New research tools for illuminating the ecology and evolution of orchids
A post-International Botanical Congress (IBC) workshop at Cranbourne Botanic Gardens, Melbourne, Saturday, July 30, 2011.

A completed example registration and abstract form

Name
Michael Whitehead

Institution
The Australian National University

Address
Research School of Biology, 116 Daley Rd
The Australian National University,
Canberra, 0200, ACT Australia

Email
michael.whitehead@anu.edu.au

Questionnaire
I will require bus transport from Melbourne to the Gardens and Return. Yes
I am including an abstract for a 15 min talk (12 mins+3 mins for questions) No
I am including an abstract for a 5 min speed talk (5 min-no questions) Yes
I am happy for my name, email address and abstract to be posted on the WWW. Yes
I am including a low resolution image with my abstract (embedded in this doc). Yes
Any other comments (special dietary requirements etc.): None

Example Abstract for 5 minute Speed Talk (max 100 words)

Microdot technology for individual marking of orchid pollinators

Michael Whitehead and Rod Peakall

Research School of Biology, The Australian National University, Canberra, Australia (Email: michael.whitehead@anu.edu.au)

Individualized mark-recapture studies of pollinators allow important inferences about pollen dispersal. However, innovative methods for tagging smaller insects are needed. In this study we developed and applied microdots as a novel technique to track wasp pollinators of a sexually deceptive orchid. Microdots are small polymer discs with up to 26 characters (0.5mm across) developed for covert security operations. Our results show microdots to be a simple, cost effective and durable method for individually marking wasps and tracking pollinator movement, revealing an average wasp movement distance of 27 m and maximum of 161 m.