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Abstract

Death adders (genus Acanthophis) differ from most other elapid snakes, and resemble many viperid snakes, in their thickset
morphology and ambush foraging mode. Although these snakes are widely distributed through Australia and Papua New
Guinea, their basic biology remains poorly known. We report morphological and ecological data based upon dissection of
.750 museum specimens drawn from most of the range of the genus. Female death adders grow larger than conspecific
males, to about the same extent in all taxa (20% in mean adult snout-vent length, = SVL). Most museum specimens were
adult rather than juvenile animals, and adult males outnumbered females in all taxa except A. pyrrhus. Females have shorter
tails (relative to SVL) than males, and longer narrower heads (relative to head length) in some but not all species. The
southern A. antarcticus is wider-bodied (relative to SVL) than the other Australian species. Fecundity of these viviparous
snakes was similar among taxa (mean litter sizes 8 to 14). Death adders encompass a broad range of ecological attributes,
taking a wide variety of vertebrate prey, mostly lizards (55%), frogs and mammals (each 21%; based on 217 records). Dietary
composition differed among species (e.g. frogs were more common in tropical than temperate-zone species), and shifted
with snake body size (endotherms were taken by larger snakes) and sex (male death adders took more lizards than did
females). Overall, death adders take a broader array of prey types, including active fast-moving taxa such as endotherms and
large diurnal skinks, than do most other Australian elapids of similar body sizes. Ambush foraging is the key to capturing
such elusive prey.
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Introduction

Information on snake ecology and behavior has accumulated

substantially over recent years. Data are now available on a much

broader array of traits, revealing unsuspected complexity in

dimensions such as mating systems and sociality [1–3] and a

greater phylogenetic diversity of snake taxa than was the case a few

decades ago. Nonetheless, our understanding of broad patterns in

snake ecology still lags behind that for many other groups, notably

lizards [4,5]. That situation reflects logistical impediments to

ecological research: many snakes are rare, often inactive, and

highly cryptic, rendering them difficult to study using conventional

methods. The development of miniature radio-transmitters has

revolutionized this field [6,7], but telemetry is expensive and

effort-intensive, and is difficult to apply to small and slender-

bodied species.

The measurement and dissection of preserved snakes in

museum collections offers a simple alternative method to

quantify many fundamental ecological traits. Even for rare

species, considerable information can be obtained on impor-

tant life history attributes such as body sizes at maturity, sexual

size dimorphism, reproductive output and, because snakes

ingest relatively large and whole prey items, dietary compo-

sition. The use of previously-collected museum specimens also

avoids ethical and conservation issues associated with collect-

ing and killing animals. Museum-based studies thus provide a

straightforward first step towards understanding the ecological

characteristics of poorly known snake taxa and can provide

long-term data for temporal and geographic comparison.

Importantly, such work can be conducted with simple and

inexpensive equipment, and thus is suitable for parts of the

world where limited funding and/or scientific infrastructure

preclude other technologies.

The first extensive use of museum specimens to quantify

snake ecology was based on the Australian fauna, when one of

us (RS) examined .22,000 preserved specimens of 103 species

within the terrestrial snake fauna of that continent and islands

to the north [8,9]. Although subsequent fieldwork has

documented ecological traits in additional species, and has

provided great detail about the biology of some taxa, some

other Australian snake taxa have been largely neglected –

including the widely-distributed and phenotypically distinctive

death adders (genus Acanthophis). An early museum-based study

described morphology, reproduction and diet of A. antarcticus

from southeastern Australia, emphasizing the evolutionary

convergence between this heavy-bodied taxon and viperids

[10]. Although detailed ecological studies have been conducted

on tropical death adders since that time [11–23], the basic

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94216

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094216&domain=pdf


morphological and ecological variables that are quantifiable

from museum-based studies have not been examined for any

Acanthophis species other than A. antarcticus from the mesic

southeastern part of Australia. The current study addresses

that gap in knowledge.

Materials and Methods

Operational Taxonomic Units
Taxonomic confusion remains a powerful obstacle to any

overview of death adder biology. The intra-generic classification

of these snakes remains uncertain, with some of the currently-

recognized taxa known to be composite, and additional taxa still

to be described [24,25]. A plethora of inadequate species

descriptions have confused the situation [26]. In the absence of

a well-resolved phylogeny and clear species definitions, we

adopted a conservative approach, accepting the risk of lumping

taxa that eventually will prove to be composite, rather than

splitting species that may prove to be continuous. We thus

recognized six operational taxonomic units (OTUs) for our

purposes: two regional populations of Acanthophis antarcticus (from

southeastern Australia i.e. Victoria, New South Wales and

southern Queensland) that together form a monophyletic clade

[25], two arid-zone taxa from Western Australian deserts (A.

pyrrhus and A. wellsi) that also likely are each other’s closest

relatives [24,25], and two poorly-defined tropical groups that are

both composite. Within this latter group, Acanthophis praelongus

from tropical Australia probably consists of at least three taxa

[24,25] (and W. Wüster and P. Doughty, pers. comm). We

treated all death adders from Papua New Guinea (PNG) as a

single taxon, although they include representatives of at least two

lineages (the laevis and rugosus groups) that invaded PNG

separately from Australia [25], because we were unable to

reliably identify many specimens. Thus, our analysis was based

on two OTUs from mesic southern Australia (both referable to A.

antarcticus), two from the Australian arid zone (A. pyrrhus and A.

wellsi), one from tropical Australia (A. ‘‘praelongus’’) and one from

PNG (A. ‘‘laevis-rugosus’’).

Although all Acanthophis species are heavier-bodied and larger-

headed than most other elapid snakes, there is substantial variation

in these morphological traits among the taxa of death adders. For

example, the arid-zone species (A. pyrrhus and A. wellsi) are slender

compared to the heavy-bodied southern A. antarcticus and the

tropical A. praelongus (Fig. 1). Coloration also varies considerably,

intra-specifically as well as inter-specifically. Like many ambush

foragers that rely upon camouflage against the background, death

adders show both geographic variation in dorsal color, and intra-

population polymorphism in color [27], and for cases of color

polymorphism in other ambush-foraging snakes see [28,29]. In at

least one species (A. antarcticus), an individual snake’s color also

varies seasonally [27].

Methods

The three authors of this paper examined approximately 760

preserved death adders in the collections of (1) the Australian

Museum (Sydney) and Queensland Museum (Brisbane), examined

by RS in 1979; (2) the Queensland Museum (for specimens

collected after 1979), the Western Australian Museum (Perth) and

Northern Territory Museum (Darwin), examined by JSK in 1994–

5; and (3) the California Academy of Science (San Francisco, CA),

the B. P. Bishop Museum (Honolulu, HI) the Field Museum of

Natural History (Chicago, IL), University of Texas at Arlington,

the Carnegie Museum of Natural History (Pittsburgh, PA),

University of Michigan Museum of Zoology (Ann Arbor, MI)

and the Smithsonian (US National Museum, Washington, DC),

examined by CLS between 1998–2000. We thank the museum

collection managers and curators for access and for allowing us to

dissect specimens, including staff of the Australian Museum (Allen

Greer, Ross Sadlier), Queensland Museum (Jeanette Covacevich,

Patrick Couper), Western Australian Museum (Glenn Storr,

Laurie Smith), Northern Territory Museum (Paul Horner),

California Academy of Science (J. Vindum, R. Drewes), Bishop

Museum (A. Allison), Carnegie Museum of Natural History (S.

Rogers), Field Museum of Natural History (A. Resetar), Smithso-

nian (R. McDiarmid, K. de Quieroz, R. Reynolds), University of

Michigan Museum of Zoology (G. Schneider), and University of

Texas at Arlington (J. Campbell). Table S1 lists these specimens.

The collection dates of these specimens ranged over a 100-year

period, from 1896–1996. The methods used were identical, except

that additional variables were recorded in later studies. The

investigator first measured SVL and tail length with a ruler or

cloth tape stretched along the animal’s midline, and then

measured the length and width of the head using calipers. Head

length was taken from the tip of the nose to the quadrate-articular

projection behind the lower jaw, and head width was measured at

the widest part of the head. The width of the largest ventral scale

at midbody was also recorded. The animal was then carefully

opened along the ventral midline to reveal stomachs and hindguts

(and thus, any prey items in the alimentary tract) and gonads

(testes and efferent ducts in males; ovaries and oviducts in females).

Males were scored as adult if the testes were turgid and/or the

efferent ducts contained sperm (as indicated by opacity and

distension). Females were scored as mature if they had large

Figure 1. Photographs showing the diversity of body forms
within Acanthophis. (A) tropical death adder (Acanthophis praelongus)
from Iron Range National Park, Queensland, and (B) a desert death
adder (A. wellsi) from Karatha, Western Australia. Photographs by
Stephen Zozaya, with permission.
doi:10.1371/journal.pone.0094216.g001
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thickened muscular oviducts, and/or ovarian follicles .10 mm in

length, following the methods of Shine (1980) [10]. If snake

hindguts contained abundant insect fragments but no vertebrate

remains, we tentatively identified these insect fragments as

secondary items from the stomachs of ingested anurans. Inverte-

brates are rarely consumed as primary prey items by Australian

elapid snakes, although there has been one reported exception

[30]. Prey items were removed and identified using light

microscopy.

Sample sizes differed among traits because some specimens

could not be scored for some traits (due to damage during or after

collection); also, collection data (e.g. times, specific locations) were

missing for some taxa. Previously published data on southeastern

Australian A. antarcticus from Shine’s (1979) dissections (N = 344)

[10] were included within our dataset, to maximize the power of

our comparisons. Our statistical analyses were conducted with the

program JMP 9.0 (SAS Institute, Cary, NC). We used contingen-

cy-table analysis to examine categorical data, logistic regression to

evaluate the effects of continuous variables (e.g. body size) as well

as categorical variables (e.g. sex) on categorical response variables

(e.g. prey type), and ANOVA to evaluate the effects of continuous

and categorical variables on continuous dependent variables (e.g.

body size). Our analyses of relative body proportions used

ANCOVA with the relevant body dimension as a covariate (e.g.

to look at relative tail length, we used ANCOVA with tail length as

the dependent variable and SVL as a covariate) but for clarity, we

graph residual scores from the general linear regression between

the two dimensions (e.g. from regression of tail length vs. SVL). In

analyses where higher-order interaction terms were non-significant

(P.0.05), we deleted the interaction and recalculated.

Results

Population Structure
The proportion of museum specimens examined that were adult

rather than juvenile ranged from 54% in A. pyrrhus to 86% in

southwestern Australian A. antarcticus; all other species were within

the range 54–65% adults. Interspecific variation in this variable

was statistically significant (x2 = 13.02, df = 5, P = 0.023; Fig. 2A).

Among adult animals, the sex ratio (% male) ranged from 28% (in

A. pyrrhus) to 66% (southwestern Australian A. antarcticus:

x2 = 18.55, df = 5, P = 0.002; Fig. 2B).

Body Sizes and Shapes
Mean adult SVLs varied among species (F5,547 = 61.22,

P,0.0001), with females attaining average adult sizes about

20% longer than males (F1,457 = 83.18, P,0.0001). The degree of

sexual size dimorphism did not differ significantly among species

(interaction species*sex, F5,457 = 1.93, P = 0.09). Death adders

from PNG were smaller than mainland Australian taxa, all of

which had average adult SVLs around 50 cm (Fig. 2C).

Male and female death adders differed in body proportions as

well as in absolute SVL. Compared to conspecific males at the

same SVL, females had shorter tails, and tail length increased

more rapidly with increasing SVL in males than in females (main

effect of sex, F1,312 = 4.36, P,0.04; interaction sex*SVL,

F1,312 = 26.70, P,0.0001; Fig. 3A). We found no significant

interspecific variation in tail length relative to SVL (main effect of

species P = 0.14, interactions P.0.29).

In contrast, head length relative to SVL differed strongly among

species, with relatively larger heads in A. antarcticus from

southeastern Australia than in other taxa (Fig. 3B). Females had

larger heads than conspecific males (relative to SVL) in four of the

taxa we studied, but the reverse was true in A. praelongus and A.

pyrrhus (Fig. 3B). Thus, statistical analysis of variation in head

length showed a significant three-way interaction between species,

SVL and sex (F5,323 = 8.73, P,0.0001).

We examined head shape by using head width as the dependent

variable and head length as the covariate. Sex differences in head

shape differed among taxa (interaction sex*species, F5,229 = 2.54,

P,0.03; Fig. 3C). Females had narrower heads than males in

PNG snakes, in A. antarcticus, and in A. pyrrhus. In contrast, female

A. praelongus and A. welllsi had wider heads than males (Fig. 3C).

The width of the midbody ventral scales relative to SVL

provides a measure of how wide-bodied a species is. Some species

were wider-bodied than others, with southeastern A. antarcticus

exceptionally wide-bodied (F5,315 = 12.14, P,0.0001; Fig. 3D).

Overall, females tended to be wider-bodied than males at the same

SVL (sex*SVL, F1,303 = 1.80, P = 0.024), although the reverse was

true in A. pyrrhus and PNG snakes (Fig. 3D).

Fecundity
Our dissections of female death adders confirmed viviparity as

the reproductive mode in all of the pregnant death adders that we

examined. Litter sizes ranged from 2 to 49, with averages per

species of 8.5 to 13.7 offspring (Fig. 4). Thus, the species did not

differ significantly in overall mean fecundity (one-factor ANOVA,

F5,106 = 0.29, P = 0.92).

Dietary Composition
Death adders consumed a diverse array of vertebrates, but we

found no evidence of predation on invertebrates (e.g. no cases of

large intact insects in stomachs). Thus, we interpreted insect

remains in hindguts as evidence of ingestion of frogs (which

typically leave no identifiable tissue in the predator’s hindgut).

Lizards were the most common prey type (120 of 217 records),

followed by frogs and mammals (N = 45 records each) and then

birds (N = 7). We identified a broad range of vertebrate prey

species, with high family-level diversity (5 hylid frogs, 10 agamid

lizards, 2 diplodactylid lizards, 76 skinks, 2 varanids, 10 rodents,

and 5 dasyurid marsupials; Table 1), with skinks by far the most

important single family-level taxon. Logistic regression with prey

group (frog, lizard, bird, mammal) as the dependent variable

suggested that a snake’s diet was affected by the predator’s species

(x2 = 68.02, df = 15, P = 0.0001), its SVL (x2 = 11.12, df = 3,

P = 0.011) and its sex (x2 = 11.33, df = 3, P = 0.01). We discuss

each of these effects below.

(i) Species effect. Lizards were the most common prey type

for all species, and dominated the diet of A. pyrrhus and

southwestern A. antarcticus. In contrast, death adders in the tropics

(PNG and northern Australia) often consumed frogs (Fig. 5).

Mammals were commonly taken by A. praelongus and southeastern

A. antarcticus, but not the other species. Although birds were rarely

eaten, they were found in four of the six death adder taxa that we

examined.

(ii) Body size effect. Combining species of snakes, the

average body size (SVL) of death adders that contained

endothermic prey (mammals and birds) was larger than of snakes

that contained ectotherms (frogs and lizards: one-factor ANOVA,

F3,199 = 7.35, P = 0.0001; Fig. 6A).

(iii) Sex effect. Male death adders contained many more

lizards than any other prey type, whereas females had a broader

diet (Fig. 6B). The pattern was similar within species, but not

statistically significant in most taxa due to low sample sizes. Among

PNG adders, however, the sex divergence was significant (e.g.

males consumed 6 frogs and 22 lizards, whereas females consumed

15 frogs and 9 lizards: x2 = 7.43, df = 1, P,0.007).

Ecology of Death Adders

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94216



Overall, we recorded identifiable prey items in 30% of male

snakes, and in 33% of females. A logistic regression, with

presence of prey as the dependent variable, revealed strong

variation in feeding rate among species (x2 = 79.59, df = 5,

P = 0.0001), but not as a function of snake SVL (x2 = 2.26,

df = 1, P = 0.13) or sex (x2 = 1.62, df = 1, P = 0.20). The

proportion of animals containing food was lower in southeast-

ern A. antarcticus, and in PNG snakes, than in the other taxa.

Given that some collectors may have retained animals for

longer periods in captivity prior to killing them, and that the

specimens were collected over a 100-year time period, these

differences are difficult to interpret.

Discussion

Although a distinctive morphology and memorable common

name have given death adders an iconic status within Australian

popular culture, the biology of these animals remains poorly

known. Most information comes from studies on captive animals

[31–34]. By far the most detailed field studies on death adders

have been based on a single population of Acanthophis: northern

death adders (A. praelongus) near the tropical city of Darwin. Studies

on the Darwin population have quantified physiological traits

(such as seasonal variation in energy budgets [11]), ecological traits

such as movements and demography (based on mark-recapture

and radio-telemetry) [12], and behavioral traits such as caudal

luring and prey-handling [13–15]. The vulnerability of these

Figure 2. Interspecific variation in population structure and sexual size dimorphism in museum specimens of death adders (genus
Acanthophis). The panels show (A) the proportion of juvenile animals, (B) the sex ratio of adult animals, and (C) mean adult snout-vent lengths of
males and females. Graphs show mean values and associated standard errors.
doi:10.1371/journal.pone.0094216.g002
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Figure 3. Interspecific and sexual variation in morphological traits in museum specimens of death adders (genus Acanthophis). The
graphs show residual scores from general linear regressions to show (A) relative tail length (from the regression of tail length to snout-vent length),
(B) relative head length (from the regression of head length to snout-vent length), (C) relative head width (from the regression of head width to head
length), (D) relative ventral scale width (from the regression of ventral scale width to snout-vent length). Graphs show mean values and associated
standard errors.
doi:10.1371/journal.pone.0094216.g003
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snakes to an invasive toxic anuran has been examined in detail

[16–20], as have costs of reproduction [21] and the fitness

consequences of modified maternal thermoregulatory regimes

during gestation [22]. The only other Acanthophis taxon that has

been the subject of even superficial ecological studies is an insular

population in northern Queensland [23].

The detailed studies on A. praelongus have supported

several hypotheses about the biology of death adders: for

example, they have shown that the caudal lure is effective at

attracting some but not all potential prey, with vulnerability

greater for some prey taxa [14] and some body sizes [32].

Hence, reliance on this tactic may influence dietary compo-

sition [10]. There is, however, less support for Shine’s (1980)

suggestion that ambush predation is functionally linked to a

‘‘slow’’ life history (i.e. low growth rates, delayed maturation

and infrequent reproduction) [10]. Such a link has been

supported by studies on other Australian snake species – for

example, the ambush predator Hoplocephalus bungaroides has a

‘‘slower’’ life history than do sympatric active-foraging elapid

species [35], and ambush foragers may be at higher risk of

extinction than active-foragers, putatively reflecting those

slower life histories [36]. However, studies on the biology of

tropical death adders have challenged earlier generalizations

based on the southeastern A. antarcticus. For example, the

tropical A. praelongus has rapid growth and early maturation

(males at 1 year, females at 2 years) [12], and these snakes are

highly mobile rather than sedentary, as might be expected for

an ambush forager [22].

The conclusion that death adders encompass a broad range

in ecological attributes is supported by the current study. Most

obviously, the general body form of these animals varies from

extremely thickset (as in A. praelongus) to relatively slender (as in

A. wellsi: see Fig. 1). That diversity does not challenge the

strong evolutionary convergence between death adders and

other ambush-foraging squamates, because most ambush-

foraging squamate lineages encompass equivalent diversity in

body shapes. For example, a range in morphotypes from

thickset to elongate is evident within ambush-foraging viperids

(e.g. Bitis to Lachesis), pythonids (e.g. Python curtus to Morelia

kinghorni), boids (e.g. Candoia aspera to Corallus hortulanus) and

colubrids (e.g. Uromacer catesbyi to U. frenatus) [37]. Similarly,

the ambush-foraging pygopodid lizard Lialis burtonis is more

elongate than are any of the Acanthophis species [38], and some

arboreal snake taxa that rely at least partly on ambush

predation are very slender-bodied, perhaps reflecting camou-

flage on branches rather than in leaf litter e.g. Boiga irregularis

[39] and Thelotornis capensis [40].

Field studies could usefully address relationships between body

shapes and foraging tactics within each of these lineages. It is clear

that ambush foraging and active searching are the ends of a

continuum: individual snakes may use both tactics as a function of

local environmental conditions [41–43], snake body size (e.g.

Agkistrodon piscivorus) [44], season (e.g. Thamnophis cyrtopsis) [4], and

sex (e.g. Acrochordus arafurae) [45]. The strong diversity in body

shapes within Acanthophis (Fig. 1) suggests that they offer an

excellent system with which to explore the relative importance of

alternative foraging tactics, the environmental and phenotypic

traits that influence the use of those tactics, and the consequences

of those tactics for prey types and sizes, and for snake feeding rates.

Do heavy-bodied taxa within Acanthophis rely more on ambush,

and slender species more on active foraging? And do any such

interspecific or sex-based divergences in foraging tactics translate

into divergences in prey choice or activity patterns? Laboratory

studies have shown that different prey taxa elicit different caudal-

luring responses [46] and prey-consumption methods to deal with

postmortem defenses [13], that propensity to lure changes

ontogenetically [46], that some caudal lures are sexually dichro-

matic [47,48], and that lures are more effective at attracting some

potential prey types than others [14]. Snake foraging responses

and tactics can be reliably quantified even in small enclosures

[46,49]. Quantitative information on the relationships (if any)

between snake morphology, foraging tactics and feeding success

could clarify a range of issues, including the question of why such a

wide range of morphologies has evolved even within a closely

Figure 4. Interspecific variation in mean litter sizes of death adders (genus Acanthophis). Graph shows mean values and associated
standard errors.
doi:10.1371/journal.pone.0094216.g004
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Table 1. Prey items identified from dissection of museum specimens of death adders, genus Acanthophis.

SE antarcticus SW antarcticus pyrrhus wellsi praelongus PNG

ANURANS

Unidentified spp. 1 8 9 22

Hylidae

Cyclorana spp. 1

Litoria spp. 1 2

Litoria latopalmata 1

LIZARDS

Unidentified spp. 4 12 4 16

Agamidae

Amphibolurus muricatus 1 2 1

Ctenophorus spp. 2

Ctenophorus caudicinctus 1

Diporiphora winneckei 1

Intellagama lesueurii 1

Physignathus gilberti 1

Diplodactylidae

Diplodactylus stenadactylus 1 1

Scincidae

Unidentified spp. 3 12 3

Carlia spp. 1 5 2 4

Carlia bicarinata 1

Carlia foliorum 1

Cryptoblepharus boutonii 1

Cryptoblepharus plagiocephalus 1 2

Ctenotus grandis 1

Ctenotus inornatus 1

Ctenotus larbillardieri 1

Ctenotus robustus

Ctenotus taeniolatus 1

Egernia spp. 3 2

Egernia formosa 1

Egernia napoleonis 1

Emoia spp. 3

Emoia jakati 4

Emoia pallidiceps 2

Eulamprus quoyii 1

Lampropholis spp. 2

Lampropholis delicata 1

Lerista spp. 1

Menetia greyii 2

Morethia spp. 1

Morethia obscura 7

Sphenomorphus spp. 3

Sphenomorphus melanopogon 1

Varanidae 2

BIRDS

Unidentified spp. 3 2 1 1

MAMMALS

Unidentified spp. 6 2 4 12 4

Unidentified rodent spp. 1

Ecology of Death Adders
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related guild of species that apparently forage in similar ways on

similar kinds of prey.

Unsurprisingly, diets vary among death adder species (Table 1,

Fig. 5). Much of that variation presumably reflects availability: the

spectrum of prey types accessible to a desert adder differs from that

encountered by a rainforest species. Shifts in dietary compo-

sition with snake body size (Fig. 6A) plausibly reflect the

importance of a predator’s body size for its ability to capture,

subdue and ingest relatively large prey items: a trend for larger

snakes to consume larger prey items is widespread but not

universal among snakes [50,51]. Ontogenetic (size-related)

shifts in foraging times and places also might contribute to

intraspecific and sex-based niche partitioning [44,52]. A

general pattern for lizards to comprise a higher proportion of

prey items in male adders than in conspecific, usually larger

females (Fig. 6B) is more puzzling. The prey types more often

taken by females (mammals and frogs) are active nocturnally,

whereas many of the lizards taken by death adders are

diurnally active taxa (e.g. Carlia, Cryptoblepharus, Eulamprus spp.;

Table 1). If these lizards are indeed captured by day, then male

death adders may depend more upon diurnal foraging than do

females. The reverse shift occurs in ambush-foraging green

pythons Morelia viridis: they shift from diurnal to nocturnal

hunting as they grow larger, but females continue to forage by

day whereas males hunt primarily at night [53], thereby

consuming fewer diurnal lizards and birds than do female

conspecifics [54]. Dietary divergences between the sexes are

common in snakes, and often based on sex divergences in body

size, in seasonality of feeding, and/or in habitat use or times of

activity and timing of reproduction [55,56]. Head shapes may

co-vary with divergence in prey types between sexes [57,58],

and offer a possible explanation for the diversity of patterns in

sexually dimorphic head sizes and shapes among death adders.

However, our data are not sufficiently extensive to document

interspecific variation (if any) in the extent of sex-based

dietary divergence. Studies on captive Acanthophis could

usefully explore the degree to which male and female

adders forage by night versus by day; for example, do

ambient light levels affect whether or not the approach of a

potential prey item elicits caudal luring by male versus female

adders?

If all Acanthophis species do indeed obtain their prey by ambush

predation rather than active searching (as is frequently inferred,

but remains poorly documented), the interspecific diversity in

many of the traits that we have measured argues against any

straightforward impact of foraging mode on those traits. For

example, we observed wide variation in population structure (%

juveniles, adult sex ratios) of museum samples. That variation

might of course reflect collecting biases rather than underlying

demography. A general trend for males to dominate in museum

collections of large-bodied elapid species likely reflects the greater

vulnerability of mate-searching males to collectors [9]; a male

snake’s single-minded focus on females may render it less reactive

to the approach of humans [59]. Such biases are likely to be

especially strong in taxa that are well-camouflaged, and rarely

move around (like many Acanthophis), because an immobile animal

may be relatively safe; if dispersal is both rare and dangerous, adult

males may be the group especially at risk. Plausibly, local habitat

features may affect the degree to which mobility increases

exposure to collectors. It is difficult to offer explanations for

interspecific diversity in other traits, such as relative head sizes and

head shapes, and sexual divergences in these characteristics,

without additional information on diets, seasonality, and field

ecology.

In contrast to that interspecific diversity, some traits that we

measured were similar among taxa. For example, females

consistently attained mean adult body sizes about 20% larger

than those of adult males (Fig. 2C). That pattern supports the

hypothesis that females grow larger than males in snake species in

which males do not engage in physical battles for mating

opportunities [60]. Male-male combat has never been reported in

Acanthophis [60]. The relatively longer tails of males than of

females also accords with general patterns among snakes [61,62].

Sexual selection, and the need to accommodate the hemipenes

and associated musculature within the tailbase, may favor

relatively long tails in males [61–63], and the magnitude of

sexual disparity in relative tail length tends to be greater in

relatively heavy-bodied (and thus, short-tailed) taxa [61]. Given

the broad similarity in mean adult body sizes, the similarity in

mean litter sizes is unsurprising under the hypothesis that snake

reproductive output is maximized relative to maternal abdominal

volume [64]. However, that conservatism is inconsistent with life-

history models that predict divergent patterns of reproductive

output in tropical as compared to temperate-zone or arid-zone

species [65].

One clear generality from our data is that death adders feed

on a wider variety of prey taxa, and take somewhat different

taxa of prey, than do most similar-sized Australian elapids.

The majority of elapids that are similar in overall size (body

length, body mass and/or head size) to death adders take

scincid lizards and/or frogs as their primary prey (e.g.

Cryptophis, Demansia, Hemiaspis) [8]. Most of the skinks taken

by such snakes are small taxa (e.g. Carlia, Lampropholis) whereas

death adders often take larger skinks (e.g. Ctenotus, Egernia,

Eulamprus) and agamids (e.g. Amphibolurus, Ctenophorus, Intello-

gama; Table 1). Although birds are relatively rare prey, they

were recorded in four of the six Acanthophis taxa that we

examined, and constituted 3% of all prey records. This is a

Table 1. Cont.

SE antarcticus SW antarcticus pyrrhus wellsi praelongus PNG

Mus domesticus 4 1 2 1

Rattus spp. 1

Rattus colletti 1

Dasyuridae

Antechinus spp. 1 2

Sminthopsis murina 2

doi:10.1371/journal.pone.0094216.t001
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higher proportion than in any other Australian elapid taxa

except the arboreal rough-scaled snakes (Tropidechis carinatus,

7%) and the much larger (to.2 m SVL) taipans and king

brown snakes (Oxyuranus scutellatus, Pseudechis australis, both

5%)[9]. Mammals similarly comprised 21% of prey items in

death adders, but are rare prey items in the diets of most

Australian elapid snakes (,5% of the diet in all species of all

but eight genera) [9]; the exceptions again are ambush

predators (Acanthophis, Echiopsis, Hoplocephalus), very large

species (Notechis, Oxyuranus, Pseudechis, Pseudonaja), and the

enigmatic Tropidechis, whose foraging mode remains unstudied

[9,66]. Thus, although Acanthophis resemble other Australian

elapids in feeding more often on lizards than on any other prey

type, the proportion of the diet comprised of lizards is lower,

and the types of lizards consumed are different, than for most

other Australian elapid snakes. The similarity in dietary

composition between adders and other ambush-foragers such

as Echiopsis [67] and Hoplocephalus [68] supports the idea that

ambush foraging provides access to a different (and

broader) range of potential prey types than are accessible

to an active searching predator. Experimental studies

on invertebrate predators have reached the same conclusion

[69].

Figure 5. Composition of the diet in death adder species (genus Acanthophis). Numbers of prey are based on dissection of museum
specimens.
doi:10.1371/journal.pone.0094216.g005
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Museum specimens can tell us a great deal, but cannot

address many critical dimensions of snake ecology. The

putative importance of foraging mode in snake biology

identifies the need for field studies (telemetry-based) on snake

movements, and laboratory studies on feeding behavior, to fill

critical gaps in knowledge. Until we know more about the

importance of ambush foraging in the lives of these snakes, we

cannot begin to tease apart interspecific, ontogenetic and sex-

based variation not only in dietary composition, but also in

morphological traits that plausibly are linked to foraging

tactics. The morphological and dietary diversity within

Acanthophis offers great opportunities to clarify questions such

as the functional significance of heavyset versus elongate

morphologies in snakes, of color polymorphism in ambush

predators, and the determinants of ontogenetic and sex-based

divergences in diets and morphology. Our dissections of

museum specimens tell us that the enormous range of climates

and habitats occupied by death adders is accompanied by a

substantial level of variation in some traits (such as body shapes

and diets), but not others (such as mean adult body lengths, the

degree of sexual size dimorphism, or mean litter sizes).

An understanding of the adaptive significance of those

patterns will require dedicated field studies on these iconic

snakes.
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