A new measurement technique reveals temporal variation in δ^{18}O of leaf-respired CO$_2$

MARGARET M. BARBOUR1, GRAHAM D. FARQUHAR2, DAVID T. HANSON3, CHRISTOPHER P. BICKFORD3, HEATH POWERS4 & NATE G. MCDOWELL4

1Landcare Research, PO Box 69, Lincoln 8512, New Zealand, 2Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475, 2601 Canberra, Australian Capital Territory, Australia, 3University of New Mexico, Department of Biology, 167 Castetter Hall, Albuquerque, New Mexico 87131, USA and 4Earth and Environmental Sciences Division, Climatic and Environmental Dynamics Group, MS-J495, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA

ABSTRACT

The oxygen isotope composition of CO$_2$ respired by *Ricinus communis* leaves (δ^{18}O$_R$) was measured under non-steady-state conditions with a temporal resolution of 3 min using a tunable diode laser (TDL) absorption spectrometer coupled to a portable gas exchange system. The SD of δ^{18}O measurement by the TDL was $\leq 0.2\%$ and close to that of traditional mass spectrometers. Further, δ^{18}O$_R$ values at isotopic steady state were comparable to those obtained using traditional flask sampling and mass spectrometric techniques for *R. communis* grown and measured in similar environmental conditions. As well as higher temporal resolution, the online TDL method described here has a number of advantages over mass spectrometric techniques.

At isotopic steady state among plants grown at high light, the ‘one-way flux’ model was required to accurately predict δ^{18}O$_R$. A comparison of measurements and the model suggests that plants grown under low-light conditions have either a lower proportion of chloroplast CO$_2$ that isotopically equilibrates with chloroplast water, or more enriched δ^{18}O$_R$ in the chloroplast that has not equilibrated with local water. The high temporal resolution of isotopic measurements allowed the first measurements of δ^{18}O$_R$ when stomatal conductance was rapidly changing. Under non-steady-state conditions, δ^{18}O$_R$ varied between 50 and 220% for leaves of plants grown under different light and water environments, and varied by as much as 100% within 10 min for a single leaf. Stomatal conductance ranged from 0.001 to 1.586 mol m$^{-2}$ s$^{-1}$, and had an important influence on δ^{18}O$_R$ under non-steady-state conditions not only via effects on leaf water H_2^{18}O enrichment, but also via effects on the rate of the one-way fluxes of CO$_2$ into and out of the leaf.

Key-words: leaf respiration; leaf water enrichment; oxygen isotope; tunable diode laser.

INTRODUCTION

Interpretation of variation in the oxygen isotope composition of atmospheric CO$_2$ may provide a valuable method of verification of carbon cycle models at both global (Francy & Tans 1987; Farquhar et al. 1993; Ciais, Denning & Tans 1997) and ecosystem scales (Yakir & Wang 1996; Bowling et al. 2003a; Ogée et al. 2004; Ometto et al. 2005). Both respiration and photosynthesis affect the oxygen isotope composition of atmospheric CO$_2$, and under some conditions by an equally large amount (Cernusak et al. 2004; Seibt et al. 2006; Seibt, Wingate & Berry, in press). CO$_2$ respired by ecosystem components (e.g. leaves, stems and soil) reflects isotopic exchange between oxygen in CO$_2$ and water within components. Water within one ecosystem component may differ isotopically from water in another. For example, leaf water is often significantly more enriched in 18O than soil water, so that CO$_2$ respired by leaves is expected to be more enriched than soil-respired CO$_2$ (Flanagan et al. 1997; Flanagan, Kubien & Ehleringer 1999). Measurements of the isotope composition of pools of water within ecosystems suggest that leaf water, in particular, is highly dynamic in time and space (Lai et al. 2006; Seibt et al. 2006). Even within relatively simple ecosystems, it is not possible to measure the oxygen isotope composition of leaf-respired CO$_2$ (δ^{18}O$_R$) at relevant temporal and spatial resolutions, particularly when ecosystem measurements are made at half-hourly temporal resolution using new tunable diode laser (TDL) absorption spectrometric techniques (e.g. Griffiths et al. 2005). Hence, accurate models of δ^{18}O$_R$ are required to interpret ecosystem isoflux measurements.

A model that describes the environmental and physiological influences on δ^{18}O$_R$, and accounts for the one-way fluxes of CO$_2$ into and out of the leaf, has recently been presented by Cernusak et al. (2004). The inclusion of the one-way fluxes creates a model analogous to the CO$_2$ invasion effect in soils described by Tans (1998); also see Miller et al. 1999; Stern, Amundson & Baird 2001, and to the original treatment of isotopic effects during CO$_2$ assimilation (Farquhar et al. 1993). Cernusak et al. (2004) tested their model with leaves in controlled-environment gas exchange chambers under isotopic steady state and were
able to demonstrate significant departures of δ18O of from values predicted by simpler models considering just the net respiratory flux (e.g. Flanagan et al. 1997, 1999; Bowling et al. 2003a). δ18O of predicted by the one-way flux model at isotopic steady state deviates from that predicted by a net flux model when the difference in isotopic composition of CO2 between that in the chloroplast (δ18Oc) and that in the ambient air (δ18Oa) is large, and when stomatal conductance is high. Both these conditions were met in the model evaluation experiment conducted by Cernusak et al. (2004). However, it is not clear if the one-way flux model adequately predicts δ18O when stomatal conductance is very low (but significantly greater than cuticular conduc-
tance alone; Donovan, Richards & Linton 2003; Barbour et al. 2005), as would be typical for most species at night in natural conditions.

We have three objectives in this paper. Firstly, we demon-
strate the application of TDL absorption spectroscopy
coupled to a portable gas exchange system for leaf-level measures-
ments of δ18O of and compare with those reported by Cernusak et al. (2004) for plants under similar growth and measurements conditions but using traditional mass spectrometric techniques. Secondly, we quantify non-
steady-state changes in δ18O of in the first 50 min after the plants were moved from the light into the dark. Finally, we tested theoretical models at isotopic steady state over a wide range in measured stomatal conductance, including very low values (0.001 mol m-2 s-1).

THEORY

An objective of the current study was to test existing
models of δ18O of over a very wide range in one of the key
parameters, namely stomatal conductance. To aid interpre-
tation of measurements, we present a summary of the recently developed theory. δ18O of of leaf-respired CO2
(δ18O of) may be described by (Cernusak et al. 2004):

\[
\delta^{18}O_R = \frac{C_{\text{e}}(\delta^{18}O_{c} - \bar{\delta}) - \bar{\delta}}{(1 + \bar{\delta})(1 - \frac{C_{\text{e}}}{C_{\text{c}}})},
\]

where \(\bar{\delta}\) is the proportion of chloroplast CO2 that is iso-
topically equilibrated with chloroplast water, \(\delta^{18}O_{c}\), \(\delta^{18}O_{a}\) and \(\delta^{18}O_{\text{e}}\) are the δ18O of of chloroplastic water, the δ18O of of CO2 in the chloroplast that has not equilibrated with local water and the δ18O of of CO2 in the atmosphere, respectively. \(C_{\text{e}}\) and \(C_{\text{c}}\) are the CO2 mole fractions in the ambient atmosphere and in the chloroplasts (or mitochondria; Barbour et al. 2005), respectively, and \(\varepsilon_a\) is the equilibrium 18O fractionation between CO2 and water. The isotopic equilibrium between CO2 and water is temperature dependent (Brenninkmeijer, Kraft & Mook 1983):

\[
\varepsilon_a(\%) = \frac{17.604}{T_i} - 17.93,
\]

where \(T_i\) is leaf temperature in kelvin. In Eqn 1, \(\bar{\delta}\) is the weighted mean discrimination against C18OO for diffusion from the chloroplast to the atmosphere, and is given by (Farquhar & Lloyd 1993)

\[
\bar{\delta} = \frac{(C_{\text{c}} - C_{\text{a}})a + (C_{\text{a}} - C_{\text{c}})a_b}{C_{\text{c}} - C_{\text{a}}},
\]

where \(a\) is the summed discriminations against C18OO during liquid phase diffusion and dissolution (0.8‰); \(a\) and \(a_b\) are the discriminations against C18OO during diffusion through the stomata and the boundary layer (8.8 and 5.8‰, respectively), and \(C_{\text{c}}\) and \(C_{\text{a}}\) are CO2 mole fractions in the leaf intercellular spaces and at the leaf surface, respectively. Using the definition of oxygen isotope composition of CO2 in the chloroplast of a respiring leaf (δ18Oc; Cernusak et al. 2004),

\[
\delta^{18}O_{\text{c}} = \delta^{18}O_{\text{a}}(1 + \varepsilon_a) + \theta \varepsilon_a + \delta^{18}O_{\text{e}}(1 - \theta),
\]

and ignoring second-order terms, Eqn 1 may be simplified to (Cernusak et al. 2004)

\[
\delta^{18}O_{\text{a}} = \delta^{18}O_{\text{c}} - \bar{\delta} + (\delta^{18}O_{\text{c}} - \delta^{18}O_{\text{a}})\left(\frac{C_{\text{c}}}{C_{\text{e}} - C_{\text{a}}}\right).
\]

Eqn 5 may be compared to earlier ‘net flux’ models that describe δ18O of without consideration of the one-way fluxes (e.g. Flanagan et al. 1997, 1999; Bowling et al. 2003a):

\[
\delta^{18}O_{\text{RN}} = \delta^{18}O_{\text{c}} + \varepsilon_a - a,
\]

where δ18O of refers to the isotopic composition of leaf-
respired CO2, predicted by the net flux model, to allow distinc-
tion from that predicted by the one-way flux model. Eqns 5 and 6 will predict very similar values of δ18O of when stomata are tightly closed (\(C_{\text{c}}/C_{\text{e}}\) approaches zero) and \(\theta = 1\) (Barbour et al. 2005). Note that we apply the full derivation, including second-order terms (Eqn 1), for prediction of δ18O of in the one-way flux model.

The degree of evaporative enrichment of leaf water
(\(\delta^{18}O_{w}\)) is a critical parameter in determining δ18O of. The steady-state enrichment above source water of leaf water at the sites of evaporation [and, to a close approximation, the chloroplast and mitochondria (Barbour et al. 2005); \(\Delta_{\text{e}}\)] has been modelled by Farquhar & Lloyd (1993), by modification of earlier models (Craig & Gordon 1965; Dongmann et al. 1974) as

\[
\Delta_{\text{e}}^{18}O_{w} = \varepsilon_{\text{e}} + \varepsilon_{\text{k}} + (\Delta_{\text{k}}^{18}O_{w} - \varepsilon_{\text{k}})\frac{W_{\text{k}}}{W_{\text{e}}},
\]

where \(\varepsilon_{\text{e}}\) is the equilibrium fractionation during the phase change from liquid to vapour, \(\varepsilon_{\text{k}}\) is the kinetic fractionation during diffusion through stomata and the leaf boundary layer, and \(\Delta_{\text{k}}^{18}O_{w}\) is the 18O enrichment above source water of atmospheric vapour. The oxygen isotopic composition of water at the evaporating sites in leaves and ambient water vapour are expressed relative to the source water (δ18Ow),
such that $\Delta^{18}O_{w} = R_e/R_i - 1$ and $\Delta^{18}O_{s} = R_e/R_i - 1$, where R is the $^{18}O/^{16}O$ ratio, and subscripts e, v, and s are water at the evaporating sites, water vapour and source water, respectively. $\delta^{18}O$ may be calculated from $\Delta^{18}O_{w}$ by

$$\delta^{18}O_{w} = \Delta^{18}O_{w}(1 + \Delta^{18}O_{s}) + \delta^{18}O_{s}.$$ \hspace{1cm} (8)

The equilibrium fractionation factor, ε^*, is dependent on temperature by (Bottinga & Craig 1969)

$$\varepsilon^*(\%) = 2.644 - 3.206 \left(\frac{10^4}{T_l} \right) + 1.534 \left(\frac{10^6}{T_l^2} \right),$$ \hspace{1cm} (9)

where T_l is leaf temperature in kelvin. The total kinetic fractionation factor, ε_k, may be calculated from stomatal (g_{sw}) and boundary layer (g_{bw}) conductances by (Farquhar et al. 1989)

$$\varepsilon_k = \frac{32g_{sw}^{-1} + 21g_{bw}^{-1}}{g_{sw}^{-1} + g_{bw}^{-1}}.$$ \hspace{1cm} (10)

The fractionation factor for diffusion through air (and stomata) was recently determined to be 32‰ by Cappa et al. (2003) and, assuming a two-thirds power effect according to Pohlhausen analysis (Kays 1966), fractionation during diffusion through the boundary layer will be 21‰ (Cernusak, Wong & Farquhar 2003).

Equation 7 applies at isotopic steady state. Leaves should be close to steady state when the turnover time of leaf water isotopes is rapid, such as when the one-way efflux of water through the stomata is high, and lamina water concentration (i.e. mol m$^{-2}$) is low (Farquhar & Cernusak 2005). Thus, thin leaves with high stomatal conductances are more likely to be at isotopic steady state than thick leaves or those with low stomatal conductances (Seibt et al. in press). The leaf water isotopic turnover time (τ) is calculated as a function of the one-way stomatal efflux (g_{sw}; stomatal and boundary layer conductances in series multiplied by the mole fraction of water vapour in the intercellular spaces) and the lamina water concentration (Farquhar & Cernusak 2005):

$$\tau = \frac{W_{a} \alpha'}{g_{sw}},$$ \hspace{1cm} (11)

where $\alpha_k = 1 + \varepsilon_k$ and $\alpha' = 1 - \varepsilon'$. Note that this definition of τ differs from that presented by Farris and Strain (1978) by approximately $w_i/(w_i - w_o)$, where w_o is the mole fraction of water vapour in the atmosphere (Farquhar & Cernusak 2005). Time to isotopic steady state is estimated as 3τ (Fürstel 1978).

MATERIALS AND METHODS

Growth conditions

Castor bean (*Ricinus communis* L.) plants were grown in 7 L pots with potting mix and a slow-release fertilizer in a glasshouse at Los Alamos National Laboratory, NM, USA, during April and May 2005. A shade cloth stretched across the roof of the glasshouse reduced the direct light within the glasshouse by about half. Average daytime air temperature within the glasshouse varied between 24.1 and 31.2 °C, and relative humidity between 19 and 35%, while average daytime air temperature over the experimental period was 27.1 ± 0.8 °C, and relative humidity 25 ± 2%. Average night temperature inside the glasshouse varied between 18.2 and 22.1 °C and relative humidity between 14 and 40%, while average night temperature over the experimental period was 20.6 ± 0.4 °C, and relative humidity 27 ± 2%.

The plants were grown either under high light (total daily PAR $6.3 - 22.6$ mol m$^{-2}$, with an average 16.5 ± 1.6 mol m$^{-2}$) or beneath shade cloth to produce low light [total daily photosynthetically active radiation (PAR) $0.8 - 2.8$ mol m$^{-2}$, with an average 2.1 ± 0.2 mol m$^{-2}$]. The plants were well watered every second day and measured on 6 May 2005, except two pots for which water was withheld for 6 d (0.5 L was added to the two droughted plants on the fourth day after watering ceased). Droughted plants were measured on the seventh day after watering ceased (12 May 2005), and were observed to be slightly wilted. The plants were moved into the dark under a large cardboard box 1–2 min prior to a leaf being sealed in the gas exchange chamber.

Gas exchange measurements

Measurements of leaf respiration rate (R) and stomatal conductance (g_v) were made in the dark on the youngest fully expanded leaf (leaf three to six, depending on the growth environment) using a portable photosynthesis system (LI-6400; Li-Cor Inc., Lincoln, NE, USA) fitted with a custom-built leaf chamber. The chamber was milled from stainless steel to allow enclosure of up to 80 cm2 leaf area, and was sealed with a closed cell foam gasket of 1 cm width. The chamber was leak tested after enclosing the leaf in the chamber by breathing around the seal. The large leaf area maximized the difference in concentration and isotopic composition between incoming and outgoing chamber air, reducing errors in calculated R and $\delta^{18}O_{R}$. A thermocouple was placed within the chamber to measure leaf temperature, and a 120 L buffer volume was used to stabilize the CO$_2$ concentration of air entering the leaf chamber. The relationship between leaf area and boundary layer conductance was measured for the chamber using wet filter paper. Leaf area within the chamber was measured from digitized images of the leaf and imaging software (Scion; Scion Corporation, Frederick, MD, USA), and R and g_v were recalculated with the corrected leaf area. Gas exchange measurements were recorded to coincide with isotopic measurements of incoming and outgoing chamber air (i.e. two measurements were recorded every 3 min).

The glasshouse air temperature was at most 2 °C lower than the chamber air temperature, so to check that no condensation occurred in the sample lines between the leaf chamber and the TDL water vapour trap (CO$_2$ could
isotopically re-equilibrate with any condensed water in the lines), the dew point temperature was calculated for the glasshouse air and compared with the water vapour content of air leaving the chamber. The vapour pressure difference between actual and saturation vapour pressure in the lines was usually greater than 1.0 kPa, and always greater than 0.5 kPa, that is, there would have been no condensation at any time during the experiment.

Isotopic measurements

The mixing ratios of CO₂ entering and leaving the leaf chamber were determined using TDL absorption spectroscopy (TGA100A; Campbell Scientific Inc., Logan, UT, USA). This technique measures the mixing ratio of the individual isotopologues (Bowling et al. 2003b), but we recalculated the values as isotope ratios in the familiar delta notation. The oxygen (δ¹⁸OVPDB) and carbon (δ¹³C) isotope ratios of CO₂, relative to the Vienna Pee Dee belemnite (VPDB) standard (VPDB for carbon, VPDB-CO₂ for oxygen), are given by

\[
\delta^{18}O_{\text{VPDB-CO}_2} = \frac{R_{\text{co}}}{R_{\text{VPDB}}} - 1, \tag{12}
\]

and

\[
\delta^{13}C = \frac{R_{\text{co}}}{R_{\text{VPDB}}} - 1, \tag{13}
\]

where \(R_{\text{co}}\) and \(R_{\text{VPDB}}\) are the \(^{18}O/^{16}O\) ratios of the sample and the VPDB-CO₂ standard (0.0020883; Allison, Francey & Meijer 1995), and \(R_{\text{co}}\) and \(R_{\text{VPDB}}\) are the \(^{13}C/^{12}C\) ratios of the sample and the VPDB standard (0.011797; Zhang & Li 1990), respectively. Note that VPDB-CO₂ is the isotope ratio of CO₂ released by the VPDB carbonate, not the isotope ratio of the carbonate itself. \(R_{\text{co}}\) is simply related to the isotopologue mixing ratio:

\[
R_{\text{co}} = \frac{[^{13}C^{16}O_2]}{[^{13}C^{16}O_2]}, \tag{14}
\]

but the two atoms of oxygen in CO₂ mean that (Griffis et al. 2005)

\[
R_{\text{co}} = 0.5 \frac{[^{12}C^{16}O^{16}O]}{[^{12}C^{16}O_2]}, \tag{15}
\]

Two primary calibration cylinders with total CO₂ mixing ratios ([CO₂]₀) of 352.02 and 566.65 μmol mol⁻¹, δ¹³C of −8.44 and −17.06‰, and δ¹⁸OVPDB of −8.44 and −17.06‰, respectively, (measured by National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostic Laboratory) were used to calibrate the TDL. The mixing ratios of each isotopologue in the calibration cylinders were then calculated from [CO₂]₀, δ¹³C and δ¹⁸O as (in order from Eqns 16–18)

\[
[^{12}C^{16}O_2] = \frac{[CO_2](1 - f_{\text{other}})}{1 + R_{\text{co}} + 2R_{\text{so}}}, \tag{16}
\]

\[
[^{13}C^{16}O_2] = [CO_2](1 - f_{\text{other}}) - 2R_{[^{12}C^{16}O_2]} - [^{12}C^{16}O_2], \tag{17}
\]

\[
[^{12}C^{16}O^{16}O] = [CO_2](1 - f_{\text{other}}) - [^{13}C^{16}O_2] - [^{12}C^{16}O_2], \tag{18}
\]

where \(f_{\text{other}}\) is the fraction of CO₂ containing all isotopologues other than \(^{13}C^{16}O_2\), \(^{12}C^{16}O_2\) and \(^{12}C^{18}O^{16}O\), and is assumed to be 0.000821 (Eiler & Schauble 2004). The primary calibration cylinders were used to calibrate two working standards with mixing ratios of the three isotopologues of \([^{12}C^{16}O_2]\) = 334.587, \([^{13}C^{16}O_2]\) = 3.626, \([^{12}C^{16}O^{16}O]\) = 1.341 and \([^{13}C^{16}O_2]\) = 550.3273, \([^{13}C^{16}O_2]\) = 5.965, \([^{12}C^{16}O^{16}O]\) = 2.208 μmol mol⁻¹, respectively, and δ¹⁸OVPDB and δ¹³C are −0.60 and 0.50‰, respectively. The working standards span the expected range in mixing ratios as required (Bowling et al. 2003b).

[CO₂]₀ for air streams from the LI-6400 chamber inlet and outlet lines (Li-Cor Inc.) was calculated from the mixing ratios of individual isotopologues by

\[
[CO_2]_f = [^{12}C^{16}O_2] + [^{13}C^{16}O_2] + [^{12}C^{18}O^{16}O], \tag{19}
\]

and δ¹⁸OVPDB values were then calculated using Eqns 12 and 15. We note that Griffis et al. (2005) calculate \([^{12}C^{16}O_2]\) and \([^{12}C^{16}O^{16}O]\) mixing ratios without using the \([^{13}C^{16}O_2]\) isotopologue and a value of \(f_{\text{other}}\) (0.01185) that corresponds to all isotopologues except \(^{13}C^{16}O_2\) and \(^{12}C^{16}O^{16}O\). The Griffis calculation results in slight (0.01‰) overestimation of δ¹⁸O, which is insignificant given typical precision of the TDL for δ¹⁸O measurement (SD in δ¹⁸O of approximately 1.2% for measurements at 10 Hz). However, the calculations we present here allow simultaneous measurement of both δ¹⁸O and δ¹³C. For ease of comparison with δ¹⁸O of H₂O liquid and vapour samples, we present δ¹⁸O relative to Vienna standard mean ocean water (VSMOW):

\[
\delta^{18}O = \frac{R_{so}}{R_{\text{VSMOW}}} - 1, \tag{20}
\]

where \(R_{\text{VSMOW}} = 0.0020052\) (Gonfiantini 1984). Note that the VSMOW scale is offset from the VPDB-CO₂ scale by about 41‰. δ¹⁸O is reported in parts per thousand (‰).

The TDL measures at 10 Hz, but for the current application, a manifold was used to switch between each of the two working standards and the leaf chamber inlet (reference) and outlet (sample) lines. Standard cylinders were sampled for 30 s, and sample and reference lines were sampled for 1 min each. We discarded all but the last 15 s of data to allow for flushing of the previous sample through the optical cell and plumbing and for pressure transients, allowing calculation of mean mixing ratios over 15 s for each working standard and the reference and sample air streams.
Pressure within the optical cell was maintained at 2.0 mbar to minimize pressure broadening. A low-flow Nafion counterflow water trap (PD625 dual configurations, Campbell Scientific) was used to remove water vapour from sample air prior to measurement (Barbour et al. in press). The average SDs of each working standard calculated from repeated cylinder calibrations during our 2 week experiment were 0.07 μmol mol⁻¹ for [CO₂], and 0.2‰ for δ¹⁸O.

Calculating δ¹⁸Oᵦᵦ

The stable oxygen isotope ratio of CO₂ respired by the leaves (δ¹⁸Oᵦᵦ) was calculated by mass balance from the δ¹⁸O and concentration of CO₂ entering (δ¹⁸Oᵦᵦ and Cᵦᵦ, respectively) and leaving (δ¹⁸Oₑᵦ and Cₑᵦ, respectively) the leaf chamber (Evans et al. 1986; Cernusak et al. 2004):

\[
\delta^{18}O_{\text{e}} = \frac{\delta^{18}O_{\text{e}} - \delta^{18}O(1-p)}{p},
\]

where \(p = (C_{\text{e}} - C_{\text{i}})/C_{\text{i}}, \) Cₑᵦ and Cᵦᵦ represent [CO₂] of dry air, as measured by the TDL. A single value of δ¹⁸Oᵦᵦ was calculated every 3 min. A Monte Carlo analysis (following Barbour, Andrews & Farquhar 2001) was conducted to calculate the SD of individual estimates of δ¹⁸Oᵦᵦ. Variation in [CO₂] and δ¹⁸O (within the measured SDs of 0.07 μmol mol⁻¹ and 0.2‰ for [CO₂] and δ¹⁸O, respectively) was created using a random number generator for 10 000 individual calculations of Eqn 21, and the overall SD in δ¹⁸Oᵦᵦ was determined.

Source water and water vapour sampling for isotopic analysis

Subsamples of irrigation water and vapour from glasshouse air (pumped at 20 L min⁻¹ through a five-stage cascade cold-finger trap placed in an ethanol-dry ice bath) were taken on each measurement day (6 May for well-watered plants and 12 May for droughted plants). Water samples were analysed on an isotope ratio mass spectrometer (IsoPrime; GV Instruments, Manchester, UK) using the CO₂ equilibration method of Socki, Karlsson & Gibson (1992). δ¹⁸O of irrigation water and glasshouse water vapour were −10.4 ± 0.1 and −15.3 ± 0.1‰ for well-watered plants, respectively, and −10.1 ± 0.0 and −15.5 ± 0.2‰ for droughted plants, respectively (average ± SE of three samples in each case). The source water and vapour differed between well-watered and droughted plants because the measurements were made 6 d apart.

δ¹⁸Oᵦᵦ, the isotopic composition of water vapour in the leaf chamber, is estimated by assuming that (at isotopic steady state, for conservation of mass) δ¹⁸O of leaf-transpired water vapour is equal to δ¹⁸O of irrigation water (δ¹⁸Oᵦᵦ), so that

\[
\delta^{18}O_{\text{e}} = p_t\delta^{18}O_{\text{e}} + (1-p_t)\delta^{18}O_{\text{w}},
\]

where δ¹⁸Oᵦᵦ is the δ¹⁸O of water vapour in glasshouse air (i.e. air entering the leaf chamber), and \(p_t \) is the proportional contribution to total chamber water vapour by leaf transpiration. \(p_t \) is calculated from the water vapour pressure of air entering \((w_a) \) and leaving \((w_s) \) the leaf chamber:

\[
p_t = \frac{w_s - w_a(1-w_s)}{w_s}.
\]

Leaf water content

Lamina water content \((W \text{ mol m}^{-2} = (\text{g fresh weight} - \text{g dry weight}) \div 18 \text{ g mol}^{-1} \div \text{ disc area})\) was measured from leaf discs (9.62 × 10⁻⁴ m²) cut from leaves of 10 well-watered plants (five grown under high light and five under low light, but not from leaves used for gas exchange and isotopic measurements) between 30 and 60 min after plants had been moved into the dark. There was no significant difference between high- and low-light plants \((P > 0.05)\), with average \(W = 6.85 \pm 0.10 \text{ mol m}^{-2}, \) and no evidence that \(W \) varied with time in the dark. Two or three leaf discs were cut for water content analysis from the leaves of the two droughted plants used for gas exchange and isotopic measurements (from the portion of the leaf not in the chamber). \(W \) of leaves from droughted plants tended to increase with time in the dark, from 6.41 to 6.86 mol m⁻².

RESULTS

Variability in respiration rate and stomatal conductance

Respiration rate was lowest for the leaves of plants grown under low light, at about 1 μmol m⁻² s⁻¹ (Fig. 1a–c). Leaves of plants grown under high light, whether droughted or well-watered, generally had higher respiration rates, between 1 and 2.25 μmol m⁻² s⁻¹. Stomatal conductance to CO₂ \((g_{sc})\) varied between 0.001 and 1.584 mol m⁻² s⁻¹, and was much lower for droughted than well-watered plants (Fig. 1f). \(g_{sc} \) for high-light and droughted plants declined after the plants were placed in the dark. Both low-light plants had fairly constant \(g_{sc} \) as time in the dark increased.

The time to isotopic steady state was estimated for each leaf using Eqn 11, measured \(W \) and the LI-6400 gas exchange measurements, and varied between 26 and 48 min for well-watered plants. This means that well-watered plants should have been close to isotopic steady state over the last 15 min of measurements. However, the extremely low one-way fluxes measured for droughted plants resulted in times to isotopic steady state between 8 and 94 h. Therefore, the two droughted plants were probably not at isotopic steady state, and the implications of assuming steady state and applying Eqns 22 and 23 are explored in the discussion.

Precision of δ¹⁸Oᵦᵦ measurement

The large leaf chamber typically allowed a large difference in CO₂ mixing ratio \((30 \pm 7 \text{ μmol mol}^{-1})\) between air
entering and leaving the chamber. However, generally high stomatal conductance and transpiration rate set a lower limit to the maximum allowable flow rate without creating vapour pressure and condensation problems. A range in \(p \) (as defined in Eqn 21) between 0.020 and 0.141 was observed. A Monte Carlo analysis using Eqn 21 and the SDs of \([\text{CO}_2] \) and \(\delta^{18}O \) (0.07 \(\mu \)mol mol\(^{-1} \) and 0.2‰, respectively) produced an SD of individual measurements of \(\delta^{18}O_R \) between 1.1 and 5.1‰ (for \(P = 0.141 \) and \(P = 0.020 \), respectively).

A 120 L buffer volume was used to reduce fluctuations in \(C_z \) and \(\delta^{18}O_z \), and was found to be effective. The SD of \(\delta^{18}O_z \) over 15 min was typically 0.7‰, and \(C_z \) was less than 3 ppm. The exception was during measurements on the leaf of plant 2 grown at low light, for which the SDs over 15 min were 2.7‰ and 4.9 ppm. Both instrument noise and experimental variation were included in the calculated SE of the mean \(\delta^{18}O_R \) over 15 min of measurements. SEs of the mean values varied between 0.4‰ (for the droughted plant 1) and 20.2‰ (for the low-light plant 2).

Temporal variability in measured \(\delta^{18}O_R \)

\(\delta^{18}O_z \) calculated from TDL measurement of \(\delta^{18}O \) of CO\(_2\) entering and leaving the leaf chamber varied between 50 and 220‰. Leaves for which stomatal conductance declined with time (Plant 1 grown under high light, and both droughted plants) also showed a decline in \(\delta^{18}O_R \) with time in the dark. \(\delta^{18}O_R \) of the second high-light plant was rather constant at 50–80‰. \(\delta^{18}O_R \) from leaves of both plants grown under low light were variable in time, between 70 and 220‰. All leaves are assumed to be at isotopic steady state over the final 15 min of measurement, for comparison with modelled values and data presented by Cernusak et al. (2004).

Estimating \(\theta \) and \(\delta^{18}O_{e0} \)

We utilized a regression technique originally presented by Cernusak et al. (2004) to predict \(\theta \) and \(\delta^{18}O_{e0} \) from a plot of \(\delta^{18}O_z \) and \(\delta^{18}O_e \). In the current experiment, variation in \(\delta^{18}O_z \) resulted from variation in \(e_z/e_i \) due to differences in stomatal conductance and transpiration rate between growth environments. Equations 7–10 are used to estimate \(\delta^{18}O_e \) for each leaf for the final 15 min of each experiment, using measured gas exchange parameters and isotopic...
discrimination against CO2 diffusion from the chloroplast to the atmosphere.

Using fitted data at high-light intensity were measured at assumed isotopic steady state, and isotopic compositions were determined using traditional CO2 and O mass spectrometric techniques.

The Cernusak data fall below the relationship expected for Ricinus communis. This study shows that data at assumed steady state from the current experiment are significantly offset from the original Cernusak et al. (2004) experiment, in which well-watered plants grown at high-light intensity were measured at assumed isotopic steady state, and isotopic compositions were determined using traditional CO2 trapping and mass spectrometric techniques.

Values are averages over the period of assumed isotopic steady state, and n is between 5 and 10. Modelled δ18O values are those predicted using fitted θ. Listed also are averages and ranges in values from the Cernusak et al. (2004) experiment, in which well-watered plants grown at high-light intensity were measured at assumed isotopic steady state, and isotopic compositions were determined using traditional CO2 trapping and mass spectrometric techniques.

Modelled δ18O values are those predicted assuming conductance from leaf intercellular air spaces to the chloroplasts is 0.3 mol m−2 s−1 (N.G. McDowell, D.T. Hanson and M.M. Barbour, unpublished data). According to Eqn 4, the relationship [δ18O of chloroplast CO2 (‰)] = δ18Oc0 from the intercept [δ18Oc0 = (intercept – θε)/ (1 - θ)], assuming θ and δ18Oc0 are constant between leaves (Cernusak et al. 2004). Figure 2 shows that data at assumed steady state from the current experiment are significantly offset from the original Cernusak et al. (2004) data, but have a similar slope, resulting in a similar estimate of θ (θ = 0.84), but higher δ18Oc0 (54.5‰). The Cernusak data fall below the relationship expected for full equilibration with chloroplast water, but the current data sit both above and below the θ = 1 line. The slope of the fitted regression, at 0.88, is significantly (P < 0.05) less than 1.04 (the slope when θ = 1), but we include modelled values for δ18Oc assuming full equilibration in subsequent analysis for completeness.

Modelling variation in δ18OR

The simple net flux model (Eqn 6) significantly underestimated δ18OR of leaves for which stomata were open (i.e.

![Figure 2](https://via.placeholder.com/150)

Figure 2. Relationship between δ18O of chloroplast CO2 (δ18OR) and δ18O of water at the evaporating sites in Ricinus communis leaves in the dark. The data shown are from the current experiment (filled squares) and from data published by Cernusak et al. (2004) (open circles). The solid line represents the relationship expected if chloroplast CO2 was in isotopic equilibrium with evaporation site water, and the dotted line is the least square regression (δ18OR = 42.6 + 0.88δ18O, r² = 0.97, P = 0.0003).
high- and low-light plants), but was within 6‰ of measured $\delta^{18}\text{O}_R$ for droughted plants with low stomatal conductance (Fig. 3). The one-way flux model with $\theta = 1$ also significantly underestimated $\delta^{18}\text{O}_R$ for well-watered plants. CO$_2$ was not in full equilibrium with chloroplast water for well-watered plants, even though $\delta^{18}\text{O}_c$ sits close to the expected relationship with $\delta^{18}\text{O}_e$ assuming full equilibration (see Fig. 2).

The one-way flux model with $\theta = 0.84$ and $\delta^{18}\text{O}_c = 54.5$‰ adequately predicted $\delta^{18}\text{O}_R$ for leaves of high-light plants after the first 20 min (Fig. 3). During the first 20 min, the steady-state one-way flux models either over- or underestimated measured $\delta^{18}\text{O}_R$ for plants 1 and 2, respectively. While the net flux model adequately predicted $\delta^{18}\text{O}_R$ of droughted plants after 10 min in the dark, it failed to capture the rapid decline in $\delta^{18}\text{O}_R$ over the second 5 min, a decline that was partially modelled by the one-way flux model. However, both the net flux and one-way flux models (using $\theta = 0.84$ and $\delta^{18}\text{O}_c = 54.5$‰) underestimated $\delta^{18}\text{O}_R$ for leaves of both low-light plants.

Assuming the one-way flux model to adequately model variation in $\delta^{18}\text{O}_R$ for plants from all growth environments, the model may be tuned to fit by varying either θ or $\delta^{18}\text{O}_c$ while holding the other constant. To match observed $\delta^{18}\text{O}_R$ while assuming $\delta^{18}\text{O}_c = 54.5$‰, θ was fitted to vary between 0.43 and 0.90 (Table 1; Fig. 4). The fitted values of θ tended to be lower for plants grown under low light, and higher for plants grown at high light (Table 1). Alternatively, if θ is assumed to be constant at 0.84, values for $\delta^{18}\text{O}_c$ of between 52.6 and 82.0‰ were required to match modelled values of $\delta^{18}\text{O}_R$ to those measured.

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd, Plant, Cell and Environment, 30, 456–468
conditions between the two experiments resulted in generally lower air saturation deficits within the leaf chamber and hence lower stomatal conductances in the Cernusak experiment (Table 1). The lower stomatal conductances, combined with more enriched source water (~7.4‰ compared to ~10‰ in the current experiment), resulted in more enriched water at the sites of evaporation within the leaf and hence much more enriched $\delta^{18}O_R$. Fitted values for θ were very similar between the Cernusak experiment and well-watered, high-light plants in the current experiment (Table 1), but fitted values for $\delta^{18}O_i$ were higher for the current experiment than in the Cernusak et al. (2004) experiment (54.5 compared to 14.3‰, respectively). There is no clear explanation for this difference and further experimentation is required. However, despite differences in $\delta^{18}O_i$ and fitted $\delta^{18}O_{io}$ between the experiments, overall, the data presented here suggest that the LI-6400 TDL measurement technique gives comparable isotope values to traditional mass spectrometric techniques.

We believe the combined LI-6400 TDL system has a number of advantages over mass spectrometric flask-based techniques, including high temporal resolution, real-time quality control of isotope data and ease of control of the chamber environment using the LI-6400. In addition, the system described here does not suffer from contamination of the isotopic signal by the interaction of O$_2$ and N$_2$ (producing NO$_2$) with a mass spectrometer source, as described by Cousins et al. (2006a). Hence, the LI-6400 TDL system allows experiments to be conducted at ambient O$_2$ partial pressures, unlike the online system described by Cousins et al. (2006b).

One improvement we recommend is concurrent measurement of $\delta^{18}O$ of water vapour entering and leaving the leaf chamber at the same temporal resolution as CO$_2$ measurement. This would allow parameterization of a non-steady-state leaf water enrichment model (e.g. Farquhar & Cernusak 2005). The low flow rate through the chamber excludes traditional cold-finger vapour trapping at relevant temporal resolutions, but TDLs capable of isotopic measurement of water vapour are available (Lee et al. 2005) and can be installed alongside the CO$_2$ laser in the TDL.

Applications of the technique in studies of leaf gas exchange

When combined with measurements of δ_i, at appropriate temporal resolution, we foresee the high temporal resolution possible with the combined LI-6400 TDL technique having a number of potential applications in studies of leaf gas exchange. The first is in high temporal resolution studies of leaf internal conductance to CO$_2$ (g_i). Recent studies have pointed to previously unrecognized variability in g_i, and suggested that g_i may be quite dynamic as leaf environmental and biochemical conditions change (D.T. Hanson, unpublished data). Simultaneous measurement of the carbon and oxygen isotope compositions of CO$_2$ provides two estimates of g_i, Gillon & Yakir (2000a) found that the ^{18}O–g_i estimate was always lower than the ^{13}C–g_i estimate.
They interpreted this difference in terms of the point at which CO₂ becomes equilibrated in ¹⁸O with leaf water, which determines the $^{18}O_g$ estimate, compared to the average chloroplastic CO₂ concentration, which determines the $^{13}C_g$ estimate. Oxygen isotopic equilibration between CO₂ and leaf water is thought to occur at the evaporating sites within the mesophyll cell walls. Dual isotope measurements with the LI-6400 TDL would therefore allow partitioning of g_i into cell wall and chloroplast components at high temporal resolution in response to changing environmental conditions (e.g. ambient CO₂ concentration, light and temperature).

The second potential application of the LI-6400 TDL technique is for testing models of $^{18}O_R$ under non-steady-state conditions. Leaf water in most terrestrial ecosystems is unlikely to be at isotopic steady state most of the time (Harwood et al. 1998; Lai et al. 2006), so accurate non-steady-state $^{18}O_R$ models are required to interpret ecosystem C¹⁸O1₆O flux data.

Finally, if the observation by Cernusak et al. (2004) that chloroplastic CO₂ is in full equilibrium with chloroplastic water during photosynthesis (i.e. θ is 1 in the light) is found to be generally the case for C_3 plants, measurements of changes in $\delta^{18}O$ of CO₂ moving across a photosynthesizing leaves may provide a simple way to monitor changes in Δ_δ. Combined with measurements of Δ_k, the LI-6400 TDL system can be a powerful tool to test models of leaf water H₂¹⁸O enrichment models under non-steady-state conditions. If pathways of water movement through the leaf (i.e. through the apoplast versus aquaporins) influence the gradients in H₂¹⁸O within leaves, as suggested by Barbour & Farquhar (2003), then the system may also be useful in determining the importance of aquaporins to leaf hydraulics. Aquaporin transgenic plants would be particularly useful in this respect.

Modelling variability in $\delta^{18}O_R$

Temporal variability in $\delta^{18}O_R$ after plants were placed in the dark was as high as 100% in 10 min. To our knowledge, these are the first measurements of variation in $\delta^{18}O_R$ under non-steady-state conditions with a temporal resolution of minutes, and over a range in stomatal conductance of more than three orders of magnitude. Previously, Cernusak et al. (2004) measured $\delta^{18}O_R$ during R. communis leaf respiration at isotopic steady state and at moderate to high stomatal conductance, and Seibt et al. (2006; Seibt et al. in press) recently reported limited measurements of $\delta^{18}O_R$ over a number of nights under non-steady-state conditions for Picea stichensis and Fagus sylvatica branches. As with these previous studies, the simple net flux model significantly underestimated $\delta^{18}O_R$ when stomata were open (Fig. 3).

When stomatal conductance was very low (i.e. <0.005 mol m⁻² s⁻¹ for the two droughted plants), the net flux model predicted $\delta^{18}O_R$ to within 6‰. Such a small difference may be partly explained by the expectation that these leaves were not at isotopic steady state (so that Eqns 22 and 23 are not strictly valid), and will be explored. A 5‰ underestimation of Δ_δ [resulting from $\delta^{18}O$ of transpired water vapour (δ_{v}) being 26 and 33‰ more enriched than source water, for droughted plants 1 and 2, respectively] would result in only a 1% underestimation of Δ_δ. This error in Δ_δ results in the fitted values for θ being overestimated by 0.08 and 0.07 for droughted plants 1 and 2, respectively. If Δ_δ were actually lower than source water (by the same amount as previously described), Δ_δ would be underestimated by 1‰, and fitted values for θ would be 0.09 and 0.10 higher than calculated using the assumption of isotopic steady state. That is, errors in Δ_δ as large as 33‰ only result in errors of up to 1‰ in water at the evaporating sites in leaves with very low stomatal conductance. Even with such large errors in Δ_δ, the fitted values for θ are still significantly lower than unity, reinforcing the need to use the one-way flux model rather than the net flux model. However, the application of a combination of a one-way flux model and a non-steady-state leaf water enrichment model would be desirable.

For well-watered plants, the comparison between measured and modelled $\delta^{18}O_R$ showed that CO₂ was not in full equilibrium with chloroplast water, despite the relationship between calculated $\delta^{18}O$ of chloroplast CO₂ and estimated $\delta^{18}O$ of chloroplast water sitting close to that expected for full equilibration. The one-way flux model allowed more accurate prediction of variability in $\delta^{18}O$ than the net flux model for plants grown under high light, when time was allowed for leaf water to turn over and assumptions inherent in Eqns 22 and 23 to be valid (Fig. 3). However, measured $\delta^{18}O_R$ for the plants grown under low light did not match model predictions when single values for θ and $\delta^{18}O_{cel}$ were assumed. Assuming the one-way flux model to be adequate, the model may be tuned to fit observed values by fitting either a lower value for θ or a higher value for $\delta^{18}O_{cel}$ for plants grown under low light.

Variable θ or variable $\delta^{18}O_{cel}$?

The model predictions suggest that either θ or $\delta^{18}O_{cel}$ varied, with lower values of θ or higher values of $\delta^{18}O_{cel}$ for plants grown under low light. θ, the proportion of chloroplastic (or mitochondrial) CO₂ in isotopic equilibrium with water at the evaporating sites, depends on the number of hydration reactions achieved per CO₂ molecule ($k\tau$), which depends, in turn, on the ratio of carbonic anhydrase activity to the residence time of CO₂ in the leaf. Formally, Gillon & Yakir (2000a,b) defined θ as (after Mills & Urey 1940)

$$\theta = 1 - e^{-\frac{k\tau}{T}}.$$

(25)

and

$$k\tau = \frac{CA_{leaf}}{F},$$

(26)

where CA_{leaf} is the rate of carbonic anhydrase activity in vivo (μmol m⁻² s⁻¹) at T_e, and F is the gross flux of CO₂ into (in the case of net photosynthesis) or out of (in the case of
net respiration) the leaf. For the current (respiring) leaves, \(F \) is given by the product of the \(\text{CO}_2 \) mole fraction at the chloroplasts or mitochondria, \(C_e \), and the total conductance to \(\text{CO}_2 \) from the chloroplasts and mitochondria to the leaf chamber. Thus, \(F \) is low for droughted plants (2.8 and 1.2 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) for plants 1 and 2, respectively) when stomatal conductance is low, and higher for well-watered plants (between 54.7 and 77.9 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)). Using the fitted values of \(\theta \) and calculated \(F \) for each leaf, \(C_{A_{\text{leaf}}} \) was estimated to be around 30 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) for droughted plants, 1400 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) for high-light plants and 340 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) for low-light plants. Among \(C_3 \) plants, \(C_{A_{\text{leaf}}} \) is reported to vary between 45 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) (\textit{Phragmites australis}; Gillon & Yakir 2000b) and 4412 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) (\textit{Veronia oleander}; Gillon & Yakir 2001), and by as much as 70 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) along a single \(C_4 \) leaf (\textit{Zea mays}; Affek, Krisch & Yakir 2005). \(C_{A_{\text{leaf}}} \) was not measured for the current leaves, but it seems possible that variation in \(C_{A_{\text{leaf}}} \) between growth environments may partly explain the observed variation in fitted \(\theta \).

However, without measurements of \(C_{A_{\text{leaf}}} \), we are unable to distinguish variability in \(\theta \) from variability in \(\delta^{18}O_R \). The one-way flux model also predicted \(\delta^{18}O_R \) accurately if \(\theta \) was held constant at 0.84, but \(\delta^{18}O_R \) was allowed to vary: Values for \(\delta^{18}O_R \) of between 52.6 and 59.7‰ for high-light plants, and 70.0 and 82.0‰ for low-light plants 1 and 2, respectively, were required to match modelled to measured \(\delta^{18}O_R \). Gillon & Yakir (2000b) suggested that \(\delta^{18}O_R \) may be estimated by

\[
\delta^{18}O_R = \delta^{18}O_a - \bar{\theta} \left(\frac{C_a}{C_e} \right),
\]

or, for a respiring leaf,

\[
\delta^{18}O_R = \delta^{18}O_a - \bar{\theta} \left(\frac{C_a}{C_e} \right).
\]

Using measured \(\delta^{18}O_a \) and \(C_a \), and modelled \(\bar{\theta} \) and \(C_e \), \(\delta^{18}O_R \) may be calculated from Eqn 28 to be 76.3‰ for droughted plants, 44.6‰ for high-light plants and 46.3‰ for low-light plants, that is, less enriched than the estimate of \(\delta^{18}O_R \) from regression and fitting analysis. Further, \(\delta^{18}O_R \) for low-light plants is only 1.7‰ more enriched than high-light plants, rather than about 20‰ more enriched from the fitting analysis.

As Cernusak et al. (2004) point out, there are three possible sources for the oxygen in \(\text{CO}_2 \) evolved in the dark: atmospheric \(\text{O}_2 \), oxygen from leaf water and organic oxygen from respiratory substrates. Respired \(\text{CO}_2 \) with an oxygen atom from \(\text{O}_2 \) is expected to have an isotopic composition of between 0 and 5‰, and should not vary between leaves, assuming \(\text{O}_2 \) is 23.5‰, and discrimination against \(^{18}\text{O}^{16}\text{O} \) during respiration is between 17 and 26‰ (Guy et al. 1992). Although not measured, leaf water enrichment is predicted to be slightly lower in low-light plants compared with high-light plants, that is, in the opposite direction from fitted variation in \(\delta^{18}O_R \). Organic oxygen from respiratory substrates should reflect leaf water enrichment during synthesis of the substrates, with a 27‰ enrichment (Cernusak et al. 2003). If there are differences in leaf water enrichment between high- and low-light plants during respiratory substrate synthesis, these are likely to be small and if anything, low-light plants should have slightly depleted leaf water than high-light plants because of lower leaf temperatures. So, none of the sources of mitochondrial oxygen can explain the higher fitted \(\delta^{18}O_R \) values at low light.

However, Cernusak et al. (2004) also point out that \(\delta^{18}O_R \) is dependent on \(\delta^{18}O_a \). \(\delta^{18}O_a \) was 2‰ more enriched, on average, for low-light plants than either droughted or well-watered high-light plants. By combining Eqns 4 and 24, we obtain

\[
\delta^{18}O_R = \frac{\delta^{18}O_R(1 + \bar{\theta})(1 - \frac{C_a}{C_e}) + \frac{C_a}{C_e}(\delta^{18}O_a - \bar{\theta}a)}{1 - \bar{\theta}}.
\]
the enrichment of \(\delta^{18}O \) in the leaves of transpiring plants. *Radiation and Environmental Biophysics* **11**, 41–52.

Seibt U., Wingate L. & Berry J.A. (in press) The effects of nocturnal stomatal conductance on the δ^18O signatures of foliage gas exchange observed in two forest ecosystems. *Tree Physiology*.

Received 10 May 2006; received in revised form 27 August 2006; accepted for publication 12 December 2006