposed on the model, it has been shown previously that
BD captures the salient conduction properties of a number
of ion channels. This is because the most essential fea-
tures that govern the permeation of ions across a narrow
pore are captured in the model. There are minor details
that can be neglected in the model for the purpose of BD
simulations. For example, small variations in the radius

External
Vestibule
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Filter

Inner Pore

Internal
Entrance

Channel
Components

Extracellular

Intracellular
R2

R1

30 Å

30 Å

z-axis

r
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z = 27 Å

z = –27 Å

C

Fig. 2. Brownian dynamics model setup. The reservoir �1 depicts
the extracellular region while the reservoir �2 depicts the intercellular
region. As shown, the sodium ion channel comprises of 4 components.
The selectivity filter is the narrowest part of the nanotube of radius r =
2�2 Å. The nanotube connects the two reservoirs �1 and �2. The dark
shaded region represents the protein atoms that form the ion channel.
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Fig. 3. Shape estimation using discrete stochastic approximation algo-
rithm 2.

of the ion conducting pathway have no perceptible effects
on electrostatic calculations and BD results. In contrast,
such variations would have a drastic effect on molecular
dynamics results. To carry out BD simulations of ion chan-
nels, one needs to specify the boundaries of the system.
This is a relatively simple problem for 1-dimensional BD
simulations,12 but requires addition of reservoirs to the ion
channel system in the more realistic case of 3-dimensional
BD simulations.14

Two large cylindrical reservoirs denoted �1 and �2 are
attached to either end of the sodium ion channel. These
cylindrical reservoirs �1 and �2 in Figure 2 are each 30 Å
in radius and N Å in height. To exploit the information
available from known experimental measurements of the
sodium ion channel current under various different condi-
tions, such as different electrolyte solutions, concentrations
and applied external voltages, we consider three distinct
scenarios for the setup of the ions within the reservoirs.
Scenario 1: N positive charged Na+ ions and N nega-

tively charged Cl− ions are placed in each reservoir. Each
Na+ ion has charge q+ = 1�6×10−19 C, mass m
i� =m+ =
3�8×10−26 kg and frictional coefficient m++, where from
the Einstein–Smoluchowski relation

m++ = kT

D+ � D+ = 1�33×10−9 m2/s (1)

Here D+ denotes the diffusion coefficient of the Na+ ion
within a bulk solution. Here k = 1�38 × 10−23 denotes
Boltzmann’s constant and T denotes the temperature in
Kelvin. Na+ ions have a radius r+ = 0�95 Å. (Note:
1 Å (angstrom) = 10−10 m.)

Each Cl− ion has charge q
i� = q− = −1�6× 10−19 C,
mass m
i� =m− = 5�9×10−26 kg and frictional coefficient
m−− = kT

D
where D− = 2�03×10−9 m2/s denotes the dif-

fusion coefficient of the Cl− ion within a bulk solution.
Cl− ions have a radius r− = 1�88 Å.
Scenario 2: N positive charged Ca2+ (Calcium) ions

and N negatively charged Cl− (chloride) ions are placed

4 J. Nanosci. Nanotechnol. 7, 1–9, 2007
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in each reservoir. Each Ca2+ ion has charge q++ = 2×
1�6× 10−19 C, mass m++ = 6�6× 10−26 kg and frictional
coefficient m++++ = kT

D++ where D++ = 0�79×10−9 m2/s
denotes the diffusion coefficient of the Ca2+ ion within a
bulk solution. Ca2+ ions have a radius r++ = 0�99 Å.
Scenario 3: N1 Na+ ions, N2 Ca2+ ions, and N3 Cl− ions

are placed in each reservoir. We denote N = N1 +N2 +N3

so that the total number of ions in both reservoirs is 2N.
For each scenario, the BD ion permeation model is con-

structed as follows: Let t≥ 0 denote continuous time. Each
ion i moves in 3-dimensional space over time. Let x
i�

t =

x


i�
t � y


i�
t � z


i�
t � ∈ � and v


i�
t ∈ �3 denote the position and

velocity of ion i at time t.
We use 
′� to denote transpose of a vector or matrix.

The three components x
i�
t � y


i�
t � z


i�
t of x
i�

t ∈� are, respec-
tively, the x, y, and z position coordinates. Similarly, the
three components of v


i�
t ≤ �3 are the x, y, z velocity

components.
At time t = 0, the position x


i�
0 and velocity v


i�
0 each of

the 2N ions in the two reservoirs are randomly initialized
as follows: Each reservoir is divided into N cells of equal
volume. In each cell is placed either one Na+, Cl−, or Ca2+

ions (depending on the scenario) with equal probability.
The initial position x


i�
0 of ion i is chosen according to the

uniform distribution within its cell. This initialization of
x

i�
0 emulates the BD computer software and also is neces-

sary to ensure that two particles are not placed too close to
each other. The initial velocity vectors v


i�
0 of the 2N ions

are initialized according to a 3-dimensional Gaussian distri-
bution with zero mean, and 3×3 diagonal positive definite
covariance matrix. Thus the distribution of the magnitude
of the initial velocity �v
i�0 � has a Maxwell density.

From time t = 0 onwards, an external potential �ext
� 
x�

is applied along the z axis of Figure 2, i.e., with x =

x� y� z�,

�ext
� 
x�= �z� � ∈� (2)

Table II. Simulation conditions: simulations were performed for each shape with all twelve conditions. Concentrations inside and outside the channels
were varied between solutions of NaCl and CaCl2 and both. External potentials of ±70 and ±100 mV was applied.

Ion �ext Experimental Internal External No. of ions No. of ions
Condition type (mV) Î(pA) concentrations (mM) concentrations (mM) in �1 in �2

1 NaCl +100 +2�3 200 200 14 14
2 NaCl −100 −2�3 200 200 14 14
3 CaCl2 −100 0�0 200 200 8 8
4 NaCl −100 −0�5 200 200 12 12

CaCl2 100 100 6 6
5 NaCl +100 +1�2 200 200 12 12

CaCl2 100 100 6 6
6 NaCl −70 −1�6 200 200 14 14
7 NaCl +70 +1�6 200 200 14 14
8 NaCl −70 −1�45 100 100 10 10
9 NaCl +70 +1�45 100 100 10 10
10 NaCl −70 −1�65 350 350 16 16
11 NaCl −70 −0�4 200 200 12 12

CaCl2 100 100 7 0
12 NaCl +70 +0�9 200 200 12 12

CaCl2 100 100 0 7

Here � denotes a finite set of applied experimental condi-
tions summarized in Table II.

Let Xt = 
x

1�′
t � x


2�′
t � x


3�′
t � � � � � x


2N�′
t �′ ∈ �2N denote

the positions and Vt = 
v

1�′
t � v


2�′
t � v


3�′
t � � � � � v


2N�′
t �′ ∈ �6N

denote the velocities of of all the 2N ions. The veloc-
ity of each individual ion evolves according to Langevin’s
equation (recall i = 1�2� � � � �N denote positive ions and
i = N +1� � � � �2N denote negative ions):

x

i�
t = x


i�
0 + ∫ t

0 v

i�
s ds (3)

m+v
i�t = m+v
i�0 −
∫ t

0
m++
x
i�

s �v
i�s ds+
∫ t

0
F


i�
���
Xs�ds

+
∫ t

0
b+
x
i�

s �dw
i�
s (4)

m−v
i�t = m−v
i�0 −
∫ t

0
m−−
x
i�

s �v
i�s ds+
∫ t

0
F


i�
���
Xs�ds

+
∫ t

0
b−
x
i�

s �dw
i�
s (5)

Here 
x
i�
s �=  if x
i�

s ∈�1 ∪�2, i.e., if the ion is in the
reservoir, and 
x
i�

s � is determined by Molecular dynam-
ics simulation when the ion is in the ion channel.1 If x
i�

s

is in the outer vestibule or selectivity filter, we have used
D+ = 0�1 for sodium ions, D++ = 0�15 for calcium ions
and D− = 0�1 for chloride ions. If x
i�

s is in the inter-
nal pore or internal entrance we have used D+ = 0�3 for
sodium ions, D++ = 0�4 for calcium ions and D− = 0�3
for chloride ions.

Equation (3) merely says that velocity is the time deriva-
tive of the position. Eqs. (4) and (5) constitute the (4),
(5), the process "w


i�
t # denotes a 3 dimensional Brownian

motion, which is component-wise independent. The terms
b+
x
i�

s � and b−
x
i�
s � are, respectively,

b+2
x
i�
s �= 2m++
x
i�

s �kT � b−2
x
i�
s �2m−−
x
i�

s �kT
(6)

Thus at any time t� b+w
i� is a Gaussian random vari-
able with zero mean (Eb+w
i�

t = 0), and 3× 3 diagonal

J. Nanosci. Nanotechnol. 7, 1–9, 2007 5
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covariance matrix b+2tI3×3; similarly, Eb−w
i�
t = 0 and

Eb−w
i�2 = b−2tI3×3. Finally, the noise processes "w
i�
t # and

"w

j�
t #, that drive any two different ions, j �= i, are assumed

to be statistically independent.
In Eqs. (4), (5), F 
i�

���
Xt�=−q
i�%
x

i�
t
�


i�
���
Xt� represents

the systematic force acting on ion i, where the scalar val-
ued process �


i�
���
Xt� is the total electric potential experi-

enced by ion i given the position Xt of the 2N ions. The
subscript � is the applied external potential in (2). The
subscript � is a parameter that characterizes the potential
mean force (PMF) profile which is an important compo-
nent of �
i�

���
Xt�—see Section 2.3 for details.

2.3. Modeling of Systematic Force Acting on Ions

As mentioned after Eq. (5), the systematic force experi-
enced by ion i is F


i�
���
Xt� = q
i�%

x

i�
t
�


i�
���
Xt� where the

scalar valued process �

i�
���
Xt� denotes the total electric

potential experienced by ion i given the position Xt of all
the 2N ions. We now give a detailed formulation of these
systematic forces.

The potential �
i�
���
Xt� experienced by each ion i com-

prises of the following five components:

�

i�
���
Xt� = U�
x


i�
t �+�ext

� 
x

i�
t �+�IW 
x


i�
t �

+�C�i
Xt�+�SR� i
Xt� (7)

Note that the first three terms in Eq. (7), namely
U0
x


i�
t �, �ext

� 
x

i�
t �, �IW 
x


i�
t � depend only on the position

x

i�
t of ion i, whereas the last two terms in Eq. (7)

�C�i
Xt���
SR� i 
Xt�, depend on the distance of ion i to

all the other ions, i.e., the position Xt of all the ions. The
five components in Eq. (7) are now defined.
(i) Potential of Mean Force (PMF) denoted U0
x


i�
t � in (7),

comprises of electric forces acting on ion i when it is in or
near the ion channel (nanotube � in Fig. 2). The PMF U0

depends on the structure of the ion channel and originates
from different sources, such as fixed and mobile charges
and induced surface charges.
(ii) External Applied Potential: For ion i at position x


i�
t =

x = 
x� y� z���ext
� 
x� = �z (see (2)) denotes the potential

on ion i due to the applied external field. The electrical
field acting on each ion due to the applied potential is
therefore −%

x

i�
t
�ext

� 
x� = 
0�0��� V/m at all x ∈�. It is
this applied external field that causes a drift of ions from
the reservoir �1 to �2 via the ion channel �. As a result
of this drift of ions within the electrolyte in the two reser-
voirs, eventually the measured potential drop across the
reservoirs is zero and all the potential drop occurs across
the ion channel.
(iii) Coulomb Potential: In Eq. (7), �C�i
Xt� denotes the
Coulomb interaction between ion i and all the other ions.

�C�i
Xi�=
1

4,�0

2N∑
j=1� j �=i

q
j�

�w�x
i�
t −x


j�
t � (8)

(iv) Ion-wall Interaction Potential: The ion-wall potential
�IW also called the Lennard Jones potential ensures that

the position x

i�
t of all ions i = 1� � � � �2N lie in �o. With

x

i�
t = 
x


i�
t � y


i�
t � z


i�
t �′, it is modelled as

�IW 
x

i�
t �= F0

9

r
i�+ rw�

10

[
rc + rw −

(√
x

i�2

t +y

i�2

t

)]9 (9)

where for positive ions r
i� = r+ (radius of Na+ atom) and
for negative ions r
i� = r− (radius of Cl− atom), rw = 1�4 Å
is the radius of atoms making up the wall, rc denotes the
radius of the ion channel, and F0 = 2× 10−10 N which is
estimated from the ST2 water model used in molecular
dynamics.20 This Lennard-Jones potential results in short
range forces that are only significant when the ion is close
to the wall of the reservoirs �1 and �2 or anywhere in
the ion channel �.
(v) Short Range Potential: Finally, in Eq. (7)

�SR� i
Xt�=
F0

9

2N∑
j=1� j �=i


r 
i�+ r
j��

�x
i�
t −x


j�
t �9

(10)

denotes the short range Coulomb interaction between two
ions when their electron clouds overlap.

2.4. Effect of Shape on Potential of Mean Force
(PMF) Profile

An ion entering the ion channel � experiences a force
described by the first term U� of Eq. (7), where � ∈ /
and / = "S1� S2� � � � � S9#. One of the components of this
force is the induced surface charge force. The protein has a
lower dielectric constant (�p = 2), compared to water (�=
80) the ion induced charges at the protein water boundary.
These forces are repulsive, tending to push the ion away
from the boundary. The magnitude of this force depends
on the distance of the ion from the protein boundary. In the
wider sections of the channel the induced charges would
be less significant than for a narrower region of the chan-
nel. This is because in these regions the ion has more room
to maneuver and finds a comfortable distance between
itself and the protein boundaries. Thus, the function U� is
very sensitive to the shape of the channel and significantly
affects the current Î�.

Once a shape has been generated, we solve Poisson’s
equation to obtain the potential of mean force U� experi-
enced by an ion traversing the channel. This is given by,

% 2U�
r�=−0�
r�

�0�
(11)

where U�
r� is the electrical potential for ion channel
shape �, 0�
r�, is the charge density computed from the
fixed charges in the walls of the protein, the other ions in
the system as well as the induced charges in the channel
walls, and � is the dielectric constant on either sides of
the channel boundary. For complex channel shapes as this,
Poisson’s equation is solved numerically using the ‘bound-
ary element’ method.11�13 For further details, see Ref. [4].

Since solving Poisson’s equation at each iteration of
the BD simulations is computationally expensive and
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time-consuming, the solution to Poisson’s equation is pre-
computed over a spatial grid for various ion configura-
tions and the solutions are stored in a set of 2d, 3d, and
5d lookup tables. The 2d tables store the potential aris-
ing from image forces experienced by an ion due to its
presence near the membrane with a lower dielectric.

Due to the cylindrical symmetry of the channel and
reservoirs, only forces for z and r have to be calculated.
The 3d tables store the Coulomb interactions between the
ions and fixed charges in the protein wall lining the nano-
tube, and the external applied potential. The 5d tables store
the electric potential values for the induced charges experi-
enced by an ion when another ion is present in the system,
i.e., ion–ion interaction.

3. ADAPTIVE BROWNIAN DYNAMICS FOR
ESTIMATION OF CHANNEL SHAPE

In this section we compute the optimal sodium ion chan-
nel shape �∗. We first briefly describe the BD simulation
algorithm for computing the ion channel current estimate
Î� as a function of the candidate shape � ∈/.

3.1. Brownian Dynamics Algorithm for
Simulating Ion Channel

To implement the BD simulation algorithm described
below on a digital computer, it is necessary to discretize
the continuous-time Langevin equations of the 2N ions.
The BD simulation algorithm typically uses a sampling
interval of 2× 10−15 s for ions within the channel and a
larger timestep of 1= 10−13 s is used in the reservoir.

3.2. Discrete Stochastic Optimization Based
Adaptive BD Simulation Algorithm

The discrete stochastic optimization controlled BD sim-
ulation algorithm described in this section is recursive
and requires BD simulations on batches of data. Since
the BD simulations will be conducted over batches, it is
convenient to use the the index n= 1�2� � � � to denote batch

Algorithm 1 BD Algorithm for Ion Permeation

• Input parameters � for PMF of ion channel and � for applied
experimental conditions.

• Initialize positions and velocities of all 2N ions according
to Section 2.2.
For discrete time k = 1�2� � � � � T propagate the 2N ions according
to the time discretized Brownian dynamical system.
– If an ion crosses ion channel from �1 to �2, then update

number of crossings from �1 to �2 as L�1��2
= L�1��2

+1.
Uniformly pick one ion from �2 and replace in �1.

– If an ion crosses ion channel from �2 to �1, then update
number of crossings from �2 to �1 as L�2��1

= L�2��1
+1.

Uniformly pick one ion from �1 and replace in �2.
• Compute the mean ion channel current estimate

Î 
��
��= q+ L�1��2

T1
−q− L�2��1

T1
(12)

number. The aim of this section is to present efficient
stochastic optimization algorithms for computing the opti-
mal shape �∗, where

�∗ = arg min
�∈/

C
�� (13)

where / = 
1�2� � � � � S� denotes S feasible shapes of the
sodium ion channel, and

C
��= E"Cn
��#� Cn
��=
∑
�∈�


Î 
��n 
��− I 
��
���2 (14)

As mentioned above, Eq. (14) is a stochastic optimization
problem, since we do not have a closed form expression of
C
��—instead only noisy estimates of the current Î 
��n 
��
are available using BD simulation for different experimen-
tal conditions � ∈�.

Because the square error Cn
�� is nonnegative and
bounded from above, it is convenient to normalize the
above optimization objective as follows: Let 5 < Cn
�� <
7 where 5 denotes a finite lower bound and 7> 0 denotes
a finite upper bound. For example, since Cn
�� is non-
negative, 5 can be chosen as 0. Define the normalized
costs mn
�� as

mn
��
1= Cn
��−5

7−5
� where 0 ≤mn
��≤ 1 (15)

Then the optimization problem (Eq. (14)) is equivalent to

�∗ = arg min
�

m
�� where m
��
1= E"mn
��# (16)

since scaling the cost function does not affect the mini-
mizing solution.

In the rest of this paper we will deal with the normal-
ized discrete stochastic optimization problem (Eq. (16)) for
notational convenience. Since �∗ is the global minimizer,
clearly m
�∗� < m
�� for � ∈/− "�∗#.

An obvious brute force approach for computing the opti-
mal shape �∗ is as follows: For each possible shape � ∈
/, run the BD simulation Algorithm 1 for a very long
time sample size T and compute the estimate mT 
�� using
Eq. (15) for each possible shape �. Finally pick �̂∗

T =
arg min�∈/ mT 
��. Since for any fixed �, mT 
�� → m
��
with probability one (w.p.1) as T →�, it follows that the
brute force estimator is statistically consistent, i.e.,

�̂∗
T → �∗ w.p.1 as T →� (17)

Thus in principle, the above brute force simulation method
can be used to compute the optimal channel shape. How-
ever, the method is highly inefficient since mT 
�� needs to
be evaluated for each � ∈/. The evaluations of mT 
�� for
� �= �∗ are wasted because they contribute nothing to the
estimation of the optimal shape. Indeed, the above brute
force method was used manually in Ref. [22] to estimate
the optimal channel shape—this took the authors several
months.

The idea of discrete stochastic approximation3 is to run
more BD simulations for � where the optimal shape is
expected and less in other areas. More precisely what is
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needed is a dynamic resource allocation (control) algo-
rithm that dynamically controls (schedules) the Brown-
ian dynamics simulation algorithm to efficiently obtain the
optimal shape �∗. We propose a discrete stochastic approx-
imation algorithm that is both consistent (i.e., Eq. (17)
holds) and attracted to the optimal shape. That is, the
algorithm provably spends more time at the optimal shape
gathering observations Î 
��
�� at the optimal shape � = �∗

and less time for other shapes � ∈ /. Thus in discrete
stochastic approximation the aim is to devise an efficient16

adaptive search (sampling plan) which allows to find the
minimizer �∗ with as few samples as possible by not mak-
ing unnecessary observations at non-promising values of �.

In the algorithm below, the process "�n�n = 1�2 � � �#
denotes the “state” of the algorithm. For the state �n, at
batch time n, define the neighborhood set ��n

=/− "�n#.
Finally, denote the S-dimensional standard unit vectors by
cm�m= 1� � � � � S, where

em = 90 · · · 0 1 0 · · · 0:′ (18)

with 1 in the mth position and zeros elsewhere.
The discrete stochastic approximation algorithm we pro-

pose is as follows:

Algorithm 2 Stochastic search adaptive BD algorithm for ion
channel shape estimation.

• Step 0: (Initialization.) At batch-time n= 0, initialize state of the
algorithm �0 ∈ "1� � � � � S# randomly. Initialize state occupation
probabilities ,0 = e�0

. Initialize optimal shape estimate of ion
channel as �∗

0 = �0.
• Step 1: (Sampling and exploration.) At batch n, given current

algorithm state �n, evaluate mn
�n� according to Eq. (15) by
conducting � independent BD simulation runs of Algorithm 1
on the ion channel. Generate an alternative candidate state �̃n by
sampling uniformly from the neighborhood ��0

of current state �n.
Evaluate mn
�̃n�.

• Step 2: (Conditional acceptance test.) If mn
�̃n� < mn
�n�, set
�n+1 = �̃n, else, set �n+1 = �n.

• Step 3: Update empirical state occupation probabilities ,n as

,n+1 = ,n+;n
e�n+1
−,n�, ,0 = e�0

(19)

• Step 4: (Update estimate of shape of ion channel.) �∗
n = �̃
m∗�

where m∗ = arg maxm∈"1�����S# ,n+1
m�, set n→ n+1, go to Step 1.

Remark: The elements ,n
�� of ,n generated by Step 4
are merely normalized counters for how many times the
algorithm state has visited any particular shape � ∈ /. In
particular,

,n
��=
# of times state visits shape � in batches 1 to n

n
(20)

is the empirical occupation probability of state �. As we
will show below, the attraction capability (efficiency) of
Algorithm 2 is captured by the fact that for sufficiently
larger n�,n
�

∗� > ,n
��, meaning that the algorithm
spends more time at the optimal shape �∗ than at any
other shape � ∈ /. As a consequence �∗

n (which accord-
ing to Step 4 is the shape at which the algorithm has

spent maximum time until time n) converges to the optimal
shape � with probability one. This is formalized below.

3.2.1. Convergence of Algorithm 2

In Ref. [2], the following stochastic ordering assumption
is used:

(O) For each �� �̃ ∈/�

P
mn
�
∗� < mn
���≥ P
mn
�� > mn
�

∗��

P
mn
�̃� > mn
�
∗��≥ P
mn
�̃� > mn
��� (21)

Roughly speaking this assumption ensures that the algo-
rithm is more likely to jump towards a global minimum
than away from it, see Ref. [2] for details.

The following convergence theorem for Algorithm 2 is
proved in Ref. [2].

Theorem 1 (Convergence and Efficiency of Algorithm 2)
Under condition (O), The estimated sequence "�∗

n# gener-
ated by Step 4 of Algorithm 2 converges with probability
one to the global optimizer �∗. Equivalently, Algorithm 2
is attracted to �∗ in that for sufficiently large n, the state
spends more time at �∗ than any other value of � ∈ /,
i.e., the state occupation probabilities generated by Step 3
Eq. (19) satisfy ,n
�

∗� > ,n
��� � ∈/− "�∗#.
A sufficient condition for Assumption (O) to holds (see

Ref. [2].) is that the probability density functions p�
x� are
symmetric, unimodal, and identical for all � ∈/. Since the
distribution of the mean square error current mn
�� is not
known, it is difficult to verify Assumption (O). However, as
shown in Section 4, Algorithm 2 gives excellent numerical
results for estimating the shape of the sodium ion channel.

4. NUMERICAL RESULTS—SHAPE
ESTIMATION OF SODIUM ION
CHANNEL

The adaptively Controlled Brownian dynamics simulation
algorithms were run on the Linux Cluster LC supercom-
puter of the Australian National University Supercomputer
Facility. This is a 800 Gflop supercomputer comprising of
152 linux nodes, each node being a Dell Precision-350
with a 2.65 GHz Pentium 4 microprocessor.

In the BD simulations we match the BD current Î 
��
��
to twelve different experimental conditions � ∈ � where
� = "�1� � � � � �2#. These are described in Table II where
each condition corresponds to one value for �. The exper-
imental current, I 
��
��, used to match our simulation cur-
rents are from experimental data in Refs. [7, 17, 18] for
actual sodium ion channels under different experimental
conditions.

4.1. Results Using Adaptive BD Simulation

The Adaptive BD algorithms 2, were coded as Perl-
Scripts. Each iteration runs 24 BD algorithms in parallel

8 J. Nanosci. Nanotechnol. 7, 1–9, 2007
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Fig. 4. Occupation probabilities of Shape Estimation Algorithm 2 after
120 iterations. These occupation probabilities ,
�n� at n= 120 illustrate
the attraction property of Algorithm 2—the algorithm spends more time
near the optimal shape �∗ (Case 1) than other shape.

(12 experimental conditions for �n and �̃n in Step 1 of
the adaptive BD) on the ANU supercomputer. Here we
illustrate the performance of Algorithm 2 in estimating the
shape of the sodium ion channel. It took approximately
38 h of simulation time to simulate all the experimental
conditions � ∈ � at each n ∈ N and a total of approxi-
mately ∼4500 hrs for 120 batches. With batch jobs run-
ning in parallel, it took less than three weeks to obtain all
the results.

The Figure 4 shows the estimate �∗
n evolving versus

batch iteration n for Algorithm 2. For Algorithm 2, in the
initial iterations, Case 4 appears to be the best shape. How-
ever, after around n= 60 iterations �∗

n converges to Case 1.
Thus the optimal shape was already discernible by n= 60
runs but further simulations were carried out in order to
be thorough.

Figure 4 plot of the empirical occupation probabilities
,n at iteration n= 120 for Algorithm 2. The plot illustrates
the attraction property of the algorithm—it spends more
time at the optimal shape (Case 1) than any other shape.
The closest candidate shape to Case 1 is Case 4—and the
Figures shows that the algorithm spends the second largest
time at Case 4.

4.2. Interpretation of Results

At first sight, it might seem that the algorithms are not very
effective in selecting an optimal shape, as there is always
close competition between the two shapes �= 1 and �= 4,
with � = 1 winning by only a small margin in algorithms
2. However, this calls for further inspection of the two
channel models. From Table I we can see that the only

difference between the two shapes is the diameter of the
outer vestibule. In this region, the ions filling up this exter-
nal vestibule are responsible for aiding the ions further in
the selectivity filter to conduct through the channel by pro-
viding them with a repulsive kick. For shape � = 1 the
width of this region is nearly 28 Å, and for shape � = 4 it
is only about 14 Å. There are no other differences between
the two models. We know from the paper22 that this outer
vestibule region contains on average about 2 ions during
much of the BD simulation. What we have learned from
this new set of simulations performed with Algorithm 2, is
that, as long as the vestibule is wide enough to accommo-
date 2 ions, its exact width seems to be irrelevant. Once the
2 ions are present in this outer vestibule, the ions inside the
channel are provided with enough repulsive force for these
resident ions to move through to the other side of the chan-
nel. Thus, even though it might seem that two shapes were
selected by the algorithm as being almost equally success-
ful in satisfying all the experimental conditions presented,
the important features for selectivity and permeation in the
sodium channel are still maintained.
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