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Plant secondary metabolites can constrain the diet of

vertebrates and these effects can flow through to community

dynamics. Recent studies have moved beyond attempting to

correlate diet choice with secondary metabolite profiles and

instead focus on mechanisms that animals use to detect toxins

and to regulate their intake and absorption. These include

molecularly determined taste specificity, serotonin-mediated

learning and the control of toxin absorption by permeability-

glycoproteins. Focus on the detoxification pathways employed

by specialist and generalist herbivores has facilitated explicit

tests of the long-standing hypothesis that detoxification rates

limit feeding. Understanding the molecular basis of differences

amongst species in their tolerance of plant secondary

metabolites opens many opportunities for understanding the

evolutionary history of interactions between vertebrates and

their food plants.
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Introduction
For more than 30 years, plant secondary metabolites

(PSMs) have been seen as important regulators of feeding

and dietary niche in vertebrates. Throughout this period,

ecologists have had a clear set of hypotheses concerning

the limitations placed on herbivores by their ability to

detoxify plant toxins [1]. However, the complexities of

plant chemistry and animal metabolism, and the difficulty

of scaling laboratory findings to the field, mean that there

is little convincing evidence of how secondary metabo-

lites change or restrict the nutritional outcomes for wild

vertebrates.

Influential theories of plant resource allocation (e.g. the

carbon–nutrient balance) stimulated a focus on the abiotic
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factors that influence the allocation of plant resources to

plant secondary metabolites that deter vertebrates. These

are non-adaptive, supply-side theories that assign a minor

role to herbivory. Given recent challenges to these the-

ories [2], we can expect a re-evaluation of more demand-

side, or adaptive, theories of chemical defence, such as

optimal defence theory. These allow herbivory to play a

driving role in shaping patterns of plant defence. This

shift in focus might ‘put the animal back in plant–animal

interactions’ [3].

A major impediment to progress in many field studies of

vertebrate herbivory has been the difficulty of chemically

characterizing the PSMs of interest. Consequently, rather

than studying compounds that have specific chemical

actions as originally envisaged [1], there has been a

tendency to use general measures of broad groups of

PSMs such as ‘tannins’ or ‘total phenolics’. Although it

is clear that a detailed understanding of plant chemistry is

valuable [4,5], the use of broad class-wide assays persists,

particularly of tannins, and some comment on the direc-

tions of those studies is worthwhile.

Tannins as determinants of diet selection —
ecological versus agricultural studies
Over the past decade, studies of tannins in the diet

selection and foraging of wild vertebrates have declined

in ecology but flourished in agricultural systems. In

ecology, colorimetric quantification of tannins has rarely

yielded convincing correlations with diet selection (but

see [6]). By contrast, many agricultural studies use the

non-toxic polymer polyethylene glycol (PEG) to block

the protein-binding action of tannins [7].This approach is

powerful because it allows natural diets instead of isolated

tannins to be investigated and because the approach can

be developed into functional assays [8]. For example,

supplementation with PEG has revealed that condensed

tannins can have positive effects on domestic ruminants,

including increased wool growth and reproductive effi-

ciency and reduced intestinal parasitism [9�,10�]. Not

surprisingly, the concentration and molecular structure

of the tannin is an important mediator of these effects.

Identifying and characterizing specific tannins or pheno-

lics should be the ultimate goal, and assays that are

demonstrably relevant to animal feeding [11] should be

the focus of studies of tannins and wild vertebrates.

Nonetheless, it seems that the use of PEG has out-

stripped an understanding of the interaction between

PEG and plant chemistry.
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Regulation of PSM intake, rather than
outright avoidance, is key for vertebrates
The ubiquity of PSMs in trees and shrubs means that it is

not possible for vertebrates to avoid them altogether.

Some plants contain highly toxic principles (e.g. mono-

fluoroacetate) but not all PSMs threaten rapid death.

Nonetheless, even PSMs of low toxicity that are ingested

by vertebrates must be removed from the body to avoid

chronic illness. This implies, first, that animals should

detect and regulate toxin intake; second, that animals

should have detoxification capacities that match the range

and volume of toxins encountered; and, third, that ani-

mals may have mechanisms that reduce the absorption of

ingested PSMs from the gastrointestinal tract, so lessen-

ing the requirement for metabolically costly detoxifica-

tion. These three themes have been the focus for a range

of recent studies.

Detection and regulation of PSM intake
Evidence that vertebrates can regulate their intake of

PSMs comes from studies in which captive animals are

fed diets that contain varying concentrations of PSMs.

Intake of the PSMs reaches an asymptote, which is not

exceeded even when the concentration of PSM in the

diet increases [12]. Animals must detect impending tox-

icosis and translate it into changes in feeding behaviour.

Many PSMs damage cells in the stomach and small

intestine, causing the release of serotonin, which stimu-

lates the nausea centres of the brain [13]. Nausea is a

powerful stimulus to learning, and animals can associate

this experience with the tastes and flavours of foods to

develop conditioned food aversions [13]. It remains

unclear, however, how well these laboratory studies can

be generalised to free-ranging herbivores [14,15]. None-

theless, the ability of animals to learn rapidly about

the negative consequences of foods and to choose diets

that ameliorate these negative consequences and max-

imise their nutritional gain is central to understanding

diet selection in chemically complex environments

[16��,17].

Taste as a determinant of diet choice
Recent discoveries of new taste receptors have revealed

that different bitter taste receptors detect particular bitter

tastants and might be under diversifying selection to

recognize bitter compounds that are specific to species’

evolutionary experiences [18,19]. Because many plant

toxins taste bitter, this process is probably driven by

exposure to PSMs. For example, many herbivores possess

inhibition taste thresholds for tannins that are consider-

ably greater than those for alkaloids. Recently discovered

taste receptors for L-enantiomeric amino acids [20] might

also be relevant to the detection of toxic amino acids.

Developments in sensory physiology provide a means to

study how taste, separate from post-ingestive conse-

quences, might play a role in an animal’s choices between

toxin-rich plants.
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Detoxification rate as a constraint
on feeding
The idea that the rate at which animals can detoxify and

excrete PSMs acts as a constraint on their intake seems

straightforward. However, testing these ideas requires an

understanding of the metabolic fate of PSMs in verte-

brates. Nearly all studies of this sort focus on terpenes as

a model for understanding the ecological consequences

of PSM detoxification. Although terpenes appear to be

low-potency toxins, especially for specialized herbivores,

they occur widely and comprise part of the natural diet of

many herbivores. It is clear that the detoxification of

terpenes and other substrates is, energetically expensive

in most cases [21�,22], although there are some excep-

tions [23].

Behavioural studies show that captive animals that are

challenged with high concentrations of PSMs eat smaller

meals and spread their total feeding time out over a longer

period [24]. This feeding behaviour reduces instanta-

neous loads on detoxification systems, but animals face

an overall daily ceiling of detoxification capacity. Ter-

penes are detoxified by a suite of cytochrome-P450-

dependent monooxygenases (CYP450 enzymes), which

are rapidly inducible on exposure to terpenes in vivo [25].

The extent of subsequent conjugation appears to vary,

with specialist herbivores relying more on extensive

oxidation to produce water-soluble metabolites for excre-

tion and generalists relying more on conjugation reactions

such as glucuronidation (Figure 1; [26,27]). In addition to

reducing the energetic costs of terpene excretion for

specialists, the polyoxygenation strategy also frees up

conjugation pathways for the disposal of phenolic com-

pounds [28]. The trade-off, however, might be a reduced

capacity for glucuronidation. This can reduce specialists’

ability to detoxify PSMs that they do not normally

encounter, such as nordihydroguaiaretic acid (NDGA)

in creosote resin [21�], making their specialisation obli-

gate rather than facultative.

The key question posed by these observations is the

extent to which the saturation of specific detoxification

pathways can limit feeding on diets that contain either a

single PSM or multiple types of PSMs. In common

brushtail possums feeding on Eucalyptus foliage, there

is no evidence of the saturation of the specific enzymatic

reactions that oxidise the terpene 1,8-cineole, and the

capacity for detoxifying cineole far exceeds the typical

daily intake [29�]. However, saturation of the conjugation

pathways can occur, and Marsh et al. [30] has recently

shown that improving the capacity for conjugation of

PSMs allows feeding rates to increase. Furthermore,

inhibition of CYP450 enzymes by some PSMs, including

certain terpenes, might inhibit the microsomal detoxifi-

cation of others [31]. Further studies that link rates of

detoxification to feeding and diet selection should be a

priority, as should studies that investigate how animals
Current Opinion in Plant Biology 2005, 8:430–435
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Figure 1
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Variation in the metabolism of the terpene p-cymene in marsupials that have different degrees of specialization on Eucalyptus foliage: brushtail

possum (Trichosurus vulpecula), ringtail possum (Pseudocheirus peregrinus), greater glider (Petauroides volans) and koala (Phascolarctos

cinereus). Rat data are included for comparison. The data indicate the number of oxygen atoms that are added to metabolites in each species.

More specialized species have a greater reliance on polyoxygenation, which creates water-soluble compounds without the need for conjugation

to other molecules. Examples of the structure of a common metabolite in each class are shown on the right [26].
translate these metabolic bottlenecks into feeding deci-

sions.

Permeability glycoprotein can limit the
absorption of PSMs
The possibility that mammals can avoid absorbing PSMs

that they have ingested is an exciting recent perspective.

In one study, the specialist woodrat Neotoma stephensi
absorbed a smaller proportion of ingested a-pinene than

did a related woodrat that has a broader diet, Neotoma
albigula [32]. This difference might be due to the effects

of membrane-bound transport proteins, such as perme-

ability glycoprotein (P-gp), that actively exclude many

drugs and PSMs from the barrier epithelia of the small

intestine, thus preventing their absorption. In vitro
experiments confirm that the specialist woodrat has a

greater intestinal P-gp capacity than the generalist spe-

cies [33�]. Evaluating the importance of these effects in
vivo will require studies that use specific P-gp inhibitors.

As new P-gp inhibitors are discovered [34], we might also

discover whether P-gps play a role in natural systems,
Current Opinion in Plant Biology 2005, 8:430–435
perhaps by enabling plants to improve the effectiveness

of other chemical defences.

Differences between vertebrate groups in
sensitivity to PSMs — evidence for directed
dispersal of fruits
There are some major differences in the susceptibility of

birds and mammals to the antifeedant effects of PSMs.

Whereas mammals are deterred by the pain induced by

irritants such as capsaicin, birds remain unaffected. By

contrast, many mammals are indifferent to strongly bitter

tastes but birds are not [35]. Recent research has demon-

strated that the differential susceptibility of birds and

mammals to capsaicin has a distinct molecular basis in the

vanilloid receptor [36��]. These molecular and beha-

vioural differences in the impact of capsaicin on birds

and mammals offer significant support to the idea that

fruits might direct their dispersal strategies to particular

frugivores. For example, capsaicin protects Capsicum
seeds from mammalian seed predators yet promotes their

effective dispersal by avian frugivores [37].
www.sciencedirect.com
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More generally, there is an increasing recognition that

PSMs have been underplayed as important factors in the

evolutionary ecology of fruit dispersal by vertebrates [38]

and also perhaps in pollination [39]. Progress in under-

standing vertebrate frugivore–plant interactions has come

from determining how secondary metabolites are distrib-

uted in fruits, at various scales, in systems with well-

characterised PSMs. Of particular significance is a recent

study of the anthraquinone emodin in buckthorn (Rham-
nus alaternus), which provides the first detailed evaluation

of how secondary metabolites vary with other fruit traits

[40], and a study of glycoalkaloids in horsenettle (Solanum
carolinense) [41], which suggests that variations in resource

availability have little effect on fruit secondary chemistry.

Both of these studies suggest that nutrient-rich fruits are

better protected by PSMs, which gives support to the idea

that fruit defences are a compromise between attracting

dispersers and deterring predators [42].

Evolutionary impact of plant secondary
metabolites
If detailed examples of interactions between plants and

individual herbivore species are to lead to an understand-

ing of the role of PSMs in shaping populations and

communities, ecologists must take account of the bio-

chemical diversity that exists in natural plant populations

and communities and of how this is generated and main-

tained. To demonstrate that herbivores play a role in this

process, it must be shown in each case that the plant

defence in question is effective, that the defensive trait is

heritable, and that herbivory negatively impacts upon

plant fitness. At present, few examples demonstrate all

of these three principles, largely because of the difficulty

in measuring the lifetime fitness of long-lived plants.

Common-environment experiments have shown that

resistance of Eucalyptus globulus to marsupial herbivory

and of cottonwood to beaver herbivory, which are attri-

butable to sideroxylonal and condensed tannin, respec-

tively, have strong genetic bases [43,44]. Concentrations

of monoterpenes that deter deer from feeding on western

red cedar also have a genetic basis [45]. A comparison

of island and mainland populations of these trees suggests

that the level of defence is greater in trees that have co-

evolved with deer herbivory [46]. Under weak browsing

pressure, however, defence is only weakly related to the

ability of young trees to escape herbivory [47]. Similarly,

in a study of silver birch, vole herbivory did not affect

seedling mortality, although insect herbivory did [48].

Intraspecific differences in the concentrations of deter-

rent PSMs contribute to the patchiness of habitats for

vertebrate herbivores [49], which influences how animals

forage [50�,51]. By contrast, variation in the responses of

individual vertebrates or vertebrate populations to PSMs

remains largely unknown. Variation in both plants and

herbivores is the raw material upon which co-evolutionary

processes act to shape ecological systems. We should
www.sciencedirect.com
expect individual animals to vary in their susceptibility

to PSMs but unravelling these links requires a better

understanding of the molecular targets of PSMs.

Population-level studies provide strong evidence for co-

evolutionary relationships between plants and vertebrates

[52]. Notably, Twigg et al. [53] have built on earlier

extensive evidence of the co-evolution of monofluoroa-

cetate-bearing vegetation and Australian vertebrates,

initiating inter-population breeding studies to explore

the genetic processes that are involved in developing

tolerance to this highly toxic compound. The extensive

use of fluoroacetate as a vertebrate poison in some parts of

Australia, together with the variable resistance shown by

both native and, now, introduced populations of verte-

brates [54], provides a superb opportunity to understand

the processes involved in past events in the co-evolution

of plants and herbivores.

Conclusions
Interactions between plant chemistry and vertebrates

play an important part in determining how ecosystems

function. For example, the monoterpene diversity of

individual Scots pine trees can influence the diversity

of the associated ground-layer vegetation [55], and con-

densed tannins from cottonwood influence the minerali-

sation rates of soil nitrogen [56]. These chemical

attributes are largely determined genetically and contri-

bute to a plant’s extended phenotype [57]. As with all

phenomena in plant–herbivore interactions, however,

animals play an equally important role in shaping com-

munity structure. In an important synthesis, Provenza and

colleagues [16��] have outlined how browsing and grazing

by mammalian herbivores can enhance or reduce plant

chemical and species diversity across landscapes, depend-

ing on the animals’ previous experience with chemically

diverse diets.
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