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Preface

Increasing concerns about global climate change have revived research interests in all aspects of 
carbon exchange. Natural ecosystems form an important part of the global carbon balance as 
sinks for atmospheric CO2. Interest in predicting net primary productivity has restored interest 
in leaf photosynthetic models to predict and assess changes in photosynthetic CO2 assimilation 
in different environments. Photosynthetic processes of leaves have a remarkable influence on 
our global atmosphere. Seasonal and latitudinal variations in the carbon isotope ratio of atmo-
spheric CO2 relate to rubisco’s preference for 12CO2 rather than 13CO2. The oxygen isotope 
composition of atmospheric CO2 is influenced by the amount of carbonic anhydrase in the 
chloroplast of C3 species and the mesophyll cytosol of C4 species (Francey and Tans 1987; Yakir
et al. 1992; Farquhar et al. 1993). This book deals exclusively with the photosynthetic processes 
of leaves. The models discussed are based on the underlying biochemical processes of photo-
synthesis and were designed to help in the interpretation of leaf gas-exchange measurements. 
However, because of their simplicity they have also proved valuable as submodels in a variety of 
other larger scale applications such as canopy photosynthesis and climate models.

At present, the techniques of genetic and molecular biology, which allow the modulation of 
individual plant characters, enable new questions to be asked in ecophysiology about photosyn-
thesis and plant growth. The steady-state leaf-photosynthetic models have become an invaluable 
guide for the analysis of such genetic manipulation, where they are frequently used in conjunction 
with gas-exchange measurements to provide in vivo estimates of biochemical parameters. 

Leaf gas-exchange measurements were first developed in the late 1950s. Penman and Schofield 
(1951) put the theories of diffusion of CO2 and water vapour through stomata on a firm physical 
basis. Gaastra took up their ideas in the 1950s and modern analytical gas exchange is often attrib-
uted to his seminal work (Gaastra 1959). His work was a landmark because it examined CO2
assimilation and water vapour exchange rates of individual leaves under different environmental 
conditions, and he distinguished between stomatal and internal resistances. Gaastra at the time 
concluded that the rate of CO2 uptake was completely limited by diffusion processes at low CO2
partial pressures and that biochemical processes became important only at high CO2 partial pres-
sures. Thus, gas-exchange studies focused initially on physical limitations to diffusion. Based on 
Gaastra’s ideas, early models of leaf gas exchange had been developed as analogues of electrical 
resistances, and this proved useful in making a distinction between stomatal and mesophyll limita-
tions on CO2 assimilation. Mesophyll, or ‘residual’, resistance was a collective term that embodied 
non-stomatal diffusive factors, and included both physical and biochemical constraints. 

In Australia, particularly, there was a great interest in determining the relative importance of 
stomatal and mesophyll resistance in limiting CO2 assimilation rates under adverse conditions of 
high temperature and frequent water stresses (Bierhuizen and Slatyer 1964; Troughton and Slatyer 
1969). It was not long, however, before persuasive arguments were being brought forward to show 
that leaf biochemistry had an important influence on the rate of CO2 fixation, even at low CO2
partial pressures. For example, Björkman and Holmgren (1963) made careful gas-exchange mea-
surements of sun and shade ecotypes of Solidago, and noted a strong correlation between 
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photosynthetic rate measured at high irradiance and ambient CO2 and the nitrogen content of 
leaves, and later related it to different concentrations of rubisco. Furthermore, following earlier 
discoveries of the O2 sensitivity of photosynthesis, viz. an enhancement of CO2 assimilation rate at 
low O2, Gauhl and Björkman (1969) showed very elegantly that, while oxygen partial pressures 
did affect CO2 assimilation rate, water vapour exchange was not affected (i.e. stomata had not 
responded). Clearly, the increase in CO2 assimilation rates seen with a decrease in O2 partial pres-
sures could not be explained by a limitation on CO2 diffusion. Mathematical models of leaf 
photosynthesis based on Gaastra’s resistance equation could not accommodate this O2 sensitivity 
of CO2 assimilation. They were quickly superseded by the development of more biochemical 
models in the early 1970s. The discoveries by Bowes et al. (1971) that rubisco was responsible for 
both carboxylation and oxygenation of ribulose-1,5-bisphosphate put rubisco in the limelight. 
Laing et al. (1974) and Peisker (1974) were first to compare the gas exchange of leaves with the in 
vitro kinetics of rubisco.

In this book rubisco takes centre stage. Although there are many chloroplast components 
essential for the operation of photosynthesis, successful mathematical descriptions of photosyn-
thesis are inevitably linked to rate equations of rubisco carboxylation and oxygenation. Chapter 1 
thus deals with the kinetic properties of rubisco and these equations form the basis for the bio-
chemical models presented in this book. In Chapter 1, in vitro and in vivo responses of rubisco are 
compared and analysed. Since the leaf photosynthetic models are based on rubisco’s kinetic prop-
erties they have also proved a useful tool for examining the in vivo activity of rubisco. This is taken 
up in the later part of the chapter where transgenic plants with impaired photosynthetic proper-
ties are used to unravel the mysteries of in vivo regulation of rubisco.

Chapter 2 is a straightforward treatment of the now frequently used photosynthesis model of 
Farquhar et al. (1980). The chapter contains many examples of applications of the model to the 
analysis of transgenic plants with altered photosynthetic properties. It identifies some of the exist-
ing gaps in our knowledge, which need to be addressed because of the present need to model 
photosynthesis with respect to global climate change.

Chlorophyll fluorescence has emerged as a powerful, non-destructive tool for the analysis of 
photosynthesis and is providing insights into chloroplast electron transport rates. It is particularly 
useful as a field measure of photosynthetic performance and has thus stimulated considerable 
interest in comparisons with photosynthetic CO2 exchange. In Chapter 3 a comparison is made 
between the use of measurements of chlorophyll fluorescence to estimate chloroplast electron 
transport rate and estimates made from gas-exchange measurements. Furthermore, the model of 
Farquhar et al. (1980) is used to derive rate equations for the O2 exchange that occurs during C3
photosynthesis.

Though the C3 pathway of photosynthesis dominates most of the terrestrial ecosystem, the C4
pathway of photosynthesis is important in certain agricultural and natural ecosystems and 
accounts for as much as 20% of global carbon fixation. The C4 pathway is common amongst spe-
cies native to tropical and subtropical grasslands. It took some very energetic grinding of C4 leaves 
before rubisco was recognized as a key player in the C4 photosynthetic pathway (Hatch 1997; 
Osmond 1997). It is now well recognized that the C4 photosynthetic pathway functions as a CO2
concentrating mechanism that provides rubisco, located in the bundle sheath, with a high CO2
atmosphere where it can function at near CO2 saturation with minimal oxygenase activity. This 
requires the cooperation between mesophyll and bundle-sheath cells, and the involvement of two 
cell types has complicated biochemical analysis. Here, the photosynthetic models provide an 
important quantitative tool to predict bundle-sheath function.

The fifth chapter discusses biochemical models of leaf photosynthesis of C3–C4 intermediate 
species. Different biochemical variants give rise to the syndrome of C3–C4 intermediacy, but all 
such plants have a C4-like leaf anatomy. C3–C4 species are sometimes considered to be evolu-
tionary intermediates between C3 and C4 species. The pathways revolve around efficient 
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refixation of photorespiratory CO2. Their leaf gas exchange shows a reduced oxygen sensitivity 
in comparison with that of C3 species and improved photosynthetic rates at low CO2 partial 
pressure. Since many of the details of these pathways remain unexplored the photosynthetic 
models are, of necessity, experimental. Perhaps this chapter provides the best examples of how 
the biochemical models presented in this book can aid in the formulation of ideas. Each photo-
synthesis model provides a set of hypotheses brought together in a quantitative form that can be 
used to design and interpret experiments.
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