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Abstract 

A parameterized Markov chain model is developed to 
model the action of a biological ion channel measured 
in noise. In detai l , the model takes the form of a set 
of binary chains which are interdependent according 
to a coupling parameter. When varied this parameter 
realises the range of behaviors from tight coupling to 
complete independence. Other parameters describe 
the intrinsic characteristics of the binary chains as 
well as their behaviour when fully coupled. An iden- 
tification procedure for the model parameters is devel- 
oped based on hidden Markov modelling ideas but in- 
corporating a novel parameter estimation step (due to 
the nonlinear form of the dependency of the model on 
the parameters). The model and identification meth- 
ods are tested on real data. 

1 Introduction 
This paper presents an identification problem moti- 
vated from a specific application. We open with a 
brief account of the physical system under study and 
then outline the contents of the paper. 

A current dual problem in biology is: (i) performing 
difficult low level measurements of ion currents which 
occur across membranes of neurons and (ii) the subse 
quent explanation of the observed phenomena [1 ,2,3] .  
The ultimate goal is, naturally, to explain on physical 
grounds the mechanisms observed. As a preliminary 
step towards such a physical model a simplified en- 
gineering model is developed in this paper. The first 
part of the paper is devoted towards developing such a 
model which takes the form of a set of partially cou- 
pled Markov chains. In explaining the flow of ions, 
the conceptual model is that of a (biological) channel 
composed of a number of pores each of which may 
open and close. With the action of each pore a sim- 
ple binary Markov chain is associated and these are 
coupled on account of their close physical proximity, 
i .e., if one pore closes then neighbouring pores have 
a greater tendency to close. There are a number of 
precedents to the use of Markov chains in the study 
of such physical systems recently in the biological lit- 
erature, see [4, 5, 61. 

Of greater interest to the engineer is the explicit 
model development and the subsequent identification 
of the model parameters. The model is treated in sec- 
tion 2, and the identification in section 3. Processing 
of real data is treated in section 4. 
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2 Problem Formulation 

Introductory Remarks 
This section develops an abstract model. In the con- 
text of the application outlined in section 1 i t is useful 
to connect some of the abstract objects to follow with 
features from the physical channel under study. 

We model a single channel as a collection of L pows 
in close vicinity. Each pore will be modelled by a sim- 
ple binary (open and closed) Markov chain, denoted 
s t )  where 1 5 r 5 L and k denotes discrete time. 
When open the conductance level of a single pore will 
be denoted q1 and when closed 42. The collection of 
L pores can then take any configuration correspond- 
ing to all variations of open and closed pores. The 
state of the process at time k will be denoted Sk 
and may be thought of as a binary vector (labelled 
with a corresponding decimal number in the range 
(0 ,1, .  . . , 2L  - 1) which we call the index). 

In terms of the observations which are made of the 
total conductance of the channel (measured in noise), 
i.e., the sum of the conductances of the L pores, i t 
is possible to develop a second Markov process which 
we called an aggregated Markov chain and is central 
to our work. The details to follow will be punctuated 
with interpretations based on the multi-pore channel 
model described above. 

Coupled Markov Chain Model 
Binary Vector Chain Process 

We begin with a mathematical formulation of the sig- 
nal model on interest. Consider L identical discrete- 
time, binary, homogeneous Markov processes denoted 
s r ) ,  . . ' ,  sr), such that, at each time k, sf), r = 
1,. . . , L , is a binary random variable taking on one of 
two states in the set q 5? { qI,q2}. These two states 
represent open and closed states. Define the vector 
process (which describes the emsemble of the L scalar 
processes) 

Sk 2 spsf),...,sy) ( 
with state space 

q L f q x q x  " ' x q ,  

i.e., qL is the L times Cartesian product of q. Note 
that the set qL has N = 2L  elements. We will index 
each of these states according to a binary ordering: 
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Index State 
0 
1 

3 

(41 1 41, . . . 3 41) 
(q2,41, . . . I 41) 

2 (41,927 ... , 41) 
(42, 42, ' . ., 41) 

p(C)  A Each of the identical binary processes will be mod- 
elled as a Markov chain, with transition probabilities 

for all 1 5 r 5 L. The corresponding 2 x 2 transition 
probability matrix will be explicitly represented 

- 0 . . .  0 1 - 6 -  
1- 6  0 ... 0 6 

1 - 6  0 . * *  0 6 
1 - 7 )  0 . . .  0 7 

. (2.5) . .  . .  . .  i 

v = [ :;; ] A [ c - ] (2.1) 
U22 1- P P 

and is sufficiently parameterized, as indicated, by two 
parameters 5 and p .  

Let P(c) = (p:;) denote a generic transition prob- 
ability matrix of the vector binary process Sk, Le., for 
Qm 9 (qil,*'.,qiL) mdQn' (qjl,*..,qjL), 

Then P(c) is a square matrix with 4L elements. 

Uncoupled Case 

We can determine the specific transition probability 
matrix when the constituent components of the vector 
process are independent, as a special case of (2.2). 
That is, P(I) = ( px ; )  is defined as the L times tensor 
(Kronecker) product of V (2.1): 

p(') A v@v@ ...@V (2.3) - 
L times 

where @ denotes the tensor product. Alternatively, 
this means the components of (2.3) can be factored 
as 

In the context of the multi-pore channel model'this 
means individual pores open and close without inter- 
acting with neighbouring pores. An example of a real 
channel composed of 2 pores where such an uncou- 
pled model is identified was found to be evident in 
real data (see section 4). 

Part i al  Coupling 

In the most useful model that we consider the con- 
stituent chains need not be independent (2.3) nor 
fully coupled (2.5), leading to the transition proba- 
bility matrix 

P 4 (1 - K)P(') + KP('), 0 5 IE 5 1. (2.6) 

where n (a probability) is the coupling factor. Thus 
P can be parameterized by the set 

e 4 l { 5 , P , S , 7 , 6 , +  (2.7) 

(The number of channels, L, also implicitly parame- 
terizes the model.) Despite the relatively low number 
of parameters we will see that a very rich range of 
qualitative behaviours is possible. 

Aggregated Markov Chain 

In this section we will see that because of the nature 
of the observation process (to be introduced) i t is pos- 
sible to simplify (particularly in terms of level of com- 
putation required) the above Markov chain model to 
a significantly lower order one via an aggregation p r e 
cedure. That is, we group together the binary vector 
states into aggregated states in a natural  way. 

Motivated by our application we define a scalar 
finite-state Markov process corresponding to a noise- 
less observation of the form 

L 

%k 2 lTSk = csr), (2.8) 
r=l 

Le., the inner product of the vector Sk and the vector 
with all elements equal to one. The state space of Zk 
then consists of L + 1 distinct values in the range 



U1 5 (L  - l)q1 + q2 
U2 4 ( L  - 2)ql + 2q2, 

. .  . .  

This output process (2.8) adds the conductances of 
the L pores. hcal l  also that, in our previous mod- 
elling, all the L pores are assumed identical. The 
marriage of these two facts makes i t plain that on the 
basis of measurements of the (potentially noisy) ob- 
servations of & i t will be impossible to distinguish 
between channel configurations with the same num- 
ber of open and closed pores (For example, if a max- 
imum likelihood identification were done, then each 
of the configurations would have identical likelihood 
functions.) This leads to the notion of Markov chain 
formed by aggregating states (although at this stage it 
is not clear that such an aggregation preserves the im- 
portant Markov property-this is established in Ap- 
pendix A). 

A separate motivation for considering the aggre- 
gation is that the dimensionality of the problem is 
reduced considerably. A naive application of (2.6) 
would have a transition probability matrix involving 
4L elements; whereas if we define zk  (2.8) as the state 
at time IC the transition probability matrix has only 
( L  + 1)2 elements. For the range of L values that we 
wish to consider the latter dimension is easily han- 
dled. 

In the light of the output equation (2.8), which de- 
fines the process & , we define aggregated states: 

Aggregated State: A state s k  belongs 
to aggregated state i i f there are i pores 
which are closed, i.e., exactly i pores with 
conductance q2 and L - i pores with con- 
ductance q1. As such, there are (:) (binary 
vector) states in aggregated state i. 

In other words, states which are equivalent up to per- 
mutations of the binary components belong to the 
same aggregated state (equivalence class). The ag- 
gregated states are indexed by i E {0,1,2,  . . . , L}. 
Aggregated state 0 corresponds to (q1, q1 , . . . , q1) and 
aggregated state L corresponds to (q2,92, . . . , q2). As 
a further explicit example, if L = 3 then we aggregate 
the 2L = 8 Sk  states into the following L + 1 = 4 
aggregated states: 

i Set of States 
0 

1 (q2, Q 1 7  Q1)7 (91 7 q2r Q 1 ) 7  (41 7 Q 1 7  92) 

2 ~ ~ 2 , ~ 2 , ~ 1 ~ , ~ ~ 2 , 4 1 , 9 2 ~ , ~ 4 1 , ~ 2 ~ ~ 2 ~  

{ (q2r q2,q2)} 
i 

3 

Finally in terms of the output measurement process 
we have the simple observation 

zk  = U ,  e s k  E aggregated state a 

w exactly i pores closed. (2.9) 

It is possible to express the transition matrix of the 
aggregated system in terms of the transition matrix 
of the nonaggregated system (2.6). The (L + 1) x 
( L  + 1) aggregated probability transition matrix A 
corresponding to (2.6) takes the form: 

A LPR = (1 - K ) & P ~ ) F $ + K ~  (2.10) 

where L is an (L  + 1) x 2L matrix with components 

A(') A(c) 

1 , ,  { '' - 0 otherwise 
if state j E aggregated state i 

and R is a 2L x (L  + 1) matrix with components 

1 if state j E aggregated state i 
rji A { 0 otherwise. 

(This matrix, L, is nonunique, i.e., there exists an 
infinite number of matrices such that EPR = LPR. 
However, the above choice is convenient.) Here we 
note that under aggregation LPcC)R maintains the 
form of (2.5) save that the dimensions are ( L  + 1) x 
(L + 1) rather than 2L x 2L. However LP(')R differs 
in form from (2.3), e.g., if L = 2 then V @ V is given 
by (2.4) whereas 

A(') A L  v ~ v  R =  (2.11) 

C(1-P) CP+(1--C)(1--P)  ( 1 - C ) P  . 

0 

I [ (1 - C2 PI2 2(1 - PIP P2 

2C(1 - C) (1  - o2 

At this point we note that evaluation of the compo- 
nents of A according to (2.10) is somewhat imprac- 
tical for large L because of the computation of the 
uncoupled component A(') which involves the K r e 
necker product expression. In Appendix B we show 
how to compute the coefficients with a simple recur- 
sion which is important for software development. 

Measurement Noise 

Next we assume that the chain Zk is hidden, that is, 
indirectly observed by measurements y k  of the form 

Yk  = Zk + W k .  (2.12) 

where Wk  is zero mean gaussian noise of variance U:. 

Define the vector of conditional probability functions 
b ( u L , q , y k )  = ( bi ( U L 7q73' k ) )  where 

(2.13) 
for 0 5 i 5 L. We denote the sequence of observations 
{ y l ,  y 2 ,  . . . , Y k }  by Y k .  The problem takes the form of 
a hidden Markov model (HMM, [7]) because W k  is 
white, leading to the independence property 

P ( y k l  zk  = U i , zk - 1  = U j , Y k - l )  =p(YkI xk =Ui), 
(2.14) 

(see Appendix A). Also we assume that the initial 
state probability vector T = ( T ~ )  is defined from xi = 
P(Z1 = U i ) .  
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3 Parameter Estimation 

Overview 
Now we address the problem of how to estimate the 
parameters of our model given real data measure 
ments. Our emphasis lies in defining a procedure that 
obtains the estimates rather than focusing on the de- 
tailed development and analysis of the technique em- 
ployed. We will, therefore, rely heavily on the litera- 
ture and focus only on the novel aspects. 

We summarize the estimation procedure as follows: 

Two Step Estimation: 

(i ) Classical HMM identification [7] of the 
transition probability matrix and ass@ 
ciated relevant parameters, (e.g., out- 
put levels (11, q2 and noise variance U:). 

(ii) Novel optimal parameter fit according 
to the partially coupled model using 
gradient descent adapt at ion. 

As motivation for the above, we note that the first 
step is independent of the ÒpreferredÓ Markov model 
parameterization (2.6), i.e., i t imposes no bias t e  
wards the structure (2.10) we seek. Incorporating the 
first step also has the advantage of using existing t he 
ory (and software) with no modification. The second 
step is a well defined procedure which may be em- 
ployed on more general systems than those that we 
consider, i .e., i t is not particularly restricted to the 
parameterization that we have developed. This fea- 
ture enables the procedure to be easily modified in 
the event that, for example, the model were to be 
extended or changed. 

Hidden Markov Modelling 
We begin with a brief decription of the standard HMM 
formulation which we utilize. The complete HMM 
parameter set is usually denoted 

X 5 {A,b,*}. 

The matrix A is the transition probability matrix 
with entries. (To accommodate the standard matrix 
indexing conventions both the i and j indices can be 
incremented.) 

a;j = P zk+l = U j I  %k = ÔUi ) ,  Vk,  Ó (  
where i, j E {0,1,2,  .. . , L } ,  which gives complete 
information regarding ths statistical properties the 
transition between the states. The vector b was 
defined in (2.13) and depends on the parameters 
{ ql ,  q2, aw } . This vector relates actual observations 
to the hidden state. The third element of A, T ,  defines 
the initial probability distribution across the states. 

Some important things to note regarding standard 
HMM theory are: 

(i) extensive work has been done developing com- 
putationally tractable recursions for evaluating 
maximum likelihood parameter estimates; 

(ii) 

(iii) 

these recursions crucially rely on estimating pa- 
rameters corresponding to the ÒnaiveÓ parame- 
terization, for example, the parameters aij are 
directly estimated; 

the estimation objective is to find the model es- 

bility of the complete observation record YK, i .e.,  

that maximizes the proba- 

In terms of the parameters that we seek the param- 
eters 41, 42 and U: can be directly estimated from 
the above standard HMM framework (also the num- 
ber of pores, L,  can be estimated using similar ideas), 
whereas we need new methods to deal with the prob- 
lem of estimating the parameters in 0 which enter 
in a nonlinear fashion. This estimation procedure is 
treated next. 

Parameter Fitting 

In the above HMM parameter estimation problem we 
assume we have available optimal estimates of the 
transition probability matrix coefficients a;j . Since 
our model developed in section 2 impinges primarily 
on the transition probability matrix then estimating 
the parameters in the set 0 (2.7) concern only the 
aij parameters. Let the maximum likelihood matrix 
estimate generated from the data by the HMM pro- 
cessing have components given by ?iij (3.1) and let 
the partially coupled Markov chain model have tran- 
sition probability matrix denoted aij (e). We seek to 
estimate 8. 

We pose the following parameter fitting problem: 

- 2  e*  argmin - A(Q) - A I ~  
e 2  II F 

= argmin - l L  ( ai j ( 0)  - ?iij)2 (3.2) 
e 2 i =o j =o  

where 11 . I I F  is the Robenius norm of a matrix (which 
is just a euclidean norm of the matrix interpreted as 
a stacked vector). 

The explicit solution of the above problem is un- 
available since the parameters 8 enter in a nonlinear 
fashion. However, a simple adaptive procedure has 
been developed which solves the problem iteratively. 
The technique is a gradient descent (search) strategy. 
Explicitly, consider the difference equation 

6 ( k  + 1) = 6 ( k )  - p - (3.3) 

where 
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Using (3.2) the partial derivatives in turn are written 

and similarly with respect to the remaining parame- 
ters in 8. Finally in (3.3), p represents a small posi- 
tive stepsize parameter. 

A t this point we highlight the need for efficient 
means to compute both the components ai j (O) and 
the partial derivatives, (I.Q., daij (@)/a{, above. This 
important numerical aspect dealing with the devel- 
opment of recursive formulae is treated in Appendix 
B. 

When running the update equation (3.3) we initial- 
ize with 

6(0) A [ 0.5 0.5 0.5 0.5 0.5 0.5 1Õ 

since the parameters to be estimated are known to 
be probabilities, i .e., take values between 0 and 1. 
The stepsize is typically taken as p = 0.01 or smaller 
(to ensure numerical stabil i ty). Also in the algorithm 
we project the parameters of 6 to the range [0, 11 to 
ensure that they remain probabilities. 

4 Real Biological Data 
Figure 1 shows a segment of a real data record of 
the channel current from an excised membrane patch 
of a cultured hippocampal neuron. The pores, when 
open, permitted the flow of sodium ions across the 
membrane resulting in the upward deflections in the 
current trace. The record shows clearly 3 uniformly 
distributed levels which implies, by the previous the- 
ory, that the number of pores is L = 2. Hidden 
Markov Model identification techniques for the full 
200 000 sample measurement yielded the transition 
probability matrix: 

0.0179 0.9421 0.0399 . 
0.9359 0.0622 0.0019 

( 0.0002 0.0306 0.9692 1 
The parameter identification stage yielded the esti- 
mates: { = 0.967, p = 0.984, K. = 0.011, ( = 0.921, 
q = 0.991 and S = 0.730. This measurement indi- 
cates that the 2 pores involved were acting essentially 
independently . 

5 Conclusions 
We have developed a Markov chain model which in- 
corporates partial coupling amongst a set of binary 
Markov chains. (Such binary chains can be given a 
simple physical interpret.ation as the opening and clos- 
ing, in a probabilistic manner, of a pore in a biological 
membrane.) We developed a parametric model to de- 
scribe these dynamics, and then moved on to show 
how the parameters could be estimated by combining 
standard HMM identification techniques and gradient 
descent adaptation in a novel way. 

Figure 1: Neuron Membrane Ion Current vs Time 

The model and identification techniques were de- 
veloped with a view to a specific application in pro- 
cessing laboratory measurements of the current in an 
ion channel. We applied the methods to real biolog- 
ical data. The success of the identification is seen as 
the first stage in developing a physical model of the 
mechanism of such biological channels. 
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A Markov Property 

Suppose the process is known to be in (an arbitrary) 
aggregated state i (i.e., i pores are closed; exactly 
which pores is not important) at time IC. Then the 
Markov question is equivalent to showing the proba- 
bility of transiting to (an arbitrary) aggregated state 
j at time k + 1 is unaffected by any additional knowl- 
edge of the process before time IC. Since all pores are 
identical (a symmetry property) having i pores closed 
is equivalent to being in the particular state 

This explicit state has state index 2i - 1. 
Given the transition is made to an aggregated state 

with j closed pores we see that there are ( 4 )  possible 
transitions from Sk = 2; - 1 (small abuse of notation) 
which we will index by members from the set Rj c 
{0,1,2, .  . . , 2L - 1). Naturally this set has cardinality 
lRjl = (:). By considering the (nonequal) sum of 
the probabilities of these transitions we see, utilizing 
(2.9), that 

The utility of this expression is expressing the tran- 
sition properties of the aggregated states in terms of 
the (nonaggregated) states. Since by assumption the 
{ s k }  process is Markovian we can conclude the same 
for the aggregated process. 

B Parameterized Matrices 

Transition Probability Matrix 
The objective is to compute the components of (2.10). 
Only the uncoupled portion presents a difficulty so 
we will focus on this. To simplify notation we will 
represent the components of A(*) for L pores by &;. 

The boundary conditions, using this notation, are 

abfd = c, abi] = 1 - c, = 1 - p ,  11 - P. - 

When considering the transition probabilities of a 
collection of L independent pores we can regard this as 
two groups; one containing L - 1 pores and the other 
an isolated independent pore. With this observation 
in mind we can easily develop two sets of recursions. 
The first set presumes that the isolated pore is ini- 
tially open meaning the index rn is restricted to the 
range 0 5 rn 5 L - 1, whence 

<ai ,"  t- (1  - c )  a:&), 1 5 n 5 L - 1 

n=O 
n = L . 

(B.1) 

The second set of recursions presumes the isolated 
pore is initially closed meaning we can find equations 
for rn = L. This set is entirely analogous to those in 
(B.l) and will not be given. 

As an example, for L = 2 we have 

ay/ =car: + (1  -<)a?, 

a$ = car, 
= C P + ( 1 - ( ' ) ( 1 - P )  

= C ( l - P )  

which tallies with (2.11). Continuing with, say, L = 3 
we then compute, for example, 

.PI - PI 
11 - Call + (1 - oa12d 

= c (CP+ (1  - 0 ( 1  - P I )  + ( 1  - - P) 
= c  ( 3 ( ~ - 2 ~ + 2 - 2 ( )  

Partial Derivatives 
In the gradient descent adaptation we need to com- 
pute partial derivatives with respect to the parame 
ters in 0. With (2.10) written in the form 

A = (1  - K)A(') + R A ( ~ )  

we obtain 

dA 8A aA(c) 
d K  as as ' 

and - = R - .  
aA dA(C) 

at at al7 a9 

- A(c) - A(1) , - = K- 

bA _ -  - K- 

We will focus only on the uncoupled contribution since 
the terms involving 6, t and T,I lead to easily deter- 
mined sparse matrices. By differentiating the recur- 
sions like (B. l )  i t is straightforward to develop recur- 
sions for quantities like 

in terms of lower order terms of the same form and 
lower order transition probabilities. The addition 
boundary conditions that need to apply in this case 
are readily determined to be 


